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1 Introduction

Computational dialectometry has been proven to be useful for finding dialect re-
lationships and identifying dialect areas. The first to develop a method of meas-
uring dialect distances was Jean Séguy, assisted and inspired by Henri Guiter
(Chambers and Trudgill, 1998). Strongly related to the methodology of Séguy is
the work of Goebl, although the basis of Goebl’s work was developed mainly in
dependently of Séguy (Goebl, 1982, 1993). In 1995 Kessler used the Levenshtein
distance for finding linguistic distances between Irish Gealic dialects, and in 1996
the same algorithm was applied to Dutch dialects by Nerbonne et al.. The The
Levenshtein distance is a sensitive measure with which distances between strings
(in this case transcriptions of word pronunciations) are calculated. Gooskens and
Heeringa (2004) showed that linguistic dialect distances measured with Leven-
shtein correlate significantly with perceptual distances for 15 Norwegian varieties
(r = 0.67, p < 0.001).

Pronunciation based dialect distance measurements used in previous studies
are based on phonetic transcriptions. However it is time-consuming to make
phonetic transcriptions and furthermore the quality of the transcriptions some-
times varies greatly, depending on the skills of the transcriber. When several
transcribers are involved, the data may not be consistent. What the result of
this can be, is, for example, shown by Heeringa (2005) who found the Frisian
dialect area to be divided in a northern and southern part, which reflects the
work areas of the two transcribers.

In the field of Automatic Speech Recognition methods can be found with which
pronunciations are compared on the basis of the acoustic signal, without in-
tervention of a transcriber. Among others we mention Hunt et al. (1999) and

∗University of Groningen, Department of Information Science
†UC Berkeley, Department of Linguistics
‡University of Groningen, Scandinavian Department

UC Berkeley Phonology Lab Annual Report (2005)

312



Ten Bosch (2000). A first attempt to measure dialect distances acoustically was
made be Heeringa and Gooskens (2003). Although their methodology is mainly
acoustically based, they still consult transcriptions for the purpose of speech rate
normalization.

The goal of this paper is to find a fully acoustically based measure which
approximates the quality of the semi-acoustically based measure of Heeringa and
Gooskens (2003). We will experiment with different representations of the acous-
tic signal to investigate which representation gives the best results. The results
are validated by comparing them to results of a perception experiment of Char-
lotte Gooskens. Both our computational measurements and the perception exper-
iment are based on recordings of the same 15 Norwegian dialects. The data come
from a database compiled by Jørn Almberg and Kristian Skarbø.1. The database
comprises translations of the fable ‘The North Wind and the Sun’. Both record-
ings and transcriptions are available. The perception experiment is based on the
recordings and our computational measurements on the transcriptions. The dis-
tribution of the 15 varieties is shown in Figure 1. The dialects are spread over a
large part of the Norwegian language area, and cover most major dialect areas as
found on the traditional map of Skjekkeland (1997). In this map the Norwegian
language area is divided in nine dialect areas. In our set of 15 varieties six areas
are represented.

In Section 2 we describe the perception experiment. In Section 3 we describe
our acoustic model and its parameters. In Section 4 we validate the results of
our methodology and show some results. In Section 6 some conclusions will be
drawn.

2 Perceptual distance measurements

In this section we briefly describe the perception experiment and show some
results. A detailed description is given by Gooskens and Heeringa (2004).

2.1 Experiment

In order to obtain distances between 15 Norwegian dialects as perceived by Nor-
wegian listeners, for each of the 15 varieties a recording of a translation of the
fable ‘The North Wind and the Sun’ was presented to Norwegian listeners in a
listening experiment. The listeners were 15 groups of high school pupils, one from
each of the places where the 15 dialects are spoken. All pupils were familiar with
their own dialect and had lived most of their lives in the place in question (on

1Department of Linguistics, University of Trondheim. The recordings are available at http:
//www.ling.hf.ntnu.no.nos. When the perception experiment was carried out, recordings
of only 15 varieties were available. Today more than 50 recordings are available, giving much
better possibilities to pick a representative selection of varieties.
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No = Nordlandsk

Sv = Sørvestlandsk

Nv = Nordvestlandsk

Mi = Midlandsk

Au = Austlandsk

Tr = Trøndsk

Bergen (Sv)

Bjugn (Tr)

Bodø (No)

Bø (Mi) Borre (Au)

Fræna (Nv)

Halden (Au)

Herøy (Nv)

Larvik (Au)

Lesja (Mi)

Lillehammer (Au)

Stjørdal (Tr)

Time (Sv)

Trondheim (Tr)

Verdal (Tr)

Figure 1: Map of Norway showing the 15 dialects in the present investigation.
Skjekkeland (1997) distinguishes nine Norwegian dialect groups. Six groups are
represented by our set of 15 dialects. The abbreviation after the name of each
location indicates the dialect group to which the variety belongs. The same
abbreviations are used in the other figures in this paper. Skjekkeland (1997) also
gives a more global division in which Norwegian dialects are divided in Vestnorsk
(covering No, Sv and Nv) and Austnorsk (covering Mi, Au and Tr).
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Bodø (No)
Trondheim (Tr)
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Bjugn (Tr)
Fræna (Nv)
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Halden (Au)

Borre (Au)
Larvik (Au)
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Time (Sv)

Herøy (Nv)
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Figure 2: Dendrogram derived from the 15 × 15 matrix of perceptual distances
showing the clustering of (groups of) Norwegian dialects. The tree structure
explains 91% of the variance.

average 16.7 years). Each group consisted of 16 to 27 listeners. The mean age of
the listeners was 17.8 years, 52 percent were female and 48 percent male.

The texts of the 15 dialects were presented in a randomized order. A session
was preceded by a practice recording. While listening to the dialects the listeners
were asked to judge each of the 15 dialects on a scale from 1 (similar to native
dialect) to 10 (not similar to native dialect). This means that each group of
listeners judged the linguistic distances between their own dialect and the 15
dialects, including their own dialect. In this way we get a matrix with 15 ×
15 distances. There are two mean distances between each pair of dialects. For
example the distance which the listeners from Bergen perceived between their own
dialect and the dialect of Trondheim is different from the distance as perceived
by the listeners from Trondheim to Bergen. The mean of these two distances is
used when presenting the results below.

2.2 Results

In order to visualize the relationship between the dialects, cluster analysis (see
Jain and Dubes (1988)) was carried out on the basis of the matrices with the
mean judgments. In Figure 2 the dendrogram produced by cluster analysis using
group average is presented.

Furthermore a multidimensional scaling analysis was carried out. In our re-
search we used MDS routines as implemented in the statistical R package.2 The
resulting plot can be found in Figure 3. In the dendrogram the two main groups
are a northern group and a southern group. The southern group can be divided
in a western group (Bergen, Time and Herøy) and an eastern group (the other

2The program R is a free public domain program and available via http://www.r-project.
org/.
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Figure 3: Multidimensional scaling of the results derived from the 15 × 15 matrix
of perceptual distances. The vertical axis represents the first dimension, and the
horizontal axis the second dimension. The two dimensions explain 67% of the
variance.

dialects). In the multidimensional scaling plot a northern, a western and a south-
eastern group can be clearly identified. It is striking that the groups are rather
sharply distinguished from each other. In traditional Norwegian dialectology
the east-west division is often considered more important than the north-south
dimension (e.g. Skjekkeland (1997)). However, the traditional division into an
eastern and a western group is based on a rather limited set of phenomena. Some
dialectologists therefore have suggested using more criteria which has resulted in
other ways of dividing the language area. For example Christiansen (1954) di-
vides Norway into four dialect areas: north, south, east and west. Our data seem
to support this classification.

3 Acoustic distance measurements

In this section we decribe the acoustic model we used for calculating linguistic
distances between the 15 Norwegian dialects. In cases where our model differs
from the model of Heeringa and Gooskens (2003), we will make a remark about
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that.

3.1 Samples

The Norwegian translation of the fable ‘The North Wind and the Sun’ consists
of 58 different words. Due to the free translation of some phrases for certain
varieties a few of the expected words were missing. For all 15 dialects each of the
(nearly) 58 words were cut from the text, so we usually got 58 word samples per
dialect. If the same word appears more than once in a text, we selected only the
first occurrence.

Vowels are often remarked to be the more fluid bearers of varietal differences.
For example Nerbonne (2005) showed that vowels are responsible for a great deal
of the Southern American English dialect variation. Therefore, we also perform
measurements on the basis of vowels only. We cut vowels from those words which
appear in all 15 dialects and which have the same lexeme in all dialects. In this
way we got 34 vowels corresponding with 34 words. The vowels show phonetic
variation across the 15 dialects. The selected vowels appear in almost every
dialect, but in a very few cases they were absorbed by a following nasal. In these
cases the first part of the nasal is cut.

Heeringa and Gooskens (2003) did not use the orginal samples, but monoton-
ized versions of them in order to remove gender differences. They realized that in
this way prosodic information is lost as well. Pitch and intonation contours are
known to be significant dialect markers in Norwegian (Christiansen, 1954; Fintoft
and Mjaavatn, 1980). Therefore we use the original, non-manipulated samples
and look for other ways to neutralize gender differences (see Section 3.5).

3.2 Representations

Heeringa and Gooskens (2003) only examined one acoustic feature: formant
tracks. Vowels can be easily identified by their formants as can be seen in the IPA
quadrilateral, where height corresponds with the first formant and advancement
with the second formant (Rietveld and Van Heuven, 1997, p. 133). In addition
we also consider zero crossing rates. The zero crossing rate is sensitive to the
difference between voiced and unvoiced speech sections. High zero crossing rates
indicate noise, i.e. frication and low values are found in periodic, i.e. sonorant
parts of speech (Frankel et al., 2000).

3.2.1 Formant tracks

When using a spectrogram with a large analysis window (about 20 ms) the fre-
quency resolution will be high. Individual harmonics will show up as horizontal
lines through the spectrogram. The lowest line represents the fundamental fre-
quency or pitch (F0). However, when using a small analysis window (about 3
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ms) the frequency resolution will be lower. Individual harmonics get blended
together. Instead of lines, bands will show up through the spectrogram. The
center frequency at one time in a band is called a formant, the range of center
frequencies in the course of time forms a formant track. A formant in the lowest
band is called F1, a formant in the next band F2, etc. Formants represent a
frequency region that is enhanced by the resonances of the vocal tract.

In PRAAT3 several algorithms can be chosen for finding the Linear Predictive
Coding (LPC) coefficients. We chose the algorithm of Burg. This algorithm may
initially find formants at very low or high frequencies. However we used the
version in PRAAT which removes formants below 50 Hz and formants above
the maximum formant frequency minus 50 Hz.4 The algorithm of Burg is much
more reliable than the Split Levinson algorithm which always finds the requested
number of formants in every frame, even if they do not exist.

The number of formants may vary over time in a word and per word. In
the PRAAT program, we maintained the default value for the maximum number
of formants which may be found: 5. Next, we found the minimum number of
formants examining all points in time of all words which are taken into consid-
eration. After that, on the basis of this minimum number of formants the word
samples were compared. In the samples we used (see Section 3.1) for each word
sample at each time sample, at least three formants could be found. Therefore,
the comparison of word samples here is based on (the first) three formant tracks.

When finding formants in the computer program PRAAT, the time step was
set to 0.01 seconds with an analysis window of 0.025 seconds. The ceiling of the
formant search range should be set to 5000 Hz for males, and to 5500 Hz for
females. Since we want to use the same ceiling for both males and females, we
set it to the average of 5250 Hz.

Pre-emphasis starts at 50 Hz. In the manual which can be found in the
PRAAT program pre-emphasis is explained as follows:

“This means that frequencies below 50 Hz are not enhanced, frequen-
cies around 100 Hz are amplified by 6 dB, frequencies around 200 Hz
are amplified by 12 dB, and so forth. The point of this is that vowel
spectra tend to fall by 6 dB per octave; the pre-emphasis creates a
flatter spectrum, which is better for formant analysis because we want
our formants to match the local peaks, not the global spectral slope.”

In Figure 4 we show visualizations of three Norwegian pronunciations of the
word nordavinden ‘the northwind’ using formant tracks. The pronunciations of
the dialects of Bjugn, Halden and Larvik are given.

3The program PRAAT is a free program and available via http://www.fon.hum.uva.nl/
praat/ .

4The maximum formant frequency was set to 5250 Hz, which is the average of 5000 Hz
(males) and 5500 Hz (females).
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Figure 4: Formant track representations of three Norwegian pronunciations of
nordavinden ‘the northwind’.

The PRAAT program gives formant frequencies in Hertz. We also consider
frequencies in Bark, which may be a more faithful scale perceptually. For this
purpose we used the formula of Traunmüller (1990) as suggested in standard
works about phonetics (Rietveld and Van Heuven, 1997, e.g.):

Bark =
26.81×Hertz
1960 +Hertz

− 0.53 (1)

Furthermore we experimented with an approach in which z-scores instead of
either the Hertz or the Bark frequency values are used. Per frame we calculated
the mean and the standard deviation. Next within frame f a z-score is calculated
for each frequency fi:

fi =
fi − fmean

fstandard deviation
(2)

3.2.2 Zero crossing rates

The number of times per interval of time that the amplitude waveform crosses
the zero line is called the zero crossing rate. Zero crossing raisers are the points in
time when the waveform changes from negative to positive, and fallers represent
the times when the amplitude goes down from positive to negative.

PRAAT offers a function which gives us the points in time of the raisers
or fallers or both raisers and fallers. We used the default setting: raisers only.
However, when using fallers or raisers and fallers, nearly the same results are
obtained. We converted the zero crossing times to zero crossing rates using a
time step of 0.01 seconds, the same as used in the formant analysis. The analysis
window was set to a different size: 0.05 seconds. A larger analysis window gives
more fluent estimations, but the size of our analysis window is just smaller than
the shortest word sample.
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Figure 5: Zero crossing distributions of three Norwegian pronunciations of nor-
davinden ‘the northwind’. White vertical lines across the black horizontal lines
represent the times of the zero crossing raisers.

In Figure 5 the zero crossing distributions are shown for three Norwegian pro-
nunciations of the word nordavinden ‘the northwind’. Again the pronunciations
of the dialects of Bjugn, Halden and Larvik are given.

3.3 Leading and trailing zeros

The words we used are cut from a running text. Although the samples are cut
as acurate as possible, some leading or trailing silence may still be included.
We removed them automatically. Heeringa and Gooskens (2003) did not remove
leading and trailing zeros.

3.4 Speech rate normalization

Different samples sizes may reflect dialect variation, but can also be the result of
different speech rates. Therefore we had to normalize over speech rate. Heeringa
and Gooskens (2003) normalized over the number of segments of a sample accord-
ing to the transcription. We describe this transcription-based approach in more
detail in Section 3.4.1. Since our goal was to develop a fully transcription inde-
pendent methodology, we also consider another normalization procedure where
the samples of a word pair are stretched so that they get the same number of
frames. That transcription independent approach is discussed in Section 3.4.2.

3.4.1 Transcription-based

Assume that the acoustic representation of a word sample consists of l frames.
If the number of segments of this word pronunciation according to the phonetic
transcription is m, and we want to represent each segment by n frames, then we
represent the complete word sample bym×n frames. Changing the representation
of l frames into a representation of m × n frames is realized in two steps. First
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we duplicate each of the l frames m × n times. This gives l ×m × n frames in
total. Second we regard the l ×m × n frames as m × n groups, each consisting
of l frames, and fuse the frames in each group to one frame by averaging them.
The result is a representation of m×n frames. We illustrate this by an example.
Assume we have a word sample of l = 4 frames:

If this word pronunciation is transcribed as a sequence of m = 2 frames, and we
want to represent each segment by n = 3 frames, then we represent the complete
word sample by 2× 3 = 6 frames. We change the representation of 4 frames into
a representation of 6 frames. For this purpose first we duplicate each of the 4
frames 6 times. This gives 24 frames in total:

Second we treat the 24 frames as 6 groups, each consisting of 4 frames, and
fuse the frames in each group to one frame by averaging them. The result is a
representation of 6 frames:

In our research we chose n = 20, i.e. 20 frames per segment. A higher value
gives nearly the same results, but the computing time increases greatly.

3.4.2 Transcription independent

When comparing one segment of m frames with another segment of n frames, each
of the m frames is duplicated n times, and each of the n frames is duplicated
m times. So both segments get a length of m × n. Below two segments are
schematically visualized, one with 3 frames (black bars) and one with 2 elements
(grey bars). Now both get a length of 6 when each of the 3 frames are duplicated
2 times, and each of the 2 frames are duplicated 3 times.
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3.5 Comparison of frames

Formant tracks When using the formant track representation, a sample is
represented as a series of frames, each frame having three formant frequency
values. When comparing a frame of a word pronunciation of one dialect with the
corresponding frame of the corresponding word pronunciation of another dialect,
the distance is calculated as:

d(f1, f2) =
n∑
i=1

| f1i − f2i | (3)

where n = 3.
The distance measure we used is known as the Manhattan distance. Heeringa

and Gooskens (2003) used the Euclidean distance: the square root of the sum of
the squared differences. Since we found the better results with the Manhattan
distance, this measure will be used throughout this paper.

A frame in one sample does not always correspond with another frame in the
second sample. Frames can be inserted or deleted (see Section 3.6. In these cases
frames are compared to a ‘silence frame’. A ‘silence formant frame’ is defined
as a frame for which all frequencies are equal to 0. This means that in absolute
silence there are no vibrations. When using z-scores instead of the original Hertz
or Bark values, the values are still set to 0.

Zero crossing rates When using zero crossing rates, frames consist of only
one value. The distance between two frames is equal to the absolute difference
of the two zero crossing rates. The value in a ‘silence zero crossing rate frame’ is
set to 0: there are no zero crossings during silence.

Combined representation When combining formant frame distances with
the corresponding zero crossing rate distances, the two distances are multiplied:

d(f1, f2) =

(
n∑
i=1

| formant1i − formant2i |
)
× | zero1 − zero2 | (4)

where n = 3.
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3.6 Levenshtein distance

Using the Levenshtein algorithm, the distance between two words is determined
by comparing the pronunciation of a word in the first dialect with the pronun-
ciation of the same word in the second. The algorithm determines how one
pronunciation is changed into the other by inserting, deleting or substituting
sounds. Weights are assigned to these three operations. In the simplest form of
the algorithm, all operations have the same cost, e.g. 1. A detailed description
is given by Kruskal (1999). We illustrate the algorithm by an example. Assume
g̊aande or g̊aende ‘going’ is pronounced as [go:Ans] in the dialect of Bø and as
[gO:n@] in the dialect of Lillehammer. Changing one pronunciation into the other
can be done as follows (ignoring suprasegmentals and diacritics):

go:Ans substitute o/O 1
gO:Ans delete A 1
gO:ns insert @ 1
gO:n@s delete s 1
gO:n@

4

In fact many sequence operations map [go:Ans] to [gO:n@]. The power of the
Levenshtein algorithm is that it always finds the cost of the cheapest mapping.
Comparing pronunciations in this way, the distance between longer words will
generally be greater than the distance between shorter words. The longer the
words, the greater the chance for differences with respect to the corresponding
word in another dialect. Because this does not accord with the idea that words
are linguistic units, the sum of the operations is divided by the length of the
longest alignment which gives the minimum cost. The longest alignment has the
greatest number of matches. In our example we get following alignment:

g o: A n s
g O: n @

1 1 1 1

In this paper, Levenshtein distance was applied to acoustic samples instead
of phonetic transcriptions. Instead of phonetic segments, acoustic frames were
aligned. In our example all operations have a weight of 1. However, when compar-
ing acoustic samples, substitutions, insertions and deletions have gradual weights,
calculated in the way as described in Section 3.5. Levenshtein distance was used
in the same way by Heeringa and Gooskens (2003).

Using 58 words the distance between two dialects is equal to the average of
58 Levenshtein distances, and when using 34 vowels the distance is equal to the
mean of 34 Levenshtein distances. When comparing two varieties on the basis
of k word pairs, it may appear that for one or more of the pairs for one or both
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varieties, no sample is available. This can be the result of either the fact that
no translation is given or the fact that the sample was smaller than the analysis
window used (in case of the vowels). In these cases, the word or vowel pair was
ignored.

All distances between the 15 dialects were arranged in a 15 × 15 matrix.

4 Validation

In this section we validate our computational results with the results of the
perception experiment. For this purpose we correlate the computational dis-
tances with the perceptual distances (Section 4.1). We distinguish three types
of measurements: vowel-based measurements (Section 4.2), semi-acoustic word
sample-based measurements (Section 4.3) and (fully) acoustic word sample-based
measurements (Section 4.4). We end with some conclusions (Section 4.5).

4.1 Correlation

In order to correlate the different computational measurements to the results
of the perception experiment, the computational 15× 15 matrices are correlated
with the perceptual 15×15 matrix. When correlating we exclude the distances of
dialects with respect to themselves, i.e. the distance of Bergen to Bergen, of Bjugn
to Bjugn etc. These distances are found on the diagonal in the distance matrix,
containing the cells (1, 1), (2, 2), . . . (n, n). In computational matrices these values
are always 0, in the perceptual matrix they vary, usually being higher than the
minimum score. This may be the result of the fact that for example the dialect
of the speaker of Bergen is different from the dialect of the listeners in the same
location. Since this causes uni-directional distortion for the diagonal distances
(they only can be too high, not too low), we exclude them whe calculating the
correlation coefficient.

For finding the correlation coefficient, we used the Pearson’s correlation coef-
ficient (Sneath and Sokal, 1973, pp. 137–140). For finding the significance of a
correlation coefficient we used the Mantel test. In classical tests the assumption
is made that the objects which are correlated are independent. However, values
in distance matrices are usually correlated in some way, and not independent
(Bonnet and Van de Peer, 2002). A widely used method to account for distance
correlations is the Mantel test (Mantel, 1967). As significance level we choose
α = 0.05. With the Mantel test it is also possible to determine whether one
correlation coefficient is significantly higher than another.

UC Berkeley Phonology Lab Annual Report (2005)

324



4.2 Acoustic vowel measurements

Table 1 shows correlation coefficients between perceptual distances and different
acoustic distance measurements. The measurements are made on the basis of
vowels only. Correlations are given for the complete data set of 15 dialects. Since
the mean vocal tract dimensions of males differ from those of females, gender
differences may influence our results. Therefore we also show correlations on the
basis of a subset of 11 dialects. The recordings of these dialects are pronounced by
female speakers. The dialects of Bø, Bodøe, Herøey and Larvik are pronounced
by male speakers and excluded in the smaller set.

In the table we find three acoustic representations: formant tracks, zero cross-
ing rates, and a combined representation where both formant tracks and zero
crossing rates are used (see Sections 3.2 and 3.5). When formant tracks are
used, we consider the Hertz scale and the Bark scale (see Section 3.2.1. Be-
sides measurements on the basis of the original Hertz and Bark frequencies, also
measurements are given where the frequencies are normalized per frame (see Sec-
tion 3.2.1).

For each of the measurements we checked whether the 34 vowels are a sufficient
basis for reliable analyses. We calculated Cronbach’s α values for each of them. A
widely-accepted threshold in social science for an acceptable α is 0.70 (Nunnally
(1978), Heeringa (2004, p. 170–173)). For ten measurements we found lower α
values, varying from 0.16 to 0.66. For these measurements the correlations are
given in normal type setting, the other ones are printed in bold.

Considering differences in representation, the combined representation (form-
ant tracks and zero crossing rates) has higher correlations than the formant track
representation which has in turn higher correlations than the zero crossing rate
representation in most cases. The measurements on the basis of the Bark scale
have mostly higher correlations than those on the basis of the Hertz scale. Nor-
malizing frequencies improves results when using the combined representation,
but not when using formant tracks only. For none of the three factors (rep-
resentation, frequency scale and normalization) we found significant differences.
The highest correlation is obtained when using the combined representation and
normalized Bark frequencies, followed by the version with the Hertz frequencies.

4.3 Semi-acoustic word measurements

Table 2 shows correlation coefficients between perceptual distances and different
acoustic distance measurements. The measurements are made on the basis of
words. The speech rate is normalized by counting the number of segments in
the transcriptions (see Section 3.4.1). Just as for the vowel-based comparisons
correlations are given for all 15 dialects and for the 11 dialects, pronounced by
females.

As in Section 4.2 for each of the measurements we checked whether the 58
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formant zero original normalized
bundles crossings frequencies frequencies

15 dial. 11 dial. 15 dial. 11 dial.
Hertz no 0.22 0.30 0.23 0.25
Bark no 0.24 0.32 0.23 0.28
Hertz yes 0.28 0.27 0.34 0.32
Bark yes 0.31 0.31 0.35 0.33
no yes 0.21 0.15 0.21 0.15

Table 1: Correlations between perceptual distances and different acoustic distance
measurements based on vowels only. Correlations are given for 15×15 and 11×11
matrices excluding the diagonals. All correlations are significant for α=0.05.
Correlations in bold are based on measurements with Cronbach’s α > 0.70.

words are a sufficient basis for reliable analyses and calculated Cronbach’s α
values for each of them. Most of them were higher than the threshold of 0.70,
but six of them were lower, varying from 0.63 to 0.67. For these measurements
the correlations are given in normal type setting, the other ones are printed in
bold.

In the table we find that both the formant track representation and the com-
bined represention have mostly higher correlations than the zero crossing rate
representation. The combined represention gives only an improvement in com-
parison with the formant track representation when normalized frequency values
are used. Considering the frequency scale we find that the Bark scale gives
the better results, but when frequencies are normalized the Hertz scale gives the
better results. Frequency normalization improves results when the combined rep-
resention is used, but not when using formant tracks in most cases. Considering
the three factors (representation, frequency scale and normalization) we did not
find significant differences in most cases. For 15 dialects the highest correlation
is obtained when using the formant track representation and original Bark fre-
quencies. For 11 dialects the two highest candidates are the same as we found
for vowels (see Section 4.2). The highest correlation coefficient is found when
the combined representation is used and normalized Hertz frequencies are used.
Using Bark frequencies gives the second best correlation.

4.4 Acoustic word measurements

Table 3 shows correlation coefficients between perceptual distances and different
acoustic distance measurements. The measurements are made on the basis of
words. When two word samples are compared, they are stretched so that they
get the same number of frames before the distance between them is calculated
(see Section 3.4.2). As for the vowel-based comparisons and the semi-acoustic
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formant zero original normalized
bundles crossings frequencies frequencies

15 dial. 11 dial. 15 dial. 11 dial.
Hertz no 0.49 0.57 0.50 0.55
Bark no 0.53 0.58 0.48 0.55
Hertz yes 0.37 0.47 0.49 0.60
Bark yes 0.41 0.51 0.49 0.59
no yes 0.36 0.50 0.36 0.50

Table 2: Correlation between perceptual distances and different semi-acoustic
distance measurments based on words. Correlations are given for 15 × 15 and
11 × 11 matrices excluding the diagonals. All correlations are significant for
α=0.01. Correlations in bold are based on measurements with Cronbach’s α >
0.70.

word-based comparisons, correlations are given for all 15 dialects and for the 11
dialects, pronounced by females.

As in Sections 4.2 and 4.3 for each of the measurements we checked whether
the 58 words are a sufficient basis for reliable analyses and calculated Cronbach’s
α values for each of them. We found most of them to be higher than the threshold
of 0.70, but four of them were lower, varying from 0.56 to 0.68. For these meas-
urements the correlations are given in normal type setting, the other ones are
printed in bold.

Looking at the table, we find that both the zero crossing rate representation
and the combined representation have higher correlation coefficients than the
formant track representation. The combined representation gives better results
than the zero crossing rate representation when normalized frequency values are
used. Considering the frequency scale, again our findings accords with those of the
semi-acoustic measurements: the Bark scale gives the better results when original
frequencies are used, but when frequencies are normalized the Hertz scale gives
the better results. Frequency normalization improves results for both the formant
track representations and the combined representations. For the semi-acoustic
measurements we found improvements only for the combined representions. The
highest correlation is obtained when using the combined representation and nor-
malized Hertz frequencies, followed by the version with the Bark frequencies. For
15 dialects we found the correlations of the two measures to be significantly higher
than those using the formant track representation and non-normalized frequen-
cies (0.46 versus 0.26, p=0.02, 0.46 versus 0.27, p=0.03). For 11 dialects they are
nearly significantly higher (0.56 versus 0.36, p=0.07, 0.55 versus 0.36, p=0.07).
The two versions also had the highest correlations for the vowel measurements
and for the semi-acoustic measurements based on the 11 female dialects.
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formant zero original normalized
bundles crossings frequencies frequencies

15 dial. 11 dial. 15 dial. 11 dial.
Hertz no 0.26 0.36 0.35 0.39
Bark no 0.27 0.36 0.31 0.38
Hertz yes 0.36 0.46 0.46 0.56
Bark yes 0.38 0.49 0.46 0.55
no yes 0.37 0.49 0.37 0.49

Table 3: Correlations between perceptual distances and different acoustic distance
measurements based on words. Correlations are given for 15 × 15 and 11 × 11
matrices excluding the diagonals. All correlations are significant for α=0.01.
Correlations in bold are based on measurements with Cronbach’s α > 0.70.

4.5 Conclusions

Comparing the results in Sections 4.2, 4.3 and 4.4, we found the correlations of
the vowel-based measurements to be lower than those of the word-based meas-
urements. This can easily explained by the fact that only one vowel contains
less information than a complete word. Nevertheless all vowel correlations are
significant for α = 0.05.

Representation The correlations of the semi-acoustic measurements are higher
than those of the (fully) acoustic measurements, but with one exception. For the
zero crossing rates we did not find a clear difference: 0.36 versus 0.37 (15 dia-
lects) and 0.50 versus 0.49 (11 dialects). This gives us the impression that zero
crossing rate measurements are quite robust in the sense that they are speech
rate normalization procedure-independent. Possibly zero crossing distributions
represent the segmental structure to some extent. This may explain why com-
bined measurements are better than formant track measurements for all cases of
the acoustic measurements, but for only the half of the cases of the semi-acoustic
measurements. In case of the semi-acoustic measurements, segmental informa-
tion is already read from the transcriptions, the segmental information of the
zero crossing distribution may partly be superfluous.

Frequency scale Looking at the vowel based measurements we find the tend-
ency that the Bark scale gives higher correlations than the Hertz scale. For the
word-based measurements we find the same when the original, non-normalized
frequency values are used. When normalized frequency values are used, there
is hardly any difference, in a few cases the Hertz measurements are just higher.
Therefore the use of the Bark scale is only useful when non-normalized frequency
values are used.
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Frequency normalization The use of normalized frequency values gives only
an improvement for the combined representation when measurements are ob-
tained on the basis of vowels or on the basis of semi-acoustic word sample meas-
urements. For acoustic word sample measurements normalization leads to im-
provement for both the formant track representation and the combined repres-
entation. The idea behind frequency normalization within a frame is that the
relative positions of the F1, F2 and F3 to each other is more important than
the absolute values of the three formants. But then still we cannot explain our
findings here.

Our choice For all measurements, both vowel-based, semi-acoustic word-based
and acoustic word-based, we found that the same two measurements outperform
the other ones, namely the versions using the combined representation and nor-
malized frequency values. To decide about the frequency scale we look at the
very small difference for the 11 female dialects where the Hertz scale just gives
higher results. So we choose the version which uses the Hertz scale.

5 Results

In this Section we present hierarchical clustering and multidimensional scaling
analysis of the computational method which appears to be the best one in Sec-
tion 4, i.e. which shows results which approximates the perceptual distances
most closely: the version with the combined reresentation (formant tracks and
zero crossing rates) and normalized Bark frequencies. Since it is our aim to de-
velop a fully transcription-independent comparison method, we present results of
the version which does not use any information from transcriptions. For all 15
dialects, its results correlate with r = 0.46 to perception, and for 11 dialects we
found r = 0.56.

On the basis of the distances obtained with this method, the dialects are
classified. As in Section 2.2 for the perceptual distances, we perform cluster
analysis and multidimensional scaling. In Figure 6 the dendrogram is shown.
When we compare this dendrogram with the one in Figure 2, we find in the two
figures that both the Trøndsk, the Austlandsk and the Sørvestlandsk dialects are
clustered together. The dendrograms disagree about the Midlandsk dialects and
the Nordvestlandsk dialects. Lesja is clustered along with the Trøndsk dialects
in the perceptual dendrogram and along with the Austlandsk dialects in the
computational dendrogram. The disagreements about Bø, Bodø and Herøy may
have to do with the fact that their recordings were pronounced by males. However
the position of Larvik, which recording was also pronounced by a male, is not so
deviant in comparison with the perceptual dendrogram.

We also applied multidimensional scaling. The resulting plot is shown in Fig-
ure 7. This two dimensional plot explains 74.3% of the variance of the original

UC Berkeley Phonology Lab Annual Report (2005)

329



Bergen (Sv)
Time (Sv)
Lesja (Mi)

Fræna (Nv)
Stjørdal (Tr)

Trondheim (Tr)
Bjugn (Tr)

Verdal (Tr)
Halden (Au)

Lillehammer (Au)
Larvik (Au)
Borre (Au)
Bodø (No)

Bø (Mi)
Herøy (Nv)

0 500 1000

Figure 6: Dendrogram obtained on the basis of Levenshtein distances where the
combined representation (formant tracks and zero crossing rates) is used. The
tree structure explains 41.5% of the variance.

computational distances. When comparing this plot with the perceptual based
plot in Figure 3, we find some similarities: The Sørvestlandsk dialects and the
dialect of Herøy on the left, the Trøndsk dialects on top and the Austlandsk
dialects in the lower right corner. However in the perceptual plot the different
groups are much sharper distinguished. Furthermore, the dialects of Bø, Bodø
and Herøy are located on top, and the dialect of Larvik is found much higher
and more distant from the dialect of Halden than in the perceptual multidimen-
sional scaling plot. Since these four dialects are pronounced by males, we get the
impression that the first dimension, represented by the vertical axis in the plot,
represents gender to a large extent.

Possibly it may be better to ignore the first dimension, and examine the
second and higher dimensions. In order to find out whether higher dimensions
may be interesting, we scaled our computational distances to the largest possible
number of dimensions allowed by the R program: 12. Next we calculated dis-
tances between the 15 dialects per dimension, resulting in 12 distance matrices.
Next we correlated each of the matrices with the perceptual distance matrix.
We squared the correlation coefficients and multiplied them by 100. In this way
for each dimension we got a percentage which represents the amount of variance
which that dimension explains of the perceptual distances. The variances are
shown in Figure 8. This figure suggests that especially the first, second and third
dimension are important.

We found that the first dimension distances correlate (nearly) signifantly
stronger with the perceptual distances than the fourth and higher dimension
distances do (highest p was equal to 0.08). The same applies for the second
dimension distances (highest p was equal to 0.09) and the third dimension dis-
tances(highest p was equal to 0.07). Therefore we focus on the first, second and
third dimension.

UC Berkeley Phonology Lab Annual Report (2005)

330



Bergen (Sv)

Bjugn (Tr)

Bodø (No)

Bø (Mi)

Borre (Au)

Fræna (Nv)

Halden (Au)

Herøy (Nv)

Larvik (Au)

Lesja (Mi)

Lillehammer (Au)

Stjørdal (Tr)

Time (Sv)

Trondheim (Tr)

Verdal (Tr)

Figure 7: Multidimensional scaling plot obtained on the basis of Levenshtein
distances where the combined representation (formant tracks and zero crossing
rates) is used. The vertical axis represents the first dimension, and the horizontal
axis the second dimension. The two dimensions explain 74.3% of the variance.
The dialects of Böe, Bodöe, Heröey and Larvik were pronounced by male speakers.
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Figure 8: The computational distances are scaled to 12 dimensions. For each
dimension a bar shows how much variance that dimension explaines of the per-
ceptual distances. The variances are given in percentages.

In the results of the perceptual measurements we found no influence of gender
differences (see Figures 2 and 3). Nevertheless we found a relatively high variance
for the first dimension. Therefore we cannot conclude that the first dimension
just represents voice quality. However, we want to exclude this dimension since it
is the only way to exclude the influence of gender differences. Therefore we scaled
the computational dimensions to three dimensions, and drew a plot on the basis
of the second and third dimension. The plot is shown in Figure 9. The three
dimensions explain 78.3% of the variance of the original computational distances,
and the second and third dimension together explain 37.9%.

Different from Figure 7 and more similar to Figure 3 is that the different
groups are distinguished more sharply. The western group (mainly Sørvestlandsk
dialects), the northern group (mainly Trøndsk dialects) and the southeastern
dialects (mainly Austlandsk dialects) can be found in both Figure 3 and Figure 9.
Looking at the dialects pronounced by males, we find that they are scattered over
the plot. We especially judge the position of Larvik (close to Halden) and Bø
(south of the Austlandsk dialects instead of north of the Trøndsk dialects) to be
better in comparison with their positions in Figure 7. However the new plot is
not an improvement in every respect. The Trøndsk dialects are not as close as in
Figure 7, especially Trondheim is very deviant from the other Trøndsk dialects
in the new plot. We expected the dialect of Lesja to be more in between of the
northern and southeastern dialects as in both Figure 3 and 7.
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Figure 9: Multidimensional scaling plot obtained on the basis of Levenshtein
distances where the combined representation (formant tracks and zero crossing
rates) is used. The horizontal axis represents the second dimension, and the
vertical axis the third dimension. The two dimensions explain 37.9% of the
variance.

6 Conclusion

The aim of this paper was to find a fully acoustic and transcription independent
measure for finding dialect distances. Heeringa and Gooskens (2003) presented
a semi-acoustic measure. When correlating the distances obtained with that
measure with the perceptual distances, they found r = 0.5 for all 15 dialects, and
r = 0.55 for the 11 female dialects (see Heeringa (2004, p. 194)) when using the
formant track representation. In this paper we found r = 0.46 (15 dialects) and
0.56 (11 dialects) when using a combined representation (formant tracks and zero
crossing rates) and normalizing formant frequencies per frame (see Table 3).

When comparing the classiciation results obtained on the basis of perceptual
distances with those obtained on the basis of our acoustical measurements, a
northern, southeastern and western group can be found for both. However in
the acoustical results the influence of gender was found. When using multidi-
mensional scaling, these influence was found in the first dimension. In a plot
based on the second and third dimension, the influence of gender is no longer
found. However, besides gender-specific variation, the first dimension also rep-
resents dialect specific information which is lost when leaving out this dimension.
Therefore further research is necessary to filter out the influence of voice quality.
Adank et al. (2004) propose different ways of formant frequency normalization
which can be examined in future research.

Another issue is speech rate normalization. Our research shows that the
results of the semi-acoustic measure are still higher: r = 0.53 (15 dialects) and r =
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0.58 (11 dialects) when using formant tracks and formant frequencies represented
in the Bark scale (see Table 2). Therefore it may be useful to seek for a procedure
which automatically determines the number of phonetic segments on the basis
of the acoustic signal. We found that especially the zero crossing distribution
represents the segmental structure to some extent, therefore zero crossings can
possibly help in finding the number of segments.

Finally results can be improved by using more data. First, some words occur
more than once in the text, for example ’the north wind’ occurs four times.
We only used the first occurence, but results may be improved when using all
occurences of a word and averaging over them. Second, we use one speaker per
dialect. Useful future research may be to base results on multiple recordings per
dialect.
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