
Finite state machines. Syllabification

NTV Lecture 2

April 1, 2003

1

Last week

• words

? fundamental building block of language

• regular expressions

? specify text search strings
? define the language recognized by an automaton
? formally define a regular language

• finite state automata (FSA)

? used to implement regular expressions
? using finite alphabet may recognize infinite strings in a regular language

2

Finite state and syllabification

• Relation between regular expressions and automata

• Deterministic and non-deterministic automata

• ε-transitions

• Syllabification

? word splitting in order to justify paragraphs

• Part-of-speech tagging

3

From regular expressions to finite automata

• Concatenation

? [A,B]

? Link final state(s) of automaton A with initial state of automaton B

4

Concatenation

0 12
a b

0 12

c d

0 1234

a dcb

5

From regular expressions to finite automata

• Disjunction

? {A,B}

? Initial state A = Initial state B,
? Final state A = Final state B

6

Disjunction

0 12
a b

0 12

c d

0
1

2

3

a

c

b

d

7

From regular expressions to finite automata

• Optional

? [A, B] → [A, Bˆ]

? Add an epsilon-transition (jump) from the initial state of B to the final
state(s) of B.

8

Optional

0 1234

a dcb

0 1 23

a
c

d

b

9

Epsilon-transitions (jumps)

0 1
[]

2

a b

10

Epsilon-transitions in fsa

0

12

3

4

5

6

a

f
e

c

d

e

b

11

From regular expressions to finite automata

• Kleene Plus: A+

? Add an epsilon-transition from the final state of A to the initial state
of A.

• Kleene Star: A∗

? Add an epsilon-transition from the final state of A to the inital state
of A.

? Make the initial state of A also a final state.

12

Determinism and Non-determinism

• An automaton is deterministic when being at any state Q looking at an
input symbol S only one transition (move) is possible for the automaton.

• Automata with epsilon-transitions are non-deterministic.

13

Non-deterministic recognizer

0 3
a

1

2

4b

5

b

c

d

14

Deterministic Recognizers

• For every recognizer with epsilon-transitions there is always an equivalent
recognizer without jumps

• A non-deterministic recognizer can always be converted into a
deterministic one.

• FSA produces deterministic recognizers

15

Syllabification (woorden afbreken)

• newspaper text fit into narrow columns

• long or complex words splitting

• hyphenation: (apparently) a simple typesetting problem

• in practice, not so simple (Volkskrant, 17-11-01)

? Schaat-sunie
? Bamboes-tok
? Blessures-pook

16

Hyphenation rules

• respect word boundaries

? Drugs-panden, drug-spanden

• Split syllables

? Al-fa-bet, a-lfa-bet

• Split as early as possible (maximum onset rule)

? Al-fa-bet, alf-a-bet, al-fab-et, alf-ab-et

17

What is a syllable? (lettergreep)

• A regular expression:

? [onsetˆ, nucleus, codaˆ]

? Onset: {b, [b, r],[b, l], c,[c, h],. . . }

? Nucleus: {a, [a, a], [a, a, i], e,. . . }

? Coda: {b, c, [c, h], [c, h, t],...}

18

Simple syllabification program

• Set breaking points between syllables, as early as possible

• Gosse’s algorithm evaluation :

? 290.000 words (10,8 letters long, 2,5 hyphens per word)
? 86% correct words
? 94,5% correct hyphenation points
? Errors are often compound words (samenstellingen)

19

A better syllabification program

• Machine learning algorithm helps to find hyphenation rules automatically

• Automatic syllabification of all words in Celex

• Comparison with correct syllabification

? Rule i-st → is-t (li-stig → lis-tig) corrects 2900 errors (and introduces
300 new errors)

? After learning 1400 rules 98,2% (words) and 99,2% (hyphens) correct

20

Regular expressions: macros

• Words with one syllable (monosyllable)

• Pattern:

? consonants,vowels,consonants (medeklinkers,klinkers,medeklinkers)
? macro(monosyllable,[cons∗, vowel+, cons∗]).
? macro(cons, { b,c,d,. . . ,z }).
? macro(vowel, {,a,e,i,o,u,y}).

21

Macros 2

• In FSA macro is a label for a regular expression.

• macro(Name,RegExp).

• Macros can be used in the definition of other regular expressions

• To load macros in FSA use LoadAux.

22

Other applications: Part-of-speech tagging

• labelling of words with their word category

? fiets → common noun, verb (1st sg present)
? fietsen → common noun, verb (infinitive, 2nd–3rd pl present)
? De fietsen staan in de schuur.
? We fietsen naar school.
? vliegen

• Typically this is the first step in syntactic analysis (description of sentence
constituency)

• In a corpus with pos tags we can seek syntactic patterns

? all sentences with 3 verbs, etc.

• POS-tagging : word recognition problem + word categorization problem

23

POS-tagging

• Word recognition problem:

? Proper names : /[A. . . Z,a. . . z]∗ /
? Verbs
◦ /[a. . . z,{[e,n],[t],[de]}]/
◦ /[g,e,a. . . z+,{[e,n],[t],[d]}]/

• Usefulness of recognizers is limited because they only return a binary
classification: ’yes’ or ’no’

• Word categorization: more complex finite state machines are needed
(finite state transducers)

	Week 2
	Revision
	Overview
	From RegExp to FSA
	Concatenation
	Regexp-fsa2
	Disjunction
	Optional
	Epsilon-transitions
	FSA no Epsilon-transitions
	Syllabification
	Macros 1
	POS-tagging

