Appositions and layered derivations

Jan-Wouter Zwart

University of Groningen

(Ap)positive thinking, Groningen, January 20, 2012

1. Layered derivations

1.1 Merge

- (1) Minimally needed
 - a. a set of elements N (Numeration)
 - b. a procedure yielding relations among the members of N = structure (Merge)
- (2) Simplest merge (Zwart 2004, 2008, 2009; Fortuny 2008) a. Top-down: split b. Bottom-up: transfer

N = { a, b, c }	N = { a, b, c }	
N	N N	workspace
$\langle \mathbf{a}, \{\mathbf{b}, \mathbf{c}\} \rangle$	> {a, b, c } {b, c }	∞ 〈a.∞〉
$\langle a, \langle b, \langle c, \{\} \rangle \rangle$	{ c }	$\langle \mathbf{b}, \langle \mathbf{a}, \boldsymbol{\varnothing} \rangle \rangle$
> 〈 a, b, c 〉	{ }	⟨ C, ⟨ D, ⟨ a, ∅ ⟩/⟩
	$>$ \langle c, b, a \rangle	

- (3) Unary merge
 - a. each step creates an ordered pair
 - b. derivation yields an ordered n-tuple
- (4) Linear Correspondence Axiom (redefined)
 ⟨ a, b ⟩ = / a b / (where slashes indicate a string)

(5) Structure and order

- a. Structure in any domain (syntax, morphology) is always a function of Merge
- b. Order is always established at the interfaces

1.2 Layered derivations

(6) Starting point

Members of N may be of any type (features, morphemes, words, phrases, clauses) e.g. Dutch *vader en moeder-tje* [father and mother-DIM] 'playing house'

- (8) (complex) specifiers/adjuncts must stem from a separate derivation layer
- a. N = { the, man, hit, the, ball } > < < the, { man, hit, the, ball } >
 b. N = { [the man], hit, the, ball } > < < [the man], hit, the, ball } >
- (9) Recursion
 A derivation D, containing subderivations (D_i, D_k) with numerations (N_i, N_k), is recursive iff a member of N_i is the output of D_k.

1.3 What happens between derivation layers

- (11) Interface effects between derivation layers
 - atomization: given a derivation D_i with numeration N_i, parts of members of N_i are not merged in D_i (Generalized Integrity)
 - b. **linearization**: conversion of structure (ordered N-tuple) to linear order (string) (Zwart 2009)
 - c. conventionalization: idiosyncratic sound/meaning pairing (e.g. idioms)
 - d. grammaticalization/recategorization/reanalysis
 - e. morphological realization of dependency ('morphology after syntax')
 - f. prosodic effects
- (12) Generalization

The interfaces turn the output of a derivation into a single item ('lexical item'), which

- a. potentially has idiosyncratic properties, and
- b. may be used as an atom in another derivation.
- (13) 'Lexical'
 - a. α is a **lexical item** iff α is a member of a numeration
 - b. P is a lexical property iff P is a property of a lexical item
 - c. a construction is a lexical item

1.4	Opacity	
(14)	Left branch extraction a. Whose father did you say [[e] left] ? b. * Whose did you say [[[e] father] left] ?	
(15)	Whose father left	
a.	$N \neq \{ whose, father, left \} > \langle whose \langle father \langle left \rangle \rangle \rangle $ (cf. (8))	
b.	N = { [whose father], left } > \langle [whose father] \langle left $\rangle \rangle$	
(16)	 a. whose father in (14/15) is a lexical item in N b. opacity follows from Lexical Integrity, now generalized (17) 	
(17)	Generalized Integrity Given a derivation D of a Numeration N, operations in D manipulate only members of N.	
(18) a. b.	<i>Transparency</i> He said [that Tasman found Tasmania] What did he say [Tasman found [e]]]	
(19)	a. phase-theory: (18b) should be bad > edge-hypothesisb. layered derivations: complement need not be output of separate derivation	
(20)	N = { he, said, that, Tasman, found, Tasmania }	
	\langle he, \langle said, \langle that, \langle Tasman, \langle found, Tasmania $\rangle\rangle\rangle\rangle\rangle$	
(21)	a. [That Tasman found Tasmania] surprised Cookb. Cook found the Cook Islands [before Tasman found Tasmania]	
(22)	 a. *What did [that Tasman found [e]] surprise Cook b. *What did Cook find the Cook Islands [before Tasman found [e]] 	
	> adjuncts/subjects must be outputs of separate derivation layers (cf. (8))	
1.5	Reanalysis as an interface effect	
(23) (24)	a. far from simple (adjective)b. far from home (PP)a. a far from simple solutionb. *a far from home cowboy	
(25)	Reanalysis: PP > A	
(26)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	

(27) Derivation₂ N = { a, [far from simple]_A, solution } > \langle a, [far from simple], solution \rangle

2. Appositions

(28) Abel Tasman, the famous explorer, found Tasmania

2.1 Atomicity

- (29) a. Abel Tasman himself found Tasmaniab. Abel Tasman didn't himself find Tasmania
- (30) a. Abel Tasman, the famous explorer didn't find the South Land
 b. *Abel Tasman didn't the famous explorer find the South Land
- > **anchor** and *apposition* are a (complex) unit
- > in subject/adjunct position: they must be outputs of separate derivations
- > in object position?

2.2 Opacity

- (31) a. The VOC ordered Tasman to find the South Land, a nonexisting continent
 - b. What did the VOC order Tasman to find [e]
 - c. *What did the VOC order Tasman to find [e] a nonexisting continent
- > anchor + apposition in object position is also the output of a separate derivation

2.3 Interface effects

- (32) a. atomization: 2.1/2.2
 - b. linearization: fixed order
 - c. conventionalization: identification/attribution/specification?
 - d. grammaticalization/reanalysis: noun phrase juxtaposition > NP + proposition
 - e. morphological realization (apposition markers?)
 - f. prosody: "comma intonation", more tellingly: echo intonation

(33) A²-bel¹ Tas³-man², the¹ fa²-mous¹ ex¹-plo³-rer², vas² born³ in² Lut⁴-je¹-gast¹

2.4 Heringa's observations (chapter 4)

Apposition does not affect verbal agreement

- (34) Every explorer, Cook, Tasman, Lewis & Clark, { was/*were } hesitant
 - > reanalysis NP + NP = NP

Apposition ignored in ellipsis interpretation

(35) Cook lost **his ship**, *the Endeavour*, and so did Tasman

> same reanalysis

Apposition is not in a selection relation with anything outside the appositive construction

- (36) a. The VOC ordered Tasman to find the South Land, a nonexisting continent
 - b. The VOC ordered Tasman to find a nonexisting continent
 - > (36b) is *de re* only, (36a) can be *de dicto* as well

Apposition is shielded off from dependencies originating outside the appositive construction (37) a. * Tasman named the island after Tasman's superior

- b. Tasman named the island after **Van Diemen**, *Tasman's superior*
- > again follows from the reanalysis at the interface between derivation layers

2.5 The propositional analysis of appositions

Already in Wobbe de Vries (1914-1915), De typen der mededeeling, p. 180-181:

in 'Harke, een beste kerel, had er geen erg in' is de appos. ampl., neerkomend op 'hij was een b. k.' (evengoed als 'die een b. k. was' daarop neerkomt).

> we see an NP, we interpret a proposition: could this be an interface effect? (for example, E-type pronoun not merged, but supplied at the interface)

3. Tense and appositional opacity

- (38) a. **Marianne Vos**, *winnaar van de Giro Donne*, heeft in Haren gereden Marianne Vos, winner of the Giro Donne, has in Haren ride:PART
 - b. *Wie heeft [e] winnaar van de Giro Donne in Haren gereden ?
- (39) a. **Marianne Vos**, *ooit winnaar van de Giro Donne*, heeft in [nu] Haren gereden Marianne Vos, winner of the Giro Donne, has [now] in Haren ride:PART
 - b. Wie heeft [e] ooit winnaar van de Giro Donne [nu] in Haren gereden ?

Not in object position, except with ECM

- (40) a. Ik heb **Marianne Vos** *(ooit) winnaar van de Giro Donne*, [nu] in Haren gezien I have see:PART
 - b. *Wie heb je (ooit) winnaar van de Giro Donne, [nu] in Haren gezien ?
- (41) a. Ik heb **Marianne Vos** *(ooit) winnaar van de Giro Donne*, [nu] in Haren zien winnen I have see win
 - b. Wie heb je *(ooit) winnaar van de Giro Donne, [nu] in Haren zien winnen?
- > facts suggest that appositions with a temporal marker are different, perhaps joined to a different type of anchor
- > possible consequence: tense is not a canonical property of appositions