
Querying Dependency Treebanks in XML

Gosse Bouma
�
, Geert Kloosterman

�

�
Computational Linguistics

Groningen University
gosse@let.rug.nl

�
Artificial Intelligence

Groningen University
geertk@ai.rug.nl

Abstract
The need for manual editing during construction of a treebank may impose constraints on the representation of dependency trees which
are not optimal for linguistic exploration. Using XML-technology it is possible to maintain the treebank both in a form suitable for
editing and in a form suitable for linguistic exploration. By choosing a compact representation, we can use XPath directly as query
language. We argue that, given an explicit encoding of string positions, this direct encoding of dependency trees as XML-trees can
represent discontinuous constituents in a way that supports queries involving both dependency and linear order.

1. Introduction

During development of a treebank, the emphasis is often
on representing the treebank in a way which supports inter-
action with a parser environment (for automatically gen-
erating analyses) as well as with an editor (for correcting
analyses manually). For users of a treebank, however, a
representation which supports linguistic exploration is es-
sential. It is not always clear that these two requirements
can be satisfied by a single representation.

Below, we describe the Alpino treebank, a dependency
treebank for Dutch which is being developed using a wide-
coverage parser for Dutch and a graphical tool for display-
ing and editing linguistic data-structures. The initial moti-
vation for developing the treebank was the need for evalu-
ation material for the syntactic parser for Dutch, which is
being developed in parallel with the treebank. For (auto-
matic) evaluation, the internal format of the treebank is not
very important. However, as the treebank grows in size, it
becomes increasingly interesting to explore it interactively
as well. Queries to the treebank may be motivated by lin-
guistic interest (i.e. which verbs take inherently reflexive
objects?) but can also be a tool for quality control (i.e. find
all PP’s where the head is not a preposition).

The XPath standard implements a powerful query lan-
guage for XML documents, which can be used to formu-
late queries over the treebank. However, we found that
both the complexity and size of the XML documents pro-
duced during the annotation process, makes these less suit-
able for querying. Implementation of a query expansion
tool only partially solved this problem. Therefore, we
transformed the annotated data into a more compact XML-
representation, ideally suited for linguistic exploration. As
the new format encodes dependency trees directly, it can be
explored using XPath only. Using XPath has the advantage
that existing technology can be used to query the treebank.

One of the attractions of dependency trees is the fact
that dependents may span discontinuous parts of the input
string. For a language like Dutch, with its crossing depen-
dency word orders, this is especially important. Several

possibilities exist for encoding discontinuous constituency
in XML. In our proposal, the structure of the dependency
tree is mapped directly onto an XML-tree with the same
structure. The relation with word order in the input string is
encoded by adding attributes for string positions. We show
that this allows subtle queries concerning linear order and
dependency to be stated.

In the next section, we briefly describe the grammar
used to create dependency trees. Next, we introduce the
Alpino treebank and the annotation process. In section 4,
we present a transformation of the original treebank for-
mat into a format which supports linguistic exploration. In
section 5, we discuss how we encode word order in depen-
dency trees. We conclude with various examples queries
illustrating the kind of information that can be extracted.

2. The Alpino Grammar
The Alpino grammar (Bouma et al., 2001) is a lexical-

ized grammar for Dutch in the tradition of constructionalist
Head-driven Phrase Structure Grammar (Pollard and Sag,
1994).1 The grammar currently contains over 270 rules,
defined in terms of a general rule structures and princi-
ples. The grammar covers a substantial part of the syntac-
tic constructions of Dutch (including main and subordinate
clauses, (indirect) questions, imperatives, (free) relative
clauses, a wide range of verbal and nominal complementa-
tion and modification patterns, verbal crossing-dependency
constructions, extraposition, and coordination) as well as
a wide variety of more idiosyncratic constructions (appo-
sitions, verb-particle constructions, PP’s including a parti-
cle, NP’s modified by an adverb, punctuation, etc.). The
lexicon contains approximately 47,000 lemma’s. Lemma’s
are associated with complicated attribute-value matrices,
containing, for instance, subcategorization frames enriched
with dependency relations. The lexicon was created to a

1Alpino is being developed as part of the NWO PIONIER

project Algorithms for Linguistic Processing, www.let.rug.
nl/˜vannoord/alp



large extent by extracting information from two existing re-
sources (Bouma, 2001), a version of Celex (Baayen et al.,
1993) extended with valency information and Parole.2 Cur-
rently, the lexicon contains definitions for 70 different ver-
bal subcategorization types, various nominal types (nouns
with various complementation patterns, proper names, pro-
nouns, temporal nouns, deverbalized nouns), various adjec-
tival subcategorization types, and distinct complementizer,
determiner, and adverb types.

Linguistic analysis of a given input string on the basis of
the grammar described above, proceeds in three steps. First,
the lexical analysis phase assigns the most likely part of
speech tags to the input. Lexical analysis recognizes multi-
word lexical items, and uses several heuristics to decide on
the most likely tags for unknown words. The POS-tagger
consists of a HMM trained on material analyzed automati-
cally by the grammar without POS-tagging (Prins and van
Noord, 2001). Next, a parse forest is constructed, in which
the various analyses (typically, several hundreds) of the in-
put are represented in a compact and non-redundant man-
ner. Parsing is robust, in that it will find the constituents
spanning a maximal portion of the input in case no full
parse is available (van Noord, 2001). The third step con-
sists of the selection of the best parse from the parse forest.
Here, we use a log-linear statistical model which computes
the likelyhood of an analysis as the weighted sum of prede-
fined properties of a parse. Relevant properties are defined
by hand, and weights are estimated using a combination of
supervised and unsupervised Maximum Entropy learning
(Bouma et al., 2001). Supervised learning uses the depen-
dency treebank described below.

We use the dependency treebank described below for
evaluation of the parser in a manner similar to that de-
scribed in Carroll et al. (1998). The system currently identi-
fies dependency relations with an accuracy of around 80%.

3. The Alpino Dependency Treebank
To evaluate the coverage and disambiguation compo-

nent of the system, a testbench containing syntactically an-
notated material is absolutely crucial. Furthermore, (super-
vised) training of a statistical disambiguation module re-
quires syntactically annotated material. Given the current
lack of such material for Dutch, we have started to anno-
tate a corpus of newspaper text with dependency trees in
parallel with the grammar development effort.

Dependency structures make explicit the dependency
relations between constituents in a sentence. Each non-
terminal node in a dependency structure consists of a head-
daughter and a list of non-head daughters, whose depen-
dency relation to the head is marked. An example is given
in figure 1. Control relations are encoded by means of co-
indexing (i.e. the subject of hebben is the dependent with
index 1). Note that a dependency structure does not nec-
essarily reflect (surface) syntactic constituency. The de-
pendent haar nieuwe model gisteren aangekondigd, for in-
stance, does not correspond to a (surface) syntactic con-
stituent.

Dependency trees provide a relatively theory-neutral

2http://www.inl.nl/corp/parole.htm

s

su
1

noun
mercedes

hd
verb
zou

vc
vp

su
1

hd
verb

hebben

vc
vp

su
1

obj1
np

det
det

haar

mod
adj

nieuwe

hd
noun
model

mod
adv

gisteren

hd
verb

aangekondigd

Figure 1: Dependency structure for Mercedes zou haar
nieuwe model gisteren hebben aangekondigd, Mercedes
should her new model yesterday have announced.

level of annotation which is especially suited for annotat-
ing languages with a strong word order variation and dis-
continuous constituency, such as Czech, German, or Dutch
(Hajicova et al., 1998; Skut et al., 1997) . Dependency re-
lations also have been used successfully in statistical pars-
ing (Collins, 1999). An important further reason for adopt-
ing dependency trees in our case is that ensures consistency
with the guidelines of the Spoken Dutch Corpus (Oostdijk,
2000; Moortgat et al., 2000). This project will eventu-
ally provide a substantive amount of syntactically annotated
spoken language, which we hope to use as further training
and testing of the Alpino grammar.

3.1. Construction of the Treebank

The annotation process typically starts by parsing a sen-
tence with the Alpino grammar. This produces a (often
large) number of possible analyses. The annotator picks
the analysis which best matches the correct analysis. To
facilitate selection of the best parse among a large num-
ber of possibilities, the grammar development environment
HDRUG (van Noord and Bouma, 1997) has been extended
with a number of auxiliary functions. First, a graphical tool
allows the annotator to select or remove POS-tags suggested
by lexical analysis. Second, the input string may be ex-
tended with brackets, which must be respected by gram-
matical analysis. Finally, a graphical tool based on the SRI
TreeBanker (Carter, 1997) has been added which displays
all remaining fragments of the input which are a source of
ambiguity. By disambiguating these items (usually a much
smaller number than the number of analyses), the annotator
can quickly pick the most accurate parse.

If the parse selected by the annotator is fully correct, the
dependency structure for that parse is stored as XML in the
treebank. If the best parse produced by the grammar is not
the correct parse as it should be included in the treebank,
the dependency structure for this parse is sent to the Thistle



editor. LT Thistle (Calder, 2000)3 is an editor and display
engine for linguistic data-structures which allows correc-
tions to be made easily. The result of the annotation rocess
is stored as XML.

We have started to annotate various smaller fragments
using the annotation tools described above. The largest
fragment consists of 4,000 newspaper sentences (67,000
words) extracted from the Eindhoven corpus (Uit den
Boogaart, 1975).4

4. Querying the treebank
As the treebank grows in size, it becomes increasingly

interesting to query it for purposes other than evaluating
the accuracy of a parser. Many aspects of the annotation-
guidelines cannot be represented by a DTD. A DTD can
ensure that trees have a given structure, and that categories,
part of speech tags, and dependency relations are members
of a fixed vocabulary, but cannot be used to prevent, say,
that two dependents both have the head dependency rela-
tion, or that a noun is mistakingly tagged as a preposition.
Querying the treebank finds many of such mistakes. The
most obvious reason for querying the treebank, however, is
the fact that it contains valuable linguistic information. In
section 6, we present examples of linguistically motivated
queries.

The XPath standard implements a powerful query lan-
guage for XML documents, which can be used to formu-
late queries over the treebank. However, we found that
both the complexity and size of the XML representation pro-
duced during the annotatin process makes it less suitable for
querying. Implementation of a query expansion tool only
partially solved this problem. Therefore, we transformed
the data into a more compact XML representation, ideally
suited for linguistic exploration. As the new format en-
codes dependency trees directly, it can be explored using
XPath only.

4.1. XPath

As the treebank is encoded in XML, we can use XPath5

to formulate queries over the treebank. XPath supports con-
junction, disjunction, negation, and comparison of numeric
values, and seems to have sufficient expressive power to
support a range of linguistically relevant queries. The fact
that the XML-encoding can directly reflect the dominance
relations of the dependency trees further facilitates the for-
mulation of queries.

Various tools support XPath and can be used to imple-
ment a query-tool. Currently, we are using a C-based tool
implemented on top of the LibXML library6. We found that
this solution provides a more efficient solution than some of
the alternatives. Note, however, that LibXML processes the
data as XML (i.e. as textual data) and does not use any kind
of indexing scheme. For the medium size treebank we are
working with, this proved to be feasible, especially after
applying the transformation described below.

3www.ltg.ed.ac.uk/software/thistle/
4The current version of the treebank is available at www.let.

rug.nl:˜vannoord/trees/.
5www.w3.org/TR/xpath
6www.xmlsoft.org/

4.2. The encoding used for annotation

In Thistle, linguistic datatypes are defined both as hier-
archically structured data-types and as graphical objects. A
non-terminal node, for instance, can be defined as an object
consisting of a category label, a dependency relation, an op-
tional index, and a list of daughters, while at the same time
it is defined as a tree whose top-node consists of a framed
box whose elements are to be displayed in bold. Given a
definition of a data-type, Thistle automatically generates a
DTD for XML-documents encoding the hierarchical struc-
ture of the object. As access to the editor is essential during
the annotation process, all material in the treebank is en-
coded initially using the DTD generated by Thistle.

The DTD encodes grammatical dominance relations by
dominance in the corresponding XML document. For ex-
ample, the phrase de Westerse wereld (the Western world),
ranging from position 9 to 12 in the input, and functioning
as a conjunct, is schematically represented as follows:

<tree>
<mother>

<deprel>cnj</deprel>
<cat>np</cat>

</mother>
<daughters>

<daughter>
<deprel>det</deprel>
<pos>det</pos>
<word>de/[9,10]</word>

</daughter>
<daughter>
<deprel>mod</deprel>
<pos>adj</pos>
<word>westers/[10,11]</word>

</daughter>
<daughter>
<deprel>head</deprel>
<pos>noun</pos>
<word>wereld/[11,12]</word>

</daughter>
</daughters>

</tree>

A dependency tree consists of a mother node and a list of
daughters, where phrasal nodes contain elements represent-
ing the dependency relation and the phrasal category, and
leaves contain elements representing the dependency rela-
tion, part-of-speech, and a word string containg the root and
pointers for the position of the word in the input string.

The actual representation contains several additional
layers, which ensure compatibility with the editor. For in-
stance, the word wereld alone gives rise to the code below:

<leaf_type>
<tcategory_x_leaf>

<tnode_type>
<pos_x_tnode>

<pos_type>
<pos_x_pos>noun</pos_x_pos>

</pos_type>
</pos_x_tnode>



<word_x_tnode>
<word_type>

<lex_x_word>
wereld/[11,12]

</lex_x_word>
</word_type>

</word_x_tnode>
</tnode_type>

</tcategory_x_leaf>
<deprel_x_leaf>

<deprel_type>
<rel_x_deprel>hd</rel_x_deprel>

</deprel_type>
</deprel_x_leaf>
</leaf_type>

Although the encoding is complex, querying the tree-
bank for linguistically relevant patterns can in principle be
achieved using XPath directly. For instance, to search for
main clauses which contain a modifier dependent whose
part of speech is ADJ, on might use the following query:

//tree_type[
./mother_x_tree//cat_x_cat="smain"

and ./mother_x_tree//rel_x_deprel="top"
and ./daughters_x_tree/leaf_type[

.//rel_x_deprel="mod"
and .//pos_x_pos="adj"]

]

The XPath constructs for accessing child (’/’) and descen-
dant (’//’) elements are used to query linguistically relevant
mother and daughter relationships. Note that this is possi-
ble because the dependency tree is encoded as a tree in XML

as well.
The disadvantage of using XPath on highly structured

XML-documents is that queries tend to get complex quickly.
The XML encoding of dependency-trees contains various
layers of annotation which are not linguistically relevant.
Therefore, queries are often verbose, and require intimate
knowledge of the DTD.

To overcome this problem, we implemented a query ex-
pansion script on top of the XPath search tool. The query
expansion language accepts queries such as:

[cat=smain,deprel=top,
daughter([deprel=mod,pos=adj])]

and expands this into the XPath expression shown above.

4.3. A compact encoding

Although querying the treebank in the form used during
the annotation process is possible in principle, we found
that a number of disadvantages remained:

� As documents are large, evaluation of queries is slow.

� The query expansion language helps to formulate
queries, but is less expressive than XPath.

� As linear order is only implicitly present in the strings
representing a word, it is impossible to formulate
queries involving linear precedence.

To overcome these problems, we designed a new DTD for
dependency trees, optimally suited for efficient querying.
We used XSLT and Pillow(Cabeza et al., 1996)7 to trans-
form the original treebank into the new format.

According to the new DTD, the phrase de Westerse
wereld is represented as in figure 2. This encoding has sev-
eral aspects worth noting:

� Intermediate layers are eliminated.

� Information is stored in attributes wherever possible.
In particular, all XML elements in the old DTD which
contained strings only are converted into attributes.

� The distinction between phrasal nodes and leaves is
expressed by treating the latter as empty element tags
of type NODE.

� Information about the (inflected) word form is added
and information about linear order is made explicit.

Elimination of intermediate layers, and the use of at-
tributes over elements led to a 90% reduction of the size
of the treebank (from 70Mb to 7Mb). Note that this reduc-
tion is possible in spite of the fact that information (about
string and head positions and word form) has been added
or made explicit. The reduction in size also implies that
queries are evaluates much faster. A comparison of equiv-
alent queries on the original and compact encoding learns
that query evaluation is about 5 times faster on the compact
encoding.

As the new format is much simpler to grasp than the
original encoding, queries can easily be formulated in
XPath directly, and the need for a seperate query expan-
sion layer is much less obvious. For instance, the following
query corresponds to the XPath query used for illustration
in the previous subsection:

//node[@cat="smain" and @rel="top"
and ./node[@pos="adj"

and @rel="mod"]]

This query has a complexity which is comparable to the
query accepted by the query expansion method.

5. Dependency trees and linear precendence
Linguistic exploration of a syntactic treebank often in-

volves search for patterns which are characterized both in
terms of dependency and linear order. For instance, one
might be interested in the question how often a direct ob-
ject precedes an indirect object. Dependency trees primar-
ily encode grammatical relations, and allow discontinuous
parts of the input string to form a single dependent.

The direct encoding of dependency trees in XML pre-
sented above makes querying for dependency relations
straightforward, but it is not clear whether this encoding
also supports queries in which linear precedence plays a
role. Note, for instance, that the order of elements in the
XML document is typically not isomorphic with the order
of words in the input string. Mengel and Lezius (2000)

7http://www.clip.dia.fi.upm.es/Software/



<node rel="cnj" cat="np" start="9" end="12" hd="12">
<node rel="det" pos="det" start="9" end="10" hd="10" root="de" word="de"/>
<node rel="mod" pos="adj" start="10" end="11" hd="11" root="westers" word="westerse"/>
<node rel="hd" pos="noun" start="11" end="12" hd="12" root="wereld" word="wereld"/>

</node>

Figure 2: Compact encoding

argue against a direct tree based encoding of dependency
trees, exactly because of the conflict between dependency
and linear order. They opt for an approach where each word
in the input is an element, which is linked to higher ele-
ments, such as phrases, by an indexing scheme. A similar
solution is proposed in the XCES project (Ide et al., 2000).
We believe that such solutions introduce a certain amount
of needless complexity into the encoding, which can be an
obstacle for querying the treebank with XPath directly.

The encoding of linear order in the XML documents pro-
duced during the annotation process is not optimal. Only
the string position of words are encoded, and even this is
only encoded as part of the string value of the WORD ele-
ment. Not even the more advanced features of XPath suffice
to search for specific linear order patterns in this case.

In the compact encoding, information about linear or-
der has been made explicit. Not only the string positions
of words are represented, but also the start and end posi-
tions of phrases. For discontinuous phrases, the leftmost
word defines the start position, and the rightmost word de-
fines the end position. It is not the case, therefore, that a
phrase with start B and end E actually consists of all ma-
terial between B and E. For instance, a direct object with
an extraposed relative clause preceding and indirect object
(Kim showed the book to the students that they had to study
for their exam) has both a start preceding the indirect object
and an end following the indirect object. Questions con-
cerning linear order now become ambiguous: to find out
whether A precedes B, one can ask about the order of the
respective start or end positions, or one can ask whether the
end of A precedes the start of B.

From a linguistic point of view, it seems useful to add
another string position. If phrases are discontinuous, one
often decides on linear order on the basis of the head. I.e. in
the example above, it seems natural to decice that the direct
object precedes the indirect object because the head of the
direct object precedes that of the indirect object. Adding
the location of the head to each phrase allows precedence
queries to be formulated as queries concerning the relative
positions of the respective heads.

6. Example Queries
We now present a number of examples which illustrate

that the new encoding supports various types of linguistic
queries.

Objects of prepositions are usually of category NP.
However, other categories are not completely excluded.
The query

//node[@cat="pp"]/node[@rel="obj1"]

finds the objects within PP’s. In the Alpino dependency
treebank, 98% (5,892 of 6,062) of these are regular NP’s.

The remainder is formed by relative clauses (voor wie het
werk goed kende, for who knew the work well), PP’s (tot aan
de waterkant, till on the waterfront), adverbial pronouns
(see below), and phrasal complements (zonder dat het een
cent kost, without that it a penny costs).

The annotation guidelines distinguish between three
possible dependency relations for PP’s: complement, modi-
fier, or ’locative or directional complement’ (a more or less
obligatory dependent containing a semantically meaning-
ful preposition which is not fixed). Assigning the correct
dependency relation is difficult, both for the computational
parser and for human annotators. The following query finds
the head of PP’s introducing locative dependents:

//node[@rel="hd" and ../@cat="pp"
and ../@rel="ld"]

Note that in this query, we are looking for a node with de-
pendency relation hd, which is dominated by a PP with a
ld dependency relation. Here, we exploit the fact that the
mother node in the dependency tree corresponds with the
immediately dominating element in the XML encoding as
well.

Comparing the list of matching prepositions with a gen-
eral frequency list reveals that about 6% of the PP’s are
locative dependents. The preposition naar (to, towards)
typically introduces locative dependents (50% (74 out of
151) of its usage), whereas the most frequent preposition
(i.e. van, of) does introduce a locative in only 1% (15 out
of 1496) of the cases.

In PP’s containing an impersonal pronoun like er
(there), the pronoun always precedes the preposition. The
two are usually written as a single word (eraan, there-on).
A further peculiarity is that pronoun and preposition need
not be adjacent (In Delft wordt er nog over vergaderd In
Delft, one still talks about it). As traditional grammar clas-
sifies these impersonal pronouns as adverbs, they are en-
coded as such in the treebank as well. The following query
finds such discontinuous phrases:

//node[@cat="pp" and
./node[@rel="obj1"

and @pos="adv"]/@end <
./node[@rel="hd"]/@start ]

The corpus contains 110 discontinuous PP’s containing an
impersonal pronoun vs. almost 500 continuous pronoun-
preposition combinations, realized as a single word, i.e. in
almost 20% of the cases, the preposition + impersonal pro-
noun construction is discontinuous.

In Dutch subordinate clauses, past and passive partici-
ples may either precede or follow the auxiliary. The first op-
tion (OBJ PPART AUX, i.e. dat Jan weinig wedstrijden gere-
den heeft , that Jan few races participated has) gives rise to



‘nesting’ word order whereas the second (OBJ AUX PPART,
i.e. dat Jan weinig wedstrijden heeft gereden) gives rise to
so-called ‘crossing dependency’ word order. The following
query matches all subordinate clauses with a past participle
and crossing dependency word order:

//node[@cat="ssub" and
./node[@rel="hd"]/@hd <

./node[@cat="ppart"]/@hd ]

Note that we are looking for patterns where the embedded
VP headed by the participle is discontinuous. The position
of the head of the VP is used to determine whether the past
participle precedes or follows the verb. By reversing the
sense of the comparison, we find all nesting word orders. A
count of the matching substrings reveals that nesting word
order is found in 15% of the cases (45 out of 282). In
non-finite clauses (i.e. in cases where the auxiliary is it-
self governed by a modal, almost 30% (43 out of 147) of
the clauses has the participle preceding the auxiliary (i.e.
PPART MODAL AUX, dat een correctie toegepast moet wor-
den, that a correction applied must be). The other 70%
has the auxiliary preceding the participle (i.e. MODAL AUX

PPART, dat een correctie moet worden toepgepast). Finite
modal verbs selecting an infinitival complement in princi-
ple allow nesting word order as well, however here we find
that this occurs in only 2% of the cases (5 out of 269).

7. Conclusions
The XML encoding of linguistic databases can be ver-

bose and complex, especially if the encoding is partially
generated automatically and needs to support interaction
with editing tools. We have presented a compact format for
encoding dependency trees in XML which can be derived
from a much more complex encoding by means of a trans-
formation. The structure of the resulting XML document
directly corresponds with the structure of the dependency
tree. The new format supports a range of linguistic queries
to be formulated in XPath directly. It makes information
about word order explicit, which allows queries concerning
dependency, linear order, and discontinuous constituency to
be stated.

8. References
R. H. Baayen, R. Piepenbrock, and H. van Rijn. 1993. The

CELEX Lexical Database (CD-ROM). Linguistic Data
Consortium, UPenn, Philadelphia, PA.

Gosse Bouma, Gertjan van Noord, and Robert Malouf.
2001. Alpino: Wide-coverage computational analysis of
Dutch. In Computational Linguistics in The Netherlands
2000. Rodopi, Amsterdam.

Gosse Bouma. 2001. Extracting dependency frames from
existing lexical resources. In Proceedings of the NAACL
Workshop on WordNet and Other Lexical Resources:
Applications, Extensions and Customizations, Somerset,
NJ. Association for Computational Linguistics.

D. Cabeza, M. Hermenegildo, and S. Varma. 1996. The
pillow/ciao library for internet/www programming using
computational logic systems. In Proceedings of the 1st
Workshop on Logic Programming Tools for INTERNET
Applications, JICSLP”96, Bonn, September.

Jo Calder. 2000. Thistle and interarbora. In Proceedings
of the 18th International Conference on Computational
Linguistics (COLING), pages 992–996, Saarbrücken.

John Carroll, Ted Briscoe, and Antonio Sanfilippo. 1998.
Parser evaluation: A survey and a new proposal. In Pro-
ceedings of the LREC 1998, pages 447–454, Granada,
Spain.

David Carter. 1997. The TreeBanker: A tool for supervised
training of parsed corpora. In Proceedings of the ACL
Workshop on Computational Environments For Gram-
mar Development And Linguistic Engineering, Madrid.

Michael Collins. 1999. Head-driven Statistical Models for
Natural Language Processing. Ph.D. thesis, University
of Pennsylvania.

E. Hajicova, J. Panevova, and P. Sgall. 1998. Language re-
sources need annotations to make them really reusable:
The Prague Dependency Treebank. In Proceedings of
LREC 1998, pages 713–718, Granada, Spain.

N. Ide, P. Bonhomme, and L. Romary. 2000. XCES: An
XML-based standard for linguistic corpora. In Proceed-
ings of LREC 2000, pages 825–30, Athens, Greece.

Andreas Mengel and Wolfgang Lezius. 2000. An XML-
based encoding format for syntactically annotated cor-
pora. In Proceedings of LREC 2000, pages 121–126,
Athens, Greece.

Michael Moortgat, Ineke Schuurman, and Ton van der
Wouden. 2000. CGN syntactische annotatie. Inter-
nal Project Report Corpus Gesproken Nederlands, see
http://lands.let.kun.nl/cgn.

Nelleke Oostdijk. 2000. The Spoken Dutch Corpus:
Overview and first evaluation. In Proceedings of LREC
2000, pages 887–894.

Carl Pollard and Ivan Sag. 1994. Head-driven Phrase
Structure Grammar. Center for the Study of Language
and Information Stanford.

Robbert Prins and Gertjan van Noord. 2001. Unsupervised
pos-tagging improves parsing accuracy and parsing effi-
ciency. In IWPT 2001: International Workshop on Pars-
ing Technologies, Beijing China.

Wojciech Skut, Brigitte Krenn, and Hans Uszkoreit. 1997.
An annotation scheme for free word order languages. In
Proceedings of the Fifth Conference on Applied Natural
Language Processing, Washington, DC.

P. C. Uit den Boogaart. 1975. Woordfrequenties in
geschreven en gesproken Nederlands. Oosthoek, Schel-
tema & Holkema, Utrecht. Werkgroep Frequentie-
onderzoek van het Nederlands.

Gertjan van Noord and Gosse Bouma. 1997. Hdrug. a
flexible and extendable environment for natural language
processing. In Dominique Estival, Alberto Lavelli,
and Klaus Netter, editors, Computational Environments
for Grammar Development and Linguistic Engineering,
pages 91–98, Madrid.

Gertjan van Noord. 2001. Robust parsing of word graphs.
In Jean-Claude Junqua and Gertjan van Noord, editors,
Robustness in Language and Speech Technology. Kluwer
Academic Publishers, Dordrecht.


