
Natuurlijke Taalverwerking II

2006/2007

Gosse Bouma

www.let.rug.nl/~gosse/ntv2

1

Overzicht

• Relatie tussen Reg Ex en Automaten

• (Non-)determinisme

• Transducers

• Operaties op Transducers

2

Regular Expressions

[A,B] A followed by B

{A,B} A or B

[A,B^] An A optionally followed by a B

A* zero or more occurrences of A

A+ one or more occurrences of A

? Any symbol

’0’..’9’ Symbol in the range of ’0’ .. ’9’

$ A A string containing A

3

More Regular Expressions

~ A A string not matching A

A - B A string matching A but not B

A & B A string matching A and B

4

Examples

[? *, i,s,h] A string with suffix ish

$ [q,u] A string containing qu

’0’..’9’ a digit

’0’..’9’ - ’2’ all digits except 2

~ ’0’ ...’9’ not a digit

(i.e. includes a, 10, ǫ)

$ a & $ b strings containing an a

and a b

5

From Reg Ex to FSA

• Every Reg Ex corresponds with a FS

automaton

• Every Reg Ex operator defines an operation

on FS automata

6

Epsilon

• Epsilon transition’s (jumps) allow transition

from one state to another without reading

any input symbol

0

12

3

4

a

c

ε

b b

7

Optional

[a,b]^

0 1 2

a b

0 1 2

a b

ε

8

Kleene Closure

[a,b] *

0 1 2

a b

0 1 2

a b

ε

9

Concatenation

[[a+,b+], [c+,d+]]

0 1

2
a

b

ba

0

2
c dc

0 1234

a
d

d
c

c
b

b
a

10

Union

{[a+,b+], [c+,b+]}

0

1

2

3

a

c

b

ba

b

c

11

Complement

0 1 2

a b

0

12

3

a

b
a b

b

a

a b

0

12

3

a

b
a b

b

a

a b

• Input automaton must be deterministic

12

Deterministic Recognizer

• A FS recognizer is deterministic iff

⋆ it has a single start state,

⋆ it has no epsilon transitions,

⋆ for each state and each symbol there is at

most one applicable transition.

• For every M there is a deterministic

(efficient) automaton M ′ such that L(M) =

L(M ′).

13

Removing Non-deterministic

Transitions

0

1

2

3

4

a

a

b

c

b

c

0

1

2

3

a

b

c

b

c

14

Removing Epsilons

0 1 2

a b

ε

0 1 2

a b

b

15

Converting NFA to DFA

www.cs.may.ie/~jpower/Courses/parsing/

We use a Deterministic Finite-State Automaton (DFA)

which is a special case of a NFA with the additional

requirements that:

• There are no transitions involving ǫ,

• No state has two outgoing transitions based on the

same symbol .

16

Subset Construction Algorithm

• The ǫ-closure function takes a state and returns the

set of states reachable from it based on (one or more)

ǫ-transitions.

• The function move takes a state and a character, and

returns the set of states reachable by one transition

on this character.

move({A,B}, a) = move(A, a) ∪ move(B, a)

17

The Subset Construction

Algorithm II

1. DFA start state = ǫ-closure(NFA start state).

2. For each new DFA-state S and possible input symbol

a:

• Add the transition (S,a,ǫ-closure(move(S,a)))

3. Apply step 2 to newly added states.

4. DFA finish states = states containing a NFA finish

state.

18

Example

0

1

2

3

a

b

c

b

b

{(0, a, 3), (3, b, 1), (3, b, 2), (1, b, 1), (2, c, 2)}

⇓

{(0, a, 3), (3, b, {1, 2}), ({1, 2}, b, 1),

({1, 2}, c, 2), (1, b, 1), (2, c, 2)}

19

DFA

0 1/2

1

2

3

a

b

c

b

c

b

20

Intermezzo:

RegEx without Kleene *

• Automata for languages definable without

Kleene * or + have interesting properties

(Yli Jyrä, EACL 2003)

• Can you define the language a* without

using Kleene *, +, or $

21

Intermezzo:

RegEx without Kleene *

• Can you define the language a* without

using Kleene *, +, or $

• ~[{[],~[]},? -a,{[],~[]}]

22

Recognizers vs Transducers
• A finite state recognizer is an automaton

which accepts strings (yes/no decisions):

⋆ recognize Zip Codes, Proper Names,

Syllables, ...

• A finite state transducer is an automaton

which maps one string onto another string:

⋆ Map Letters onto Phonemes, Inflected

words onto Base Forms, Words onto Part

of Speech Tags,

23

Stemming

• Translate a word into its base form,

• For information retrieval:

⋆ Given a query, find relevant documents

⋆ A query with republican, can lead to a

document with republicans.

24

Stemming

Georgia georgia

Republicans republican

are be

getting get

strong strong

encouragement encouragement

to to

enter enter

a a

candidate candidate

25

Part of Speech Tagging

• Translate a sequence of words into a

sequence of Part of Speech Tags

• Useful as a first step towards full parsing or

to support searching for linguistic patterns,

26

Part of Speech Tagging

AT1 a

JJ relative

NN1c handful

IO of

DAz such

NN2 reports

VBDZ was

VVNv received

27

Grapheme to Phoneme Conversion

• Translate a sequence of letters into a

sequence of phonemes

• Required for Text to Speech applications

• Each letter or sequence of letters is

translated into a phoneme

a b b r e v i a t e d

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

@ b ǫ r i v I 1 t I d

28

Encoding a Rule

• e → I / {t,d} d #

0

123

4

?

{d,t} #d
e:I

• abbreviated# → abbreviatId#

29

Regex Notation for Transducers

• [a:b, c*] translates, among others, accc

in bccc.

• : is the ‘pair’-operator: it translates a

symbol A in a symbol B.

30

Regex Notation for Transducers

• [a:b, c*] is short for [a:b, (c:c)*]

• By default, a regular expression without ’:’

is read as the identity-transducer: every

symbol in the input is mapped onto itself.

31

Dutch Dimunitives

huis+je → huisje

haan+je → haantje

man+je → mannetje

input h u i s + j e

output h u i s ǫ j e

input h a a n + j e

output h a a n t j e

input m a n ǫ ǫ + j e

output m a n n e t j e

32

Dutch Dimunitives

[? *,{[s,+ :[]],

[a,a,n,+ :t],

[~a,a,n,[]:n,[]:e,+ :t]

},

j,e

]

33

Dutch Dimunitives

0

1234

5

6

7

8

910

11

?

s

a

‘a

ej(+):[]

(+):t

?

a

n

? a

n

[]:e

[]:n

n

34

(Non-)determinism

• An transducer is deterministic if for every

state and inputsymbol, at most a single

transduction to a new state is possible.

• Non-deterministic transducers can sometimes

be made deterministic, but not always.

• Non-deterministic recognizers can always be

made deterministic.

35

Non-Determinism: Example

maan+je → maantje

man+je → mannetje

0

12345

6

7

8 910

?

a

m

ej+:tn

ε:e

a

a ε:nn

36

Two Sources of Non-determinism

• Unbounded Look-ahead

⋆ acccb → bcccb acccd → dcccd

⋆ {[a:b, c*, b], [a:d, c*, d]}

• Multiple outputs

⋆ bloem+je → bloempje

⋆ bloem+je → bloemetje

⋆ [?*, o, e, m, {+:p, +:[e,t,]}, j, e]

37

Deterministic Transducers

• Deterministic transducers are more efficient

than non-deterministic transducers (because

no choice-points/backtracking/search is

required).

• But deterministic transducers can be much

larger than corresponding non-deterministic

transducer.

• (t determinize option in FSA).

38

Making a Transducer

Deterministic

acb → bcb

acd → dcd

0

123

4 5

a:b

a:d

bc

c

d

0 12 3

a:[] c:[] b:[b,c,b] d:[d,c,d]

39

From English to Dutch Numbers

• Automatic translation of (spoken) English

into Dutch requires translation of number

words,

• twentyone → eenentwintig,

• twentyone → 21 → eenentwintig

40

From Number Words to Numbers

macro(one, {one:1, two:2, ...,

nine:9 }).

macro(twenty, {twenty:2,thirty:3,...,

ninety:9 }).

macro(eng2num,{ one,ten:[1,0],

eleven:[1,1],...,

nineteen:[1,9],

[twenty,one] }).

41

From English to Dutch Numbers

• Transducer T1 for translating English

Number Words into Numbers,

• Transducer T2 for translating Numbers into

Dutch Number Words

• The output of T1 is used as input by T2.

42

Composition

• The composition of transducers T1 and T2

is a new transducer T3, which is equivalent

to passing the input through T1, taking the

output of T1 as input for T2, and taking

the output of T2 as output.

• T1 o T2 denotes the composition of T1 and

T2.

43

Number Translation by

Composition

macro(eng2num,

{{one,ten:[1,0],..}).

macro(num2dut,

{1:een,2:twee,}).

macro(eng2dut,

eng2num o num2dut).

44

Input/Output reversal

• The inverse of a transducer T is a transducer which

takes as input the output of T, and produces as

output the input of T.

• In FSA: inverse(T).

• Translating Dutch into English:

macro(dutch2eng,

inverse(num2dut) o inverse(eng2num)).

macro(dutch2eng,

inverse(eng2dut)).

45

Finite State POS Tagging

• Assign Part of Speech tags to words,

• but many words have more than one POS:

⋆ The/det report/n was/aux written/v

⋆ The/det police/n has/aux to/aux report/v

all/det problems/n

46

Finite State POS Tagging

• A Solution:

⋆ A non-deterministic T which assigns a

word all possible POS tags,

⋆ Recognizers R which filter the output of

T,

⋆ Compose T and (the identity transducer

for) R.

47

Finite State POS Tagging

macro(lexicon,

{ all:det,has:aux,police:n,problems:n,

report:{v,n},the:det,to:v,was:aux,

written:v}*).

macro(no_det_v,

~ $ [det, v]).

macro(tagger,

lexicon o no_det_v).

