

Top-down derivation, recursion, and the model of grammar
Jan-Wouter Zwart

1. Introduction1

An aspect of human cognition that may be central to language is the ability to treat a complex structure as
a single item, and to move back and forth between the complex and atomic interpretation of such
elements depending on the cognitive task at hand. This ability is identified by Hofstadter (2007:83) as
crucial to the development of the mental lexicon, where complex substructures in e.g. family relations
may be subsumed under a single concept like ‘uncle’ or ‘family’. Hofstadter identifies the ability to
manipulate such semantic loops as marking a crucial step in the evolutionary development of human
cognition.
 I would like to suggest that the very same ability is involved in linguistic recursion, understood as the
syntactic treatment of a complex string as a single item within another complex string. The
simplex/complex ambiguity of such strings can be formalized if we understand them to be construed in a
separate derivational sequence (a derivation layer), feeding into the alphabet (numeration, in minimalist
terminology) for the next derivational sequence. The string under discussion, then, is complex in the
context of the earlier derivation, and simplex in the context of the later derivation. If human cognition is
able to jump back and forth between a complex and a simplex treatment of strings, the grammar creating
those strings (‘narrow syntax’) may be of the minimal complexity of a finite-state grammar. If so, the
complexity of natural language is not to be expressed in the type of grammar rules, but in terms of
interaction among derivation layers, made possible by the atomic interpretation of complex structures.
 This paper has the following structure. Section 2 establishes that the alphabet/numeration may be
nonhomogeneous, in the sense that some of its symbols may be the output of a previous derivation.
Section 3 recapitulates arguments for thinking that the phrase structure rules generating structure must be
of a higher complexity than finite-state grammar rules or context-free grammar rules. Section 4 then
proposes that the structure building rules, in their most minimalist conception, are of the finite-state type.
After a discussion of the diagnostics for determining that certain symbols must be the output of a previous
derivation in section 5, we use those diagnostics in section 6 to revisit the arguments concerning the type
of grammar rules, and argue that once the principle of derivation layering is taken into account, the
arguments lose their force. Section 7 concludes with a discussion of the nature of recursion in the model
of grammar contemplated here, arguing that recursion does not reside in the rules of narrow syntax, but in
the interaction among derivation layers.

2. The nonhomogenous alphabet of natural language

A key entity in formal language theory is ‘symbol’, which is generally not formally defined (cf. Hopcroft
and Ullman 1979:1), even if it features crucially in the definition of other key concepts, such as string,
alphabet, or (formal) language. A ‘string of symbols’ is sometimes called ‘sentence’ (Kimball 1973:2),
and an ‘alphabet’, defined as a finite set of symbols (Hopcroft and Ullman 1979:2), is sometimes called
‘vocabulary’ or ‘lexicon’. It corresponds to what is called ‘numeration’ in linguistic minimalism
(Chomsky 1995:225), the input to the rules of grammar. A ‘grammar’ of a language L is a finite
specification of the sentences (strings of symbols) of L (Kimball 1973:2), so that we may state that a
grammar specifies sequences of symbols of a language (typically in the form of rewrite rules).
 All this implies that we have some understanding of what a symbol is, involving, I think, the common
implicit assumption in (1).

(1) An alphabet is a homogeneous set of symbols.

With ‘homogeneous’ I mean ‘of a single type’, where ‘type’ ranges over the set of common linguistic
concepts in (2).

(2) { phoneme, morpheme, word, phrase, clause }

More specifically, it appears to be tacitly assumed that symbols are invariably words (3) and the question
of what type of grammar we may construe (4) or what kind of language we observe (5) typically starts
from that assumption.

(3) The vocabulary is simply a list of words of English (Kimball 1973:2)
(4) ...the task of constructing a finite-state grammar for English can be considerably simplified if we

take [the set of symbols generated] as the set of English morphemes or words [as opposed to
phonemes] (Chomsky 1956:114-115)

(5) ...when we consider the human languages purely as sets of strings of words (...), do they always
fall within the class of context-free languages? (Pullum and Gazdar 1982:471)

There is, however, no reason why ‘symbol’ (or ‘word’ as an entity of formal grammar rules) should be
equated with ‘word’ (in the sense of a natural language object), or in fact with any single type of natural
language object. Intuitively, it is clear that the rules of grammar often combine elements of different
types, as discussed at length in Ackema and Neeleman (2004). Ignoring phonemes, we observe that
elements of all types in (2) may be combined with each other (examples from Dutch):2

(6) a. word + morpheme

vader ‘father’ + -je DIM >
vader-tje ‘dear/little father’

b. phrase + morpheme
 vader en moeder ‘father and mother’ + je DIM >

[vader-en-moeder]-tje ‘playing house’
c. phrase + word

syntaxis en semantiek ‘syntax and semantics’ + groep ‘group’ >
[syntaxis en semantiek]-groep ‘syntax and semantics group’

d. clause + word
ik weet niet wat ik moet doen ‘I don’t know what to do’ + gevoel ‘feeling’ >

[ik weet niet wat ik moet doen]-gevoel ‘feeling of not knowing what to do’
e. clause + morpheme

ik weet niet wat ik moet doen ‘I don’t know what to do’ + ge FREQ/ITER >
ge-[ik weet niet wat ik moet doen] ‘constantly saying that you don’t know what to do’

Since words and phrases can be combined with morphemes, it would have to be the case that the alphabet
(numeration) either consists of morphemes or is nonhomogeneous.
 If the alphabet is nonhomogeneous, the rules of grammar may combine simplex and complex
elements. But the complex elements, being complex, are structured and hence must themselves be derived
by the rules of grammar. I am assuming the uniformity hypothesis in (7), referring to the structure-
building process of linguistic minimalism (‘Merge’).

(7) Uniformity hypothesis
 Every structured complex is created by Merge.

We return to the merge mechanism in section 4; for now it suffices to think of Merge as the operation that
combines two elements in a string (constituent).
 It follows from (7) that if the alphabet is nonhomogeneous, containing some complex element, that
complex element must itself have been created by Merge. The derivation of elements like (6), therefore,
must be punctuated: there must have been an operation (or sequence of operations) Merge creating a
complex element and feeding that into the alphabet for the operation Merge that yields the elements in
(6).
 On the other hand, if the alphabet is homogeneous, consisting of morphemes only, we need
subroutines creating complex elements out of a subset of elements in the alphabet. This can be done in a
number of ways, either enriching the alphabet as we go along (as in Bobaljik 1995) or utilizing
simultaneous workspaces (‘parallel Merge’, Citko 2005). (In both cases, the added complexity of the
process entails that the grammar can no longer be finite-state.)
 But what needs to be accounted for is that the complex elements thus derived acquire idiosyncratic
properties as to form and interpretation, of the kind that in current minimalism are established at the
interface components dealing with sensory/motor (sound) and conceptual/intentional (meaning) aspects of
language. This assumes a model of grammar as pictured in (8), where the sequence of operations Merge is
contained within the box marked ‘narrow syntax’ (cf. Hauser et al. 2002:1570).

(8)

Thus, whereas a complex like handbook may be derived within narrow syntax (i.e. via Merge) from a
numeration containing the elements hand and book, its noncompositional meaning ‘(short) book giving
all the important information’ is not just a function of Merge, but must be established at the interfaces.
Using handbook in a clause, then, requires a loop feeding handbook, with its special properties, from the
interface component into another numeration.
 It follows that the subroutines needed if the numeration/alphabet is homogeneous must involve the
interface components, and hence that these subroutines are in fact full-fledged derivations of the type in
(8). Therefore, derivations must be ‘layered’, and there is no need to maintain that the alphabet must be
homogeneous at all times.

3. Arguments relating to the typing of grammar rules

The possibility of nonhomogeneous alphabets affects the argumentation regarding the nature of the rules
of (phrase structure) grammar in a significant way.3 As is well known, the earliest discussions of
transformational generative grammar (e.g. Chomsky 1956) contain proofs that the rules of grammar of
natural languages like English are not of the finite-state type, and later discussions have centered around
the question of whether these rules are of the context-free or context-sensitive type (Huybregts 1976,
Pullum and Gazdar 1982, Bresnan et al. 1982, and others).4

 Discussions of the type of grammar rules for natural language invariably assume the alphabet to be
homogeneous. As we will see in section 6, allowing for nonhomogeneous alphabets (in combination with
the recursive loop discussed in section 2) undermines the proof that the rules of grammar cannot be finite-
state. Here we just want to present that proof, as well as a proof showing that the rules cannot be context-
free.
 The commonly (though not universally) accepted proof demonstrating that English is not a finite-state
language (from Chomsky 1956:115; see also Kimball 1973:22f, Partee et al. 1990:480) is in (9), quoted
from Langendoen (2003:26-28).

(9) to account for the syntactic dependency between the words if and then in a sentence like if it rains then it

pours, English grammar must contain a rule like S → if S then S. If so (..), then English also contains the
sentences if if it rains then it pours then it pours and if if if it rains then it pours then it pours then it pours,
but not *if it rains then it pours then it pours nor *if if it rains then it pours. That is, English contains every
sentence of the form {(if)m it rains (then it pours)n | m = n}, but no sentence of the form {(if)m it rains (then
it pours)n | m ≠ n}. Hence English is not a finite-state language.

Chomsky (1956: 115) likens sentences containing such a (recursive) if/then dependency to sentences of
the type in (10), i.e. “sentences consisting of n occurrences of a followed by n occurrences of b, and only
these”.

(10) a⁀b

 a⁀a⁀b⁀b

 a⁀a⁀a⁀b⁀b⁀b

 etc

A finite-state grammar contains rules turning an initial (nonterminal) state A into a terminal a or into a
string of a terminal a and a nonterminal B (see (11); the ‘|’ symbol indicates disjunction).

(11) finite-state grammar rule

A → a | a B

The nonterminal B in (11) may be rewritten by a subsequent application of the finite-state grammar rule,
creating perhaps a terminal b, but nothing guarantees the balanced and potentially infinite accretion of a’s
and b’s we see in (10) (see Chomsky 1956:115).
 The fact that English has sentences that have exactly the property in (10) shows that English is not a
finite-state language, where a finite-state language is defined as the set of strings generated by finite-state
grammar rules. We return to this argument in section 6.
 It has been argued that phrase structure rules generating natural language sentences have to be
context-sensitive, rather than context-free, based on examples like (12), from Swiss German (Huybregts

1984, extending an argument from Huybregts 1976; Bresnan et al. 1982).

(12) wil mer de maa em chind
 because 1PL:NOM DET:ACC man DET:DAT child

 lönd hälffe schwüme (Zurich German; Huybregts 1984:91)
 let:PAST.3PL help:INF swim:INF

 ‘because we let the man help the child to swim’

In (12), causative lönd ‘let’ selects the accusative noun phrase de maa ‘the man’, and hälffe ‘help’ selects
the dative noun phrase dem chind ‘the child’, yielding crossing case dependencies. Adding further
embedded clauses adds further crossing dependencies, in such a way that the noun phrases and the verbs
constitute potentially infinite series of crossing dependencies. (The facts in Dutch are the same, except
that the dependencies are not expressed in case morphology.) The sensitivity to context that these crossing
dependencies display cannot be expressed in context-free rewrite rules, indicating that natural languages
are not context-free languages (Huybregts 1984:93).5
 Both arguments assume that the grammar of a language contains just rewrite rules (i.e. is a phrase
structure grammar). As Chomsky (1956) argued, phrase structure grammars are inadequate in that rules of
phrase structure grammar fail to express natural language regularities captured by transformation rules.
Cutting corners, we might state that English is not a finite-state (or context-free, or context-sensitive)
language because to describe sentences of English, we need transformations in addition to phrase
structure rules (see also note 3).
 Transformations range from morphological adjustment via reordering (displacement) to deletion and
insertion. In linguistic minimalism, some of these processes are no longer considered to be part of narrow
syntax. Morphological adjustment (or morphological expression in general) is taken to be postsyntactic
(Chomsky 1995:229), and deletion may just be failure to spell out at the interface component dealing with
sound (cf. Merchant 2001). On the other hand, insertion and displacement are unified in the single
operation Merge, joining some element to the structure being derived (extracted from out of that structure,
in the case of displacement).
 In minimalism, then, the neat separation between structure building (rewrite rules) and structure
manipulation (transformations) is gone. Structure is created by a single process Merge, which may
involve movement.6 In the context of the present discussion, this leads to the question what kind of
operation Merge is. I argue in what follows that Merge may be equated to a finite-state grammar rule, and
that the complexity of natural language illustrated in (9) and (12) is brought in by the recursive loop
process that turns the output of one derivation layer into part of the input for the next derivation layer.

4. The nature of Merge

Let us assume that the rules of grammar of a language L must derive at least the information in (13) about
the sentences of L. (In what follows, we ignore movement entirely; for issues arising in this connection,
cf. Zwart 2009.)

(13) a. constituency
 b. hierarchy
 c. dependency

We derive constituency if the rules allow us to single out a string as a unit. This is typically done by

conceiving of the rules (‘Merge’) as combining two elements in a set (or parts in a whole):

(14) common conception of Merge (1)

(i) There is a numeration N
(ii) There is an operation (‘Merge’) such that

 a. Merge takes two elements x, y from N, and
 b. Merge combines x and y

Hierarchy is derived if we allow Merge to combine an element from N with the newly constructed x-y
combination, which I call the ‘object under construction’ ((15) supplementing (14)):

(15) common conception of Merge (2)

(i) There is a numeration N
 (ii) There is an object under construction A

(iii) There is an operation (‘Merge’) such that
 a. Merge takes an element z from N, and A, and
 b. Merge combines either z and A

Dependency is derived if a dependent element needs to be in a hierarchical relation to its antecedent, i.e. a
relation defined in terms of (15), as in Epstein (1999).
 The fact that Merge, in its common conception, is either (14) or (15) looks like an imperfection. In
fact, the only time we need (14) is the first time Merge applies, as there is no object under construction at
that point (Jaspers 1998:109). But if we allow the object under construction to be empty at that point
(Fortuny 2008:18, Zwart 2009), (14) is redundant, and we can simplify the conception of Merge to (15).
Hierarchy and dependency still follow.
 Still, this conception of Merge seems overly complicated in its two-step process of selecting elements
and combining them. To use a common image, it is like both the numeration and the object under
construction (the derivation) are in separate spatial locations, and Merge takes an element from the
numeration and transfers it to the derivation. I find myself in agreement with Bobaljik (1995:47), who
argues that the common conception of Merge as involving transfer is an artifact of the way the operation
is notated, while what is going on instead is that Merge articulates a particular relation among the
elements of the numeration.
 One implementation of this idea, discussed in Zwart (2009, 2011a), is that Merge (now a misnomer)
starts with an unordered numeration set, and with each step orders one element from that set with respect
to the residual members of the set (‘top-down Merge’).7

(16) Top-down Merge

a. There is a numeration N
 b. There is an operation (‘Merge’) converting N into (x N), (N − x) 8

This operation yields a constituent (N − x), as well as hierarchical structure, if the operation can
subsequently apply to (N − x), i.e. N becomes (N − x). The result is a nested sequence of ordered pairs,
and dependency can again be defined in terms of the hierarchical structure thus derived (or, more exactly,
in terms of the sequence of operations Merge).
 The top-down conception of Merge essentially splits a nonterminal element into a terminal element
and another nonterminal element. The operation ends when the final remaining element is split off from
the residue set, yielding just a terminal. The rule of grammar, then, is the finite-state grammar rule (11),
yielding either a string of a terminal and a nonterminal, or a terminal.
 The discussion would be complicated if we wanted the rules of grammar to express movement. For

the common conception of Merge, movement implies a further situation, not covered in (14)-(15), where
Merge combines the object under construction A with an element from A. For the top-down conception of
Merge (16), some representation of the element x split off from N would have to remain part of N, either
as a copy or a trace or a feature, to be split off later, in order to account for the observation that x
‘belongs’ in a position where we do not see it. These complications take us too far afield at this point, so I
will continue on the assumption that they will not jeopardize the approach contemplated here, an
assumption that may well be off the mark.
 In what follows, then, I take (16) to be the minimalist conception of the structure-building process.
Narrow syntax (cf. [8]) merely involves a sequence of operations of this type, suggesting that at least this
part of grammar is finite-state.9 With that in mind, let us return to the argumentation in section 3,
concerning the proper characterization of the rules of grammar for natural language, now assuming the
alphabet/numeration to be nonhomogeneous.

5. The composition of the numeration

If the alphabet/numeration can be nonhomogeneous, a simple sentence like (17) may receive a number
([i]-[iv]) of string-set analyses.

(17) The man left

(i) (the) (man) (left)
(ii) (the man) (left)

 (iii) (the) (man left)
 (iv) (the man left)

The corresponding alphabets are:

(18) (i) { the, man, left }
 (ii) { the_man, left }

(iii) { the, man_left }
(iv) { the_man_left }

If (17) is analysed as in (17iv), the grammar (the top-down merge machine) turns the initial state (18iv)
into (17) in one step. The grammar then involves a single operation (16b), articulated in (20), which is a
finite-state grammar rule of the type in (21), turning the initial state S (= [18iv]) into a single terminal a (=
[17iv]).

(19) { the_man_left } → [the man left],

(20) S → a

In the remaining cases, the machine turns the initial state into one or more intermediate stages before
reaching the end stage. The rules of the grammar then all have the form in (21)(= [11]), where A is a
nonfinal state, a is a terminal, and B an intermediate stage.

(21) A → a B | a

For example, to derive (17i) from (18i), the rules, terminals, and intermediate stages are as in (22).

(22) initial stage rule terminal intermediate stage

 1. { the, man, left} (21) the { man, left }
 2. (21) man { left }
 3. (20) left

For our purposes, there is the additional question of which of the possible analyses is the correct one, i.e.
is the one yielding the correct structure.
 A structure is cognitive reality brought out by experiments known as constituency tests, indicating
which substrings are perceived as units by the speaker. If these units must be brought out by the grammar,
a nonambiguous string has a single correct derivation. Since constituency tests identify the man in (17) as
a unit, the correct derivation of (17) is the one that yields (17ii), i.e. the one that takes the alphabet for this
sentence to be (18ii).
 Importantly, the string the man itself can be derived by a finite-state machine from the alphabet
{(the), (man)}. If so, the alphabet for each string consists of symbols that are primitive relative to the
derivation of that string, but not in an absolute sense.
 It is easy to see that in a system with nonhomogeneous (relativized) alphabets, recursion takes the
form of ‘derivational interaction’, in the sense that a symbol in the alphabet for derivation D1 may itself
be a string of terminals generated in derivation D2 (see Zwart 2011b).
 With this in mind, let us return to the question of sentences of English referred to in (9), proving that
English is not a finite-state language.10

6. Revisiting the question of grammar rule types

Sentences of the structure if X then Y obviously have the structure in (23):

(23) ((if A) (then (B)) = a b,
 where a = if A
 b = then B

An additional conditional construction (i.e. a pair consisting of a conditional clause and a consequent
clause), as illustrated in (9), would substitute for A in (23). Since A is a term of a, the analysis is not
crucially altered by multiplying the conditionals and consequents.
 Assuming nonhomogeneous alphabets, then, the string if it rains then it pours can be the output of a
derivation over the alphabet in (24), and if if it rains then it pours then it pours can be the output of a
derivation over the alphabet in (25).

(24) { if_it_rains, then, it, pours }
(25) { if_if_it_rains_then_it_pours, then , it, pours }

Of course, the symbols if_it_rains in (24) and if_if_it_rains_then_it_pours in (25) can themselves be
analysed as outputs of derivations over alphabets, such as (26) for (24) and (27) for (25), and the
unanalyzed complex symbols can likewise be further analysed.

(26) { if, it_rains }
(27) { if, if_it_rains_then_it_pours }

The point is that if (if it rains then it pours) then it pours does not have the structure a⁀(a⁀b)⁀b, or

(a⁀a)⁀(b⁀b), with infinite parallel accretion of a’s and b’s, but the structure a⁀b, regardless the

complexity of a. The parallel accretion of a’s and b’s results from the recursive inclusion of an a⁀b

structure (a conditional-consequent pair) inside a, and the relevant class of constructions is not correctly
characterized as in (28), but as in (29), where S can be any clause (including another instance of if S).

(28) {(if)m it rains (then it pours)n | m = n}

(29) (if S) then it pours

What remains is the local dependency of a consequent clause and a conditional clause, which is repeated
within S in (29) if it contains a conditional construction (a conditional-consequent pair). But such a
dependency can be handled within a finite-state grammar, if dependency is a function of Merge, as we
have assumed (see section 4).
 Thus, if we allow symbols to be the complex output of separate derivation layers, and we define
recursion as the interaction between derivation layers, the rules of narrow syntax (‘Merge’) can be of the
ultimate minimalist finite-state type. It remains the case that English is not a finite-state language (see
note 3), but given the definition of recursion as derivational interaction, the narrow syntax component of
English grammar may still be finite-state. For this conclusion to hold, we have to assume that the human
cognitive capacity to treat objects as both complex and atomic, identified by Hofstadter (2007),
supplements the faculty of language in the narrow sense as defined in Hauser et al. (2002).
 It remains to discuss the argument based on (12) showing that the rules of grammar are context-
sensitive. Constructions of the type in (12), typical of the Continental West-Germanic languages, are
notoriously complicated, with no single analysis of the various types and variations being currently
uniformly accepted (see Zwart 1996 and Wurmbrand 2005 for a survey of the phenomena and their
analyses). For our purposes, the interesting question is whether particular substrings in examples of this
type can be characterized as outputs of separate derivation layers.
 In Dutch, a verb-second language, strings that appear before the finite verb in independent clauses can
be identified as constituents (Zwart 2011c:21). This test allows us to identify verb clusters as constituents:

(30) a. Ik heb hem de kinderen niet

1SG:NOM have:1SG 3SG.MASC:OBJ DET child:PL NEG

 helpen leren zwemmen
 help:INF teach:INF swim:INF

 ‘I did not help him to teach the children to swim.’

 b. Helpen leren zwemmen heb ik hem
 help:INF teach:INF swim:INF have:1SG 1SG:NOM 3SG.MASC:OBJ

 de kinderen niet
 DET child:PL NEG

(same as a.)

The constituency of the verb cluster helpen leren zwemmen [help teach swim] is consistent with the idea
that the verb cluster is the output of a separate derivation, hence a single symbol in the alphabet
(numeration) for the derivation of the clause containing it (30a). Moreover, subparts of the verb cluster
cannot be separately fronted:

(31) a. * Leren zwemmen heb ik hem
 teach:INF swim:INF have:1SG 1SG:NOM 3SG.MASC:OBJ

 de kinderen niet helpen
 DET child:PL NEG help:INF

 b. * Zwemmen heb ik hem
 swim:INF have:1SG 1SG:NOM 3SG.MASC:OBJ

 de kinderen niet helpen leren
 DET child:PL NEG help:INF teach:INF

 (both intended the same as [30a])

This argues against an alternative analysis, where the fronted constituent in (30b) is the remnant of a
phrase depleted by extraction of some of its subparts (i.e. an accidental constituent; cf. den Besten and
Webelhuth 1987). This kind of derivation, not available in a top-down model (cf. [16]), and also
otherwise contested (cf. Fanselow 2002), does not account for the observation that the cluster as a whole
behaves like an atomic constituent. In terms of the top-down derivational machine (16): subparts of the
verb cluster may not be split off from the numeration independently, which is explained if the cluster is a
single symbol in the relevant numeration.11
 If verb clusters are created in separate derivation layers, noun phrases associated semantically with
the verbs in the cluster must be linked with those verbs via c-command (dependency created as a function
of merge), i.e. must be ‘base-generated’ in their surface position, again entirely consistent with the top-
down approach of section 4. The relation between the noun phrases and the verb cluster, then, is no longer
one of cross-serial dependency, but a many-to-one relation. In this context, it is relevant to note that the
order of the verbs inside the cluster is subject to considerable variation (both within and among dialects),
so that the particular cross-serial dependency configuration is just one of many possibilities, hence
arguably more coincidental than systematic.

7. The place of recursion in the model of grammar

The top-down merge machine (16) essentially performs a series of identical steps, each step identifying a
different symbol x from the alphabet/numeration N and in doing so reducing the set of unordered symbols
(N − x). Both x and (N − x) are constituents, and the result at each step is an ordered pair. As I have
argued elsewhere, dependency phenomena of natural language may be the linguistic interpretation of the
asymmetry between the members of such an ordered pair (Zwart 2009:165f).
 It is common to think of a sequence of operations Merge as recursive (e.g. Nevins, Pesetsky, and
Rodrigues 2009:366). This is because Merge (under any conception of it) is a rule creating an output that
may be subjected to an application of the same rule. However, it is not the case that the structured objects
created by Merge (hierarchical syntactic structures) are necessarily created by a recursive process (see
e.g. Arsenijević and Hinzen 2012).
 For example, assuming Merge to involve transfer from a numeration to an object under construction

(essentially [16]), hierarchical structures are created by transfering elements one by one, an iterative
procedure. Similarly, under the top-down conception of Merge (16), elements are split off from the
numeration one by one. In each case, we derive hierarchical structures by means of an iterative procedure.
 On the other hand, the loop that results from taking the complex output of one derivation layer to be
the atomic input to a next derivation layer is inherently recursive, in the sense that a symbol in the
alphabet for a procedure P is itself the output of P. Here recursivity is not an artifact of the notation of the
procedure, but is the unavoidable correlate of the simplex/complex ambiguity of linguistic objects alluded
to in the introduction.
 This view of recursion shows some resemblance to the earliest conception of recursion in generative
grammar, involving generalized transformations (Chomsky [1955]1975:383, 518; Chomsky 1961:134;
Chomsky 1966:52f). Generalized transformations are used to derive complex sentences; they are
overarching transformations that operate on fully developed phrase markers. For example, a clause may
function as an object in another clause by substituting for a dummy symbol in that other clause (Chomsky
1961:52-53 note 2). In the cyclic, layered derivations approach contemplated here, there is no need for a
dummy symbol, as the embedded clause functions as a single symbol in the alphabet for the derivation of
the embedding clause.
 In what Palmatier (1972:ix) calls ‘second-generation transformational grammar’ (roughly from the
mid-1960s), generalized transformations were abandoned, and recursion was written straight into the
phrase structure rules, which were allowed to reintroduce the start symbol S (Chomsky 1966:63). Since
generalized transformations were typically substitutions targeting a dummy symbol, taking the dummy
symbol to be S (or some other rewritable category) allows one to eliminate generalized transformations
altogether. This development was made possible after Katz and Postal (1964:120ff) had shown that the
generalized transformations themselves made no semantic contribution.
 In minimalism (e.g. Chomsky 1993:21), the need to introduce elements of arbitrary complexity
directly (i.e. via Merge) was interpreted as motivating a device like generalized transformations once
more (essentially in the context of abandoning the distinction between D-structure and surface structure;
see also Frank 2002:9). But while this gave rise to exploitation of parallel derivations, the simple
consequence of allowing derivations to feed into the numeration for further derivations was not, to my
mind, sufficiently explored, nor were the consequences for the definition of recursion.

8. Conclusion

In this article, I have argued that common views on the nature of phrase structure rules (finite-state or of a
higher complexity) suffer from an unmotivated and unnecessary hidden assumption, namely that the rules
of grammar are fed by a homogeneous set of symbols, the alphabet/numeration. Once it is understood that
the symbols in a numeration may themselves be the output of a separate derivation, arguments against the
finite-state character of the phrase structure rules (‘Merge’) lose their force.
 I have argued that the minimalist conception of Merge involves the iterative conversion of the
alphabet/numeration into a sequence of ordered pairs, each consisting of an element split off from the
numeration and the residue of the numeration at that point, i.e. a terminal/nonterminal pair, mimicking a
finite-state machine. Viewed this way, narrow syntax is just the conversion of an unordered set into an
ordered n-tuple (cf. Fortuny 2008), and the complexity of the elements involved is not created by
recursivity in the rules of narrow syntax, but by the circumstance that some of these elements have their
own derivational history, being the output of a separate derivational sequence. I submit that the cognitive
ability to treat elements simultaneously as simplex and complex underlies much of the complexity of
natural language, allowing us to consider the rules of grammar to be maximally simple.
 It follows that if Hauser et al. (2002) are right in identifying recursion as the single species-specific
property of the human faculty of language, and if we are right here, human language derives its unique

properties not from the structure building procedure Merge, but from the circumstance that sequences of
operations Merge (derivation layers) may interact, yielding atomic symbols of potentially infinite
complexity.

Notes

1. Thanks to Gertjan van Noord, Riny Huybregts, Jordi Fortuny, Jorike van Werven, and the audience at the

Konstanz Complex sentences, types of embedding, and recursivity workshop, March 5-6, 2012, as well as to
two anonymous reviewers. This article reports on research carried out within the Dependency in Universal
Grammar research program, sponsored by the Netherlands Organization for Scientific Research (program
number 360-70-200), which is gratefully acknowledged.

2. Abbreviations used in the glosses: ACC = accusative case, DAT = dative case, DET = determiner, DIM =
diminutive, FREQ = frequentative, INF = infinitive, ITER = iterative, MASC = masculine gender, NEG = negation,
NOM = nominative case, OBJ = objective case, PL = plural number, SG = singular number, 1 = first person, 3 =
third person.

3. A note of clarification is in order here. Discussion on the formal grammar of natural languages typically
focuses on the type of language, rather than the type of rules. That is, the question is whether the sentences of a
language (the string-sets) fall within a language-type class. In the model of grammar assumed here (cf. [8]), the
sentences of a language are derived by a complex of operations, involving a structure-building process
(‘Merge’) that can be described as a set of phrase structure rules, and a variety of interface processes, involving
morphophonology, linear ordering, and the establishment of particular sound-meaning pairings, but also
unpredictable processes such as reanalysis and recategorization (cf. Zwart 2009). On top of that, we must allow
for derivation layering, allowing the output of one derivation to feed the next. My concern here is not with
language as a whole, but with a small but important component of the model of grammar, narrow syntax, and
with the nature of the rules needed to generate the type of structures we take to be its output. This is relevant to
the hypothesis of Hauser et al. (2002) that narrow syntax represents the faculty of language in the narrow
sense, a component of the human cognitive system that is arguably species-specific.

4. The assumption of transformational rules, already in Chomsky (1956), significantly reduced the urgency of
these questions in mainstream generative grammar, a point that I will side-step here.

5. For discussion of an alternative conclusion, that languages apparently vary as to the complexity of the rewrite
rules of their grammars, see Sauerland (2013).

6. Sentences, on the other hand, are derived by Merge in combination with a range of additional processes, see
note 3.

7. See Phillips (2003) and Chesi (2007) for an earlier top-down generative model, and Zwart (2009: 165) for
discussion of the differences with the present proposal.

8. Informally, the rule splits an element off from the numeration and yields an ordered pair consisting of that
element and the numeration minus the element split off from it.

9. Importantly, the conclusion that this part of the grammar, Merge, is finite-state, does not entail that the entire
grammar, or the language generated by that grammar, is finite-state. If we are correct, a sentence is derived by
a network of derivations, in which little finite-state units interact. It follows that the question of formal
complexity cannot be resolved simply by inspecting sentences. Rather, the network of derivations involved
needs to be identified, and the question of complexity can be asked of each subderivation. See Trotzke and
Zwart (to appear) for discussion.

10. The idea of describing complex strings as involving separate (finite-state) subroutines is familiar from the
literature on natural language parsing (Woods 1970, Bates 1978, Abney 1996, Roche 1997). As Roche
(1997:269) observes, this cuts into the argument that to describe expressions with a certain level of complexity,
we need more powerful formalisms, such as context-free grammars.

11. A complication is that we have to allow for the finite verb to escape from the cluster to obtain the verb second
position (e.g. heb in [31] in the text is not or no longer part of the verb cluster, whereas it is string-adjacent to
or included in the cluster in embedded clauses, not illustrated here). This, however, may not be a problem if
Chomsky (2001) is correct in identifying verb-second as a phenomenon of the interface component dealing
with sound (see also Anderson 1993, Zwart 2005), and if we allow interface phenomena to affect parts of

strings that are treated as atomic symbols in narrow syntax (as we must to account for morphological or
prosodic marking anyway).

References

Abney, Steven
 1996 Partial parsing via finite-state cascades. Natural Language Engineering 2, 337-344.
Ackema, Peter and Ad Neeleman

2004 Beyond morphology: interface conditions on word formation. Oxford: Oxford University Press.
Anderson, Stephen

1993 Wackernagel’s revenge: clitics, morphology, and the syntax-semantics interface. Language 69: 68-98.
Arsenijević, Boban and Wolfram Hinzen
 2012 On the absence of X-within-X recursion in human grammar. Linguistic Inquiry 43: 423-440.
Bates, Madeleine
 1978 The theory and practice of augmented transition network grammars. In Natural language

communication with computers, Leonard Bolc (ed.), 191-254. Berlin: Springer Verlag.
Bobaljik, Jonathan D.

1995 In terms of merge: copy and head movement. MIT Working Papers in Linguistics 27: 41-64.
Bresnan, Joan, Ronald Kaplan, Stanley Peters, and Annie Zaenen

1982 Cross-serial dependencies in Dutch. Linguistic Inquiry 13: 613-635.
Chesi, Christiano
 2007 An introduction to phase-based minimalist grammars: why move is top-down and from left-to-right.

CISCL Working Papers on Language and Cognition 1 (Studies in Linguistics): 38-75.
Chomsky, Noam

1956 Three models for the description of language. IRE transactions on information theory, vol. IT-2
(Proceedings of the symposium on information theory): 113-124.

1961 On the notion ‘rule of grammar’. Proceedings of the Symposium in Applied Mathematics 12: 6-24.
1966 Topics in the theory of generative grammar. The Hague: Mouton.
1975 The logical structure of linguistic theory. New York: Plenum Press.
1993 A minimalist program for linguistic theory. In The view from Building 20: essays in linguistics in

honor of Sylvain Bromberger, Kenneth Hale and Samuel J. Keyser (eds.), 1-52. Cambridge: MIT
Press.

1995 The minimalist program. Cambridge: MIT Press.
2001 Derivation by phase. In Ken Hale: a life in language, Michael Kenstowicz (ed.), 1-52. Cambridge:

MIT Press.
Citko, Barbara

2005 On the nature of merge: external merge, internal merge, and parallel merge. Linguistic Inquiry 36: 475-
497.

Den Besten, Hans and Gert Webelhuth
1987 Remnant topicalization and the constituent structure of the VP in Germanic SOV languages. GLOW

Newsletter 18: 15-16.
Epstein, Samuel D.

1999 Un-principled syntax: the derivation of syntactic relations. In Working minimalism, Samuel D. Epstein
and Norbert Hornstein (eds.), 317-345. Cambridge: MIT Press.

Fanselow, Gisbert
2002 Against remnant movement. In Dimensions of movement: from features to remnants, Artemis

Alexiadou, Elena Anagnostopoulou, Sjef Barbiers, and Hans-Martin Gärtner (eds.), 91-127.
Amsterdam: John Benjamins.

Fortuny, Jordi
2008 The emergence of order in syntax. Amsterdam: John Benjamins.

Frank, Robert

2002 Phrase structure composition and syntactic dependencies. Cambridge: MIT Press.
Hauser, Marc, Noam Chomsky, and W. Tecumseh Fitch

2002 The faculty of language: what is it, who has it, and how did it evolve? Science 298: 1569-1579.
Hofstadter, Douglas

2007 I am a strange loop. New York: Basic Books.
Hopcroft, John E. and Jeffrey D. Ullman

1979 Introduction to automata theory, languages, and computation. Reading: Addison-Wesley Publishing
Company.

Huybregts, Riny
1976 Overlapping dependencies in Dutch. Utrecht Working Papers in Linguistics 1: 24-65.
1984 The weak inadequacy of context-free phrase structure grammars. In Van periferie naar kern, Ger J. de

Haan, Mieke Trommelen, and Wim Zonneveld (eds.), 81-99. Dordrecht: Foris Publications.
Jaspers, Dany

1998 Categories and recursion. Interface: journal of applied linguistics 12: 81-112.
Kimball, John P.

1973 The formal theory of grammar. Englewood Cliffs: Prentice-Hall.
Langendoen, D. Terrence

2003 Finite state languages and grammars. In The Oxford International Encyclopedia of Linguistics (2nd
edition), William J. Frawley (ed.), Vol. 2, 26-28. Oxford: Oxford University Press.

Merchant, Jason
2001 The syntax of silence. New York: Oxford University Press.

Nevins, Andrew, David Pesetsky, and Cilene Rodrigues
2009 Pirahã exceptionality: a reassessment. Language 85: 355-404.

Palmatier, Robert A.
1972 A glossary for English transformational grammar. New York: Appleton-Century-Crofts.

Partee, Barbara, Alice ter Meulen, and Robert E. Wall
1990 Mathematical methods in linguistics. Dordrecht: Kluwer Academic Publishers.

Phillips, Colin
 2003 Linear order and constituency. Linguistic Inquiry 34: 37-90.
Pullum, Geoffrey K. and Gerald Gazdar

1982 Natural languages and context-free grammars. Linguistics and Philosophy 4: 471-504.
Roche, Emmanuel
 1997 Parsing with finite-state transducers. In Finite-state language processing, Emmanuel Roche and Yves

Schades (eds.), 241-281. Cambridge: MIT Press.
Sauerland, Uli
 2013 Against complexity parameters. In Syntactic complexity across interfaces, Andreas Trotzke and Josef

Bayer (eds.), this volume. Berlin: De Gruyter Mouton.
Trotzke, Andreas and Jan-Wouter Zwart
 to app. The complexity of Narrow Syntax: minimalism, representational economy, and simplest merge. In

Measuring syntactic complexity, Frederick J. Newmeyer and Laurel B. Preston (eds.). Oxford: Oxford
University Press.

Woods, William A.
 1970 Transition Network Grammars for natural language analysis. Communications of the ACM 13, 591-

606.
Wurmbrand, Susi

2005 Verb clusters, Verb Raising, and restructuring. In The Blackwell companion to syntax, Martin Everaert,
Henk van Riemsdijk, Rob Goedemans, and Bart Hollebrandse (eds.), Vol. 5, 227-341. Oxford:
Blackwell.

Zwart, Jan-Wouter
1996 Verb clusters in Continental West-Germanic dialects. In Microparametric syntax and dialect variation,

ed. James R. Black and Virginia Motapanyane (eds.), 229-258. Amsterdam: John Benjamins.
2005 Verb second as a function of merge. In The function of function words and functional categories, ed.

Marcel den Dikken and Christina M. Tortora (eds.), 11-40. Amsterdam: John Benjamins.
2009 Prospects for top-down derivation. Catalan Journal of Linguistics 8: 161-187.

2011a Structure and order: asymmetric merge. In The Oxford handbook of linguistic minimalism, Cedric
Boeckx (ed.), 96-118. Oxford: Oxford University Press.

2011b Recursion in language: a layered-derivation approach. Biolinguistics 5: 43-56.
2011c The syntax of Dutch. Cambridge: Cambridge University Press.

