Accurate Stemming of Dutch for Text Classification

Tanja Gaustad and Gosse Bouma

Alfa-Informatica
Rijksuniversiteit Groningen

Abstract

This paper investigates the use of stemming for classification of Dutch
(email) texts. We introduce a new stemmer, which combines dictionary
lookup (implemented efficiently as a finite state automaton) with a rule-based
backup strategy and show that it outperforms the Dutch Porter stemmer in
terms of accuracy, while not being substantially slower.

For text classification, the most important property of a stemmer is the
number of words it (correctly) reduces to the same stem. Here the dictionary-
based system also outperfoms Porter. However, evaluation of a Bayesian text
classification system with either no stemming or the Porter or dictionary-
based stemmer on an email classification and a newspaper topic classification
task does not lead to significant differences in accuracy. We conclude with
an analysis of why this is the case.

1 Introduction

Responding adequately to email messages can become a time-consuming and ex-
pensive task for large organizations, which often receive massive numbers of emails.
The research reported on below was carried out for a call centre, which receives
a few hundred emails a day for one of their clients, an internet provider. The
challenge is to answer email quickly (within 24 hours) and correctly. One method
to support efficient processing of email is the use of a text classification system,
which labels incoming email with one or more likely answer categories. The task
of the agent responding to the email is to check whether the correct category is
among the selected categories. If so, the corresponding answer text can be inserted
automatically. An accurate classification system can help improve the efficiency of
agents by almost a factor of two (Busemann, Schmeier and Arens 2000).
Statistical text classification systems compute the most likely class for a text
by computing how likely the words and n-grams in the text are for any given class.
Estimating these probabilities is difficult, as texts contain lots of different, often
infrequent, words. One way to deal with this problem is to take into consideration
only words which occurred at least n times in a given training corpus, as estima-
tion is more reliable for frequently occurring words. Stemming is another method
which can be used to reduce the number of word forms that need to be taken into

consideration. Stemming reduces all inflected forms of a word to the same stem.
The number of different stems in a text or training corpus will therefore in general
be expected to be much smaller than the number of different word forms, and the
frequency of stems will therefore be higher than that of the corresponding indi-
vidual inflected forms, which in turn suggests that probabilities can be estimated
more reliably.

Stemming is a well-known technique in Information Retrieval (IR) systems
where the main goal is to retrieve the documents that correspond to a given query.
Just as in classification tasks, stemming was conceived as a way of reducing mor-
phological variants to a single (indexing) term. Experiments to determine the
effectiveness of stemming have produced mixed results. One important factor is
the language of the documents involved. Harman (1991) compared the perfor-
mance of data stemmed with three suffix-stripping algorithms for English against
unstemmed data in IR queries and came to the conclusion that stemming does not
consistently improve performance. Krovetz (1993), on the other hand, concludes
that accurate stemming of English does improve performance of an IR system.
Popovi¢ and Willett (1992) investigated whether stemming would have more effect
for a morphologically complex language like Slovene. They found that precision
of the retrieved documents was increased when suffix-stripping was used. Dutch
is a language which is morphologically more complex than English, but not as
complex as the Slavic languages. Kraaij and Pohlman (1996) found that both a
stemmer using their adaptation of the Porter algorithm for Dutch (a well-known
suffix-stripping algortithm) and a dictionary-based stemmer led to a decrease in
IR-performance compared to using no stemming.

Recently, stemming has also been applied to text classification. Just as in IR,
experiments lead to mixed results. On the basis of her experiments for English text
classification, Riloff (1995) concludes that “stemming algorithms may be appropri-
ate for some terms but not for others” and that classification systems would benefit
from using all available information, including morphological variants. Busemann
et al. (2000), on the other hand, have shown that morphological analysis increases
performance for a series of classification algorithms applied to German email classi-
fication. Spitters (2000) compares, among others, the performance of two machine
learning algorithms for topic classification of Dutch newspaper articles, using both
unstemmed text and text stemmed with the Dutch Porter stemmer. He concludes
that stemming does not improve the performance of either algorithm.

In this paper, we further investigate whether stemming improves accuracy of
Dutch text classification by taking into consideration both the Dutch Porter stem-
mer (Kraaij and Pohlman 1994) as well as a more accurate dictionary-based stem-
mer, and by providing results for two radically different text genres, namely email
messages and newspaper text. We show that dictionary-based stemming leads to
a reduction in stemming error-rate of almost 90% and also leads to a significantly
higher reduction of the number of features that need to be considered in classi-
fication. Nevertheless, our conclusions are similar to those given in Kraaij and
Pohlman (1994) for IR and in Spitters (2000) for text categorization: neither sim-
ple suffix-stripping nor dictionary-based stemming leads to improved classification
accuracy for Dutch text. We provide some potential explanations for why this is

the case.

In section 2 we introduce the two stemmers used and evaluate them in terms of
accuracy and speed on a corpus of manually annotated text. In section 3, Bayesian
text classification is introduced and the email and newspaper topic classification
tasks for Dutch are described. Classification results on unstemmed and stemmed
text for a range of experiments are given. A qualitative evaluation of the results
concludes the paper.

2 Stemmers

A stemmer tries to reduce various forms of a word to a single stem. For Dutch,
for instance, a stemmer might reduce various forms of the verb schrijven (to write)
such as schrijf, schrijft, schrijven, schreef, schreven, and geschreven to the stem
schrijv. Stemming in general requires that inflected word forms are reduced to a
stem. A simple and robust method works by removing only certain inflectional
suffixes and undoing the effect of certain orthographical rules (i.e. the letter -f
in the coda of a Dutch word sometimes corresponds to a -v in the stem). More
accurate methods, able to deal with irregular morphology (like the fact that the
past tense singular form of the stem schrijv is schreef), require a dictionary.

Below, we first briefly describe the Dutch Porter stemmer of Kraaij and Pohlman
(1994). Next, we present a new stemmer for Dutch, with dictionary lookup and a
rule-based backup strategy. Finally, we present some experimental results which
confirm that the new stemmer is far more accurate than the Porter stemmer, while
not being substantially slower.

2.1 Dutch Porter Stemmer (DPS)

The Porter stemmer (Porter 1980) is a rule-based suffix stripper which is widely
used in IR systems. Porter’s algorithm implements a series of steps which each
remove a certain type of suffix by way of substitution rules. These rules only apply
when certain conditions hold, e.g. the resulting stem must have a certain minimal
length. Kraaij and Pohlman (1994) developed a Porter stemmer for Dutch! which
uses the implementation presented in (Frakes and Baeza-Yates 1992). It removes
plural -en and -s suffixes, the verbal -t suffix, dimunitive inflection (realized by
various suffixes ending in -je), a number of common derivational morphemes, and
undoes the effect of the spelling rule which requires consonant doubling in certain
contexts.

The advantages of this simple suffix stripper are that it is very robust and the
implementation is fairly easy. It is also clear that it will often produce the wrong
stem for a word. I.e. the derivational suffix -ing can be used to form nouns from
verbal stems (i.e. regering (government) from regeer (govern). However, simply
stripping the suffix -ing from all words matching words also produces for the verb
afdwing (force) the nonsense form afdw. Such mistakes need not be fatal: as long
as words are reduced to a unique stem form, no information is lost. Potentially

I Available at http://www-uilots.let.uu.nl/ uplift/.

harmful mistakes (known as overstemming) occur when a word is reduced to a
semantically unrelated stem. For instance, the noun gulden ends in -en, which
is a plural suffix, and therefore is reduced to gul, which is an adjective meaning
generous.

Another weak spot of the algorithm is that is has no way to handle irregular
forms. Dutch has a large number of so-called strong verbs, whose past and participle
forms have root vowels which differ from that in the present tense root (i.e. present
tense nemen (to take) has a past tense namen and a participle genomen). Such
forms will not be reduced to the same stem, a mistake known as understemming.
The most frequent verb forms tend to be strong, and thus they are an important
source of understemming. A riguorous evaluation of the Dutch Porter stemmer,
reporting overstemming, understemming, and IR performance, can be found in
(Kraaij and Pohlman 1995).

2.2 Stemmer with Dictionary Lookup (SteDL)

It is obvious that including dictionary information will have a positive effect on
the accuracy of a stemmer. The linguistically correct form will be provided more
often, which might be useful for some applications, and also the percentage of
overstemming and understemming errors are likely to go down. The latter should
have a positive effect in applications like IR or text classification.

In order to test whether a linguistically more accurate stemmer would perform
better than a suffix stripper, we used various existing resources to develop a new
stemmer with dictionary lookup.

Dictionary information is obtained from Celex (Baayen, Piepenbrock and van
Rijn 1993). Celex contains 381,292 wordforms and 124,136 stems for Dutch. Also, it
contains information about the frequency of word forms. This information is useful
for disambiguation: in those cases where a word form is listed with two different
stems, the most frequent stem can be chosen. In an initialisation step, information
about wordforms, their respective stem as well as frequency is extracted from the
database.

Dictionary lookup can be time consuming, especially for large dictionaries such
as Celex. The extracted lexical information is therefore stored as a finite state
automaton, using Daciuk’s (2000) finite state automata (FSA) morphology tools.2
Given a word form, the compiled automaton provides the corresponding stems in
time linear to the length of the input word. As a backup strategy for words which
are not found in the dictionary, we use the Dutch Porter stemmer (DPS) described
above.

The actual stemming procedure is shown in figure 1. The FSA encoding of the
information in Celex assigns every wordform all its possible stems. For ambiguous
forms, the most frequent stem is chosen. All words that were not found in Celex
are processed with DPS.

2 Available at http://www.pg.gda.pl/~jandac/fsa.html.

Dataset

|

FSA Dictionary Lookup

if not in CELEX

stems
CELEX DPS (Backup Strategy)
:. fregs
""""""""""" Disambiguation
'

Stemmed Data

Figure 1: Diagram of the new stemmer with dictionary lookup (SteDL)

2.3 Ewvaluation

In order to be able to assess the contribution of stemming in text classification, it is
crucial to compare the performance of the DPS and the new SteDL independently of
a specific application first. For this purpose, we manually prepared a corpus with a
stemmed gold standard. The corpus consisted of texts from Dutch children’s books
and contained ca. 45,000 words.?

Stemming accuracy on the test corpus was 98.23% for SteDL and 79.23% for
DPS. One has to bear in mind, however, that DPS also strips derivational suffixes
whereas in the gold standard these were retained. We estimate that approximately
4-5% of the difference in accuracy is due to the removal of derivational suffixes.
Even when taking these differences into account, the dictionary-based stemmer
still clearly outperforms the rule-based stemmer in terms of accuracy.

The contributions of various components of SteDL can also be evaluated. DPS
was used as a backup strategy in only 2.98% (1,339 out of 44,905) of the cases, which
means that the lexical coverage of Celex for the evaluation corpus is fairly good. We
also compared a SteDL with a version of the system where a random stem instead
of the most frequent form was chosen. This led to a stemming accuracy of 96.27%.
Thus, including frequency information reduces the error rate with approximately
50%.

Finally, SteDL is not substantially slower than DPS. After having built the
dictionary-FSA (which only needs to be done once during initialisation), the stem-
ming process on the 45,000 word evaluation corpus takes 14 seconds with SteDL,
whereas it takes 5 seconds with DPS. The dictionary lookup FSA itself is very fast
(0.5 seconds), but the scripts making up the complete system have not been opti-

3This corpus is half of the training data from the Dutch SENSEVAL 2 word sense disambiguation
task, available at http://www.sle.sharp.co.uk/senseval2/.

mised for speed, which explains the difference in time. An obvious improvement
would be to integrate dictionary lookup and disambiguation into one FSA. Table 1
summarises the comparison regarding accuracy and speed.

| Stemmer | Accuracy |
DPS 79.23%
SteDL (no frequency info) 96.27%
SteDL 98.23%

Table 1: Accuracy on 45,000 word evaluation corpus

It is not surprising that a stemmer with dictionary lookup outperforms a rule-
based suffix stripper in terms of accuracy. For text categorization, however, accu-
racy and the ability to reduce related word forms to a single stem, is of importance.
This aspect of the performance of the two stemmers is adressed in the application
specific evaluation of stemming in the next section.

3 Stemming for Text Classification

In this section, we introduce a Bayesian text classifier, which uses unigram and
bigram statistics for classification. Accuracy is improved by taking into account
only those unigrams or bigrams which occur at least n times and/or considering
only the m most informative words according to information gain. The classifier is
tested on an email message classification task and on a newspaper topic classifica-
tion task. Especially, the effect of stemming text by the DPS or SteDL respectively
is investigated. While the number of different unigrams or bigrams is reduced by
both algorithms, no consistent effect on classification accuracy could be found.

3.1 Bayesian Text Classification

In the experiments reported below, we chose for a Naive Bayes classification algo-
rithm. Naive Bayes is a simple yet effective statistical classification method which
is widely used for text and email classification (e.g. Androutsopoulos et al. 2000).

Naive Bayes estimates the probability that a given document containing features
f1--fn (where features are usually unigrams or bigrams) belongs to class ¢ € C by
means of the following formula:

n

P)- T] P(filo)

P(c|fiofn) = =L
> Pk) - [P(£:lk)
keC i=1

The formula is naive in that it assumes that features (words) are independent, an
assumption which is almost certainly false in practice. The advantage of using this

assumption, however, is that estimating P(f;) and P(f;|c), where features range
over unigrams or bigrams, is relatively straightforward, given a reasonable sized
training corpus consisting of classified documents. The probability P(c) is also es-
timated on the basis of the training corpus. Classification of a document containing
features fi..f, now amounts to assigning it the most likely class ¢ according to the
formula above.

For the experiments reported below we used the RAINBOW front-end to the
software-package Bow.* It provides a collection of routines for building statistical
classification models (naive Bayes, maximum entropy, k-nearest neighbours, etc.).
Furthermore, it offers a wide range of additional techniques which have proved
to be useful in automatic text classification: preprocessing (various tokenization
options, filtering of stopwords or html-codes, etc.), and various smoothing and
feature selection techniques.

Feature selection turned out to be especially important, particularly when using
bigrams. The number of different bigram features for a given document collection
can be extremely large, with many of them occurring only once. Estimating the
probability of features which occur so sparsely is impossible. To circumvent this
problem, the features included in the model can be restricted by a frequency cut-off
(i.e. include only those features which occur at least n times). Another method
includes only those features which are good at discriminating between classes. A
metric for finding such features is information gain. In the experiments below, this
metric is also used to select the m most discriminating features. All results were
computed on 90% training and 10% testing material using tenfold cross validation.

3.2 Email Message Classification

In the experiments described in this section, we used a helpdesk email data set.
This data set contains questions asked by users of a free internet provider. 6,000
emails have been classified in no less than 193 classes with standard answers by
the (human) agents responsible for replying to email.> The average length of the
emails is 79 words.

One of the major problems with the given hierarchy is that it contains too
many classes for accurate classification. A few classes cover a large portion of the
data, while most classes contain very few emails. Another problem is the fact that
there can be considerable overlap in subject between classes (there are almost 100
standard answers related to functionality and technical issues, and as many as 27
answers related to email alone).

To circumvent using empty or near-empty classes, we decided to select only
classes which contain at least 12 emails. This way, we retain 69 categories. This
covers 92.5% of all classified emails. See table 2 for an overview. We also inves-
tigated what the effect on accuracy would be if we restricted the data to those
classes containing at least 25, 50, or 100 emails (see table 3).

4Available at http://www.cs.cmu.edu/ "mccallum/bow.

5Actually, the dataset consisted of 41,000 emails, but only 15% of these were assigned a
standard answer. Also, the list of standard answers contains 293 items, but only 193 of those
were actually used.

Total classified emails 5,965
Total categories 293
Non-empty categories 193
Categories >12 emails 69
Total emails in 69 categories | 5,519

Table 2: Characteristics of the helpdesk email dataset

Emails Classes | Number of emails
per class

All 193 | 5,965 100.0%
>12 69 | 5,518 92.5%
>25 47 | 5,140 86.2%
>50 28 | 4,502 75.5%
>100 17 | 3,694 61.9%

Table 3: Overview of emails per class

Given the limited amount of training material and the large number of classes,
accuracy of the most likely class assigned by the system was expected to be too
low for use in practical applications. However, in a call center environment where
a human agent eventually chooses the best answer to a particular email, providing
a small list of potential answers can be useful. Therefore, we also include results on
n-best classification. In this case, we compute how often the correct class is among
the n most likely classes assigned by the system.

3.2.1 Results for Email Classification

We investigated how stemming affects accuracy on the email classification task
for a range of experiments using the parameters described above. Before looking
at the results, it is useful to compare the two stemmers described in section 2 in
terms of feature reduction. In order for stemming to be effective for classifica-
tion, the number of different words or bigrams in the training data should reduce
substantially.

As can be seen in table 4, the feature set does become smaller, especially for
bigrams. The stemmer with dictionary lookup (SteDL) performs better than the
Porter stemmer (DPS). Email messages tend to contain a high percentage of ad
hoc constructions, foreign (especially English) words (account), spelling mistakes,
and vocabulary items that are not contained in CELEX, such as e.g. product/brand
names (freebees) or compounds specific to the internet related domain (inbelnum-
mer). This is reflected by the fact that in the SteDL stemmer 77% of the dataset
(containing 560,000 words) was covered by CELEX and 23% was treated by DPS.

Table 5 presents n-best accuracy results for classification on subsets of the data
containing at least 12, 25, 50, or 100 emails per class. The baseline is the accu-

| | unigrams | bigrams |
Unstemmed | 24,568 100.00% | 169,870 100.00%
DPS 23,709 96.50% | 163,104 96.02%
SteDL 23,347 95.03% | 156,407 92.07%

Table 4: Number of different unigrams and bigrams for unstemmed and stemmed
versions of the email corpus

racy for a method which always selects the n most likely classes. The parameters
for feature selection (using information gain and frequency) were experimentally
determined to give the best results.

Stemming does not consistently improve classification accuracy. Also, even
though SteDL reduces the feature set more than DPS, SteDL does not consistently
outperform DPS in terms of classification accuracy. The differences found are not
statistically signifcant.

Emails | Number of | n | Unstemmed DPS SteDL | Baseline
classes av. (stderr) | av. (stderr) | av. (stderr)

>12 69 | 1] 41.87 (0.43) | 41.43 (0.36) | 40.53 (0.47) 15.93
3 | 68.97 (0.45) | 67.88 (0.46) | 68.06 (0.63) 26.87

5 78.35 (0.26) 78.24 (0.37) | 78.60 (0.34) 35.04

>25 47 | 1 | 45.43 (0.45) | 45.53 (0.57) | 45.54 (0.52) 17.10
3 | 72.22 (0.44) | 72.16 (0.62) | 72.22 (0.57) 28.85

5 | 82.24 (0.56) 81.07 (0.42) 81.67 (0.50) 37.62

>50 28 | 1 | 50.47 (0.69) | 51.09 (0.49) | 50.80 (0.66) 19.52
3 | 78.60 (0.51) | 78.62 (0.79) | 78.04 (0.64) 32.04

5 | 87.96 (0.51) | 87.96 (0.40) | 87.58 (0.60) 42.96

>100 17 | 1 | 57.94 (0.55) 57.53 (0.61) 57.07 (0.53) 23.80
3 | 87.26 (0.43) | 86.45 (0.71) | 86.75 (0.52) 40.15

5 | 94.28 (0.45) | 93.96 (0.22) | 93.82 (0.39) 52.35

Table 5: Accuracy of n-best email classification (in %), using the 2,500 most in-
formative unigrams and bigrams according to information gain and a frequency
cut-off of 15.

3.3 Newspaper Topic Categorization

In order to test whether the poor perfomance of stemming was related to spe-
cific properties of the email corpus (which is extremely informal, contains frequent
spelling errors, and a high percentage of technical or English jargon), classifica-
tion experiments were repeated for a Dutch newspaper corpus (de Volkskrant on
CD-ROM, 1997). Newspaper proze is in general grammatical and contains fewer
jargon words or foreign words, and thus, one might expect stemming to have more
effect in this case. The corpus consisted of 2,649 articles, selected from 5 differ-

10

ent categories (economy, sports, arts, national news, international news), with an
average length of 356 words.

The performance of the two stemmers in terms of feature reduction is given in
table 6. As was the case for the Email dataset, SteDL achieves a higher reduction
of the feature space than DPS. Furthermore, the reduction is substantially larger
than for the Email dataset (18% versus 5% for unigrams, and 11% versus 8% for
bigrams).

| | unigrams | bigrams |
Unstemmed | 61,721 100.00% | 538,439 100.00%
DPS 52,313 84.76% | 504,350 93.67%
SteDL 50,850 82.39% | 478,928 88.95%

Table 6: Number of different unigrams and bigrams for stemmed and unstemmed
versions of the Volkskrant corpus

3.3.1 Results for Topic Classification

Classification results on the newspaper corpus are given in table 7. The best results
were obtained using the 25,000 most informative bigrams. As feature reduction was
relatively higher for unigrams, we also evaluated the performance for unigrams.
Here, feature pruning in general had a negative effect. Even though stemming
reduces the feature space even more than for the Email dataset, there is still no
clear effect on accuracy. Also, differences between the Porter and dictionary-based
stemmer remain small. This result confirms the findings in Spitters (2000).

Settings Unstemmed DPS SteDL | Baseline
av. (stderr) | av. (stderr) | av. (stderr)

uni/bigrams | 88.93 (0.20) | 89.35 (0.19) | 89.50 (0.20) | 28.10

unigrams 85.93 (0.21) | 86.20 (0.19) | 86.18 (0.20) | 28.10

Table 7: Classification accuracy for the Volkskrant dataset (in %) using the 25,000
most informative unigrams and bigrams according to information gain and a fre-
quency cut-off of 2 and using only unigrams without feature selection.

4 Qualitative Evaluation

The results presented in the previous section prove that stemming does significantly
reduce the number of different word forms in a text, but that this does not have a
significant or consistent effect on classification accuracy.

A potential explanation could be that although the overall number of different
features is reduced, the n best features according to information gain do not change

11

substantially. We therefore looked at the top 100 bi- and unigrams with respect to
their information gain value to find evidence of how many words are stemmed and
in how far stemming actually leads to the conflation of different wordforms into a
single stem. We expected stems originating from conflated wordforms to raise in
rank.

Only 3 out of the top 100 uni- and bigrams of the unstemmed emails and only 4
out of the top 100 uni- and bigrams of the unstemmed newspaper texts are actually
conflated into one stem (see tables 8 and ?77).

Of course, some of the most informative words may have been conflated with
words outside the top 100. However, we found that in general there is quite a high
correlation between the rank of a word in the list of unstemmed uni- and bigrams,
and the rank of the corresponding stem in the stemmed uni- and bigrams, and thus
the effect of such conflations seems to be small.

It seems, therefore, that stemming does not reduce enough (informative) word
forms to a single stem to have a significant effect on the ranking of features in
terms of information gain. The effect of stemming on classification accuracy will
therefore also be small.

Unstemmed DPS SteDL
form rank | form rank | form rank
gespaarde 8 | spaar 3 | spaar 3
gespaard 44
sparen 83
uur 11 | uur 7 | uur 7
uren 40
probleem 39 | probleem 32 | probleem 13
problemen 41 | problem 41

Table 8: Conflated words from 100 most informative uni/bi-grams

Unstemmed DPS SteDL
form rank | form rank | form rank
bedrijf 15 | bedrijf 8 | bedrijf 8
bedrijven 63
leider 37 | leider 17 | leider 17
leiders 65
speler 45 | speler 13 | speler 13
spelers 46
wedstrijd 3 | wedstrijd 1 | wedstrijd 1
wedstrijden 13

Table 9: Conflated words from
paper corpus

100 most informative uni/bi-grams for the News-

12

5 Conclusion and Future Work

In this paper, we have first presented a new stemmer with dictionary lookup for
Dutch which clearly outperforms the Dutch Porter stemmer in terms of accuracy
and ability to reduce related word forms to a single stem. Next, we applied both
stemmers to two widely different text classification tasks and found that stemming
does not consistently improve classification accuracy.

A potential explanation is that even though stemming helps to reduce the num-
ber of features, the features which actually pass the feature-selection criteria are
not affected substantially. One might conclude from this observation that stem-
ming by itself is not effective enough to have an effect on classification accuracy.
It is possible, however, that a combination of stemming with other means of text
analysis and normalization could be effective. In particular one might investigate
the effect of shallow text processing (i.e. replacing dates, names, phone number,
IP-addresses, etc. by a single word) and compound analysis in combination with
stemming. In (Busemann et al. 2000) such an approach is effectively appliedto Ger-
man and one might therefore expect that a similar, more involved preprocessing,
approach might also work for Dutch.

6 Acknowledgments

This research was carried out within the framework of the PIONIER Project Al-
gorithms for Linguistic Processing and the KOP (Kennisontwikkeling in Partner-
schap) project on Email Classification, both at the University of Groningen. The
PIONIER Project is funded by NWO and the University of Groningen. The Kop
project is funded by BSC Customer Care, Groningen, and the University of Gronin-
gen.

References

Androutsopoulos, I., Paliouras, G., Karakletsis, V., Sakkis, G., Spyropoulos, C. and
Stamatopoulos, P.(2000), Learning to filter spam e-mail: A comparison of a
naive bayesian and memory-based approach, Proceedings of the Workshop on
Machine Learning and Textual Information Access, PFDD 2000, Lyon, pp. 1—-
3.

Baayen, R. H., Piepenbrock, R. and van Rijn, H.(1993), The CELEX lexical
database (CD-ROM). Linguistic Data Consortium, University of Pennsyl-
vania, Philadelphia, PA.

Busemann, S., Schmeier, S. and Arens, R. G.(2000), Message classification in the
call center, Proceedings of the 6th Conference on Applied Natural Language
Processing, Seattle, WA.

Daciuk, J.(2000), Finite state tools for natural language processing, Proceedings of
the COLING 2000 Workshop “Using Toolsets and Architectures to Build NLP
Systems”, Centre Universitaire, Luxembourg, pp. 34-37.

13

Frakes, W. B. and Baeza-Yates, R. (eds)(1992), Information Retrieval: Data Struc-
tures € Algorithms, Prentice Hall.

Harman, D.(1991), How effective is suffixing, Journal of the American Society for
Information Science 42(1), 7-15.

Kraaij, W. and Pohlman, R.(1994), Porter’s stemming algorithm for dutch, in
L. Noordman and W. de Vroomen (eds), Informatiewetenschap 1994: Weten-
schapelijke bijdragen aan de derde STINFON Conferentie, Tilburg, pp. 167—
180.

Kraaij, W. and Pohlman, R.(1995), Evaluation of a dutch stemming algorithm, The
New Review of Document and Text Management, Taylor Graham, London,
chapter 1, pp. 23-45.

Kraaij, W. and Pohlman, R.(1996), Using linguistic knowledge in information
retrieval, OTS Working Paper OTS-WP-CL-96-001, OTS, University of
Utrecht.

Krovetz, R.(1993), Viewing morphology as an inference process, in R. Horfhage,
E. M. Rasmussen and P. Willett (eds), Proceedings of the 16th Annual Interna-
tional ACM-SIGIR Conference on Research and Development in Information
Retrieval, Pittsburgh, PA, pp. 191-203.

Popovic¢, M. and Willett, P.(1992), The effectiveness of stemming for natural lan-
guage access to slovene textual data, Journal of the American Society for
Information Science 43(5), 384-390.

Porter, M.(1980), An algorithm for suffix stripping, Program 14(3), 130-137.

Riloff, E.(1995), Little words can make a big difference for text classification, in
E. A. Fox, P. Ingwersen and R. Fidel (eds), Proceedings of the 18th Annual
International ACM-SIGIR Conference on Research and Development in In-
formation Retrieval, Seattle WA, pp. 130-136.

Spitters, M.(2000), Comparing feature sets for learning text categorization, Pro-
ceedings of the 6th Conference on Content-Based Multimedia Information Ac-
cess (RIAO 2002), Paris, pp. 1124-1135.

