Applying the Espresso-algorithm to large parsed
corpora

Gosse Bouma and John Nerbonne
Information Science
University of Groningen

March 18, 2010

1 Introduction

Information extraction systems learn patterns for extracting pairs instan-
tiating a given relation from text. For instance, for the relation capital
of a system might learn extraction patterns such as ‘ARG1 is capital of
ARG2’, or *The embassador of ARG2 was called back to ARG1’. Lightly su-
pervised information extraction systems learn extraction patterns by means
of a bootstrapping procedure, where a set of seed pairs is used to find pat-
terns associated with the seeds, and where the patterns thus found are used
in turn to find potential instantiations of the relation. The process then
iterates with the (best) new instantiations to find more patterns, until some
stopping criterion is met.

Bootstrapping procedures like this require large text collections for learn-
ing patterns, so it is therefore not surprising that most work in this area has
used unannotated corpora and has been aimed at learning extraction pat-
terns based on surface strings. In learning patterns based on surface strings,
one encounters a certain amount of morphological and word order variation
(i.e. present and past tense verbs, singular and plural forms of nouns, pres-
ence of adjectival and adverbial modifiers) which may hinder identification
of the most general extraction patterns. Using parsed data can help here, as
it allows the use of syntactic patterns instead of surface patterns. Depedency
paths linking the two elements of a relation abstract over morphological and
word order variation, and thus can be used to identify relevant patterns
more reliably.

In this paper, we apply a well-known information extraction algorithm,
Espresso (Pantel and Pennacchiotti, 2006) to large, syntactically parsed,

Dutch corpora (110M — 700M words). Although the experiments in Pantel
and Pennacchiotti (2006) are based on learning surface patterns, there is
nothing in the algorithm which requires this, and thus using dependency
paths instead of surface strings is relatively straightforward, except of course
for the amount of additional CPU required for parsing large text collections.

We show that applying the Espresso-algorithm to a parsed version of
Dutch Wikipedia (110M words) allows us to obtain state of the art results
for learning the part-whole relation. Next, we discuss a number of exper-
iments in learning relations between named entities (politician - political
party, soccer player - club, company owner - company, institute - location)
based on a large corpus of newspaper text and Wikipedia (700 M words).
Accuracies vary from 97% for the politicians - political party relation to only
30% for the soccer player - club relation. In the latter case, accuracy can
be improved significantly by requiring that the arguments of extracted in-
stance pairs must be distributionally similar to seeds or previously extracted
instance pairs.

2 Corpora and Parser

Alpino (van Noord, 2006) is a wide-coverage, robust, parser for Dutch. Its
grammar is designed following ideas of Head-driven Phrase Structure Gram-
mar (Pollard and Sag, 1994), it uses a maximum-entropy model for statistical
disambiguation, and coverage has been increased over the years by means of
semi-automatic extension of the lexicon based on error-mining (van Noord,
2004). Efficiency is improved by using a part-of-speech tagger to filter out
unlikely POS tags before parsing (Prins and van Noord, 2001), and by means
of a technique which filters unlikely derivations based on statistics collected
from automatically parsed corpora (van Noord, 2009).

Alpino has been used as a crucial component in Joost, a question-answering
system for Dutch (Bouma et al., 2005). Joost has been used in the CLEF
evaluation campaigns, where it achieved the best results for Dutch, and it
has also been used to develop a QA system for Dutch Wikipedia, and as
part of an interactive, multimodal, medical QA system (Tjong Kim Sang,
Bouma, and de Rijke, 2005; Fahmi, 2009). Whereas most QA systems only
use parsing to analyze the question and sometimes to analyze text snip-
pets returned by the IR component, we used Alpino to parse the complete
text collections used for all of these systems (80M, 110M, and 2M words,
respectively). The benefits are that syntactic information can be used to
optimize the IR process, and that off-line answer extraction can be based on

dependency patterns. Jijkoun, Mur, and de Rijke (2004) show, for instance,
that both the recall and the precision of patterns for extracting answers
off-line improve if patterns are dependency paths, instead of surface strings.
Fahmi (2009) argues that syntactic information is crucial for identifying the
complex noun phrases that are the arguments of medical relations (cause,
symptom, treatment).

Although wide-coverage, robust, statistical parsers exist for a number
of languages, it is often simply taken for granted that these are not fast
or robust enough for processing the large volumes of text that are required
in IE applications. Pantel, Ravichandran, and Hovy (2004) observe that
full parsing of 15 GB corpus’ would require 54 days of processing by a
dependency parser, and 5.8 years of processing for an (unidentified) syntactic
parser. Given the availability of a large cluster of CPU’s (for instance by
means of a grid or a cloud computing service), this objection is beginning
to lose its force. The corpora used in the experiments below have all been
parsed by the Alpino parser. The high-performance cluster of the University
of Groningen? was used to run large numbers of jobs in parallel, thus making
the task practically feasible.

3 The Espresso Algorithm

We adopted Espresso (Pantel and Pennacchiotti, 2006), a lightly supervised
algorithm that is initialized using a small set of seed pairs as IE algorithm.
Pantel and Pennacchiotti (2006) show that their method achieves state-of-
the-art performance when initialized with relatively small seed sets over
the Acquaint corpus (~ 6M words). Recall is improved with web search
queries as additional source of information. We adopt the Espresso method
for computing pattern and instance reliability. Instead of working with
unannotated data, we apply this method to parsed corpora.

In Espresso, the reliability of a pattern p, rr(p), given a set of instance
pairs I, is computed as the average strength of association with each instance
pair 7, weighted by instance reliability, r,(7):

e (B X))

(1) Tn(p) = 7

LCorpus size is usually reported in number of words or sentences. We were not able to
determine the number of words in this corpus.

*http://www.rug.nl/cit/hpcv/faciliteiten/HPCCluster It takes approximately 1
week to parse 100M words of text on this 400-node cluster. Processing times fluctuate
strongly, depending on the number of scheduled jobs.

In this equation, pmi(i, p) is the pointwise mutual information score (Church
and Hanks, 1990) between a pattern, p (e.g. part-of), and an instance pair
i (e.g. engine-car), and MmaZpm,; is the maximum PMI score between all
patterns and instances. The reliability of the seed pairs used to initialize
the process is set to 1.

The top-k most reliable patterns are selected to find new instances. The
reliability of an instance pair 4, r,(7) is:

e (R X ()
(2) (i) == (i)

The recursive discovery of patterns from instance pairs and vice-versa is
repeated until a threshold number of patterns and/or instance pairs been
extracted.

3.1 Pattern Creation

Whereas Pantel and Pennacchiotti (2006) use surface strings as patterns, we
used the (shortest) dependency path between (the root form of) two nominal
words (i.e. nouns or proper names) as patterns. Given a dependency tree,
we extract the information that two entities are connected by means of
a dependency pattern. A dependency pattern in our implementation is
the shortest path through the tree connecting two nodes, where the nodes
themselves are replaced by placeholders ARG1 and ARG2.

For example, for the sentences in (3), Alpino produces the dependency
trees given in Figures 1 and 2.

(3) a. Begin volgend jaar treedt ook het Spaanse Telefénica tot Unisource
toe (Early next year, the Spanish Telefonica will also join Unisource)
b. Alle delen van de planten bevatten alkaloiden en zijn daarmee
giftig (All parts of the plants contain alkaloids and therefore are
POISONOUS)

The dependency patterns connecting Telefonica and Unisource and al-
kaloide and plant, respectively, are:

(4) a. ARGl+su « treed_toe — pc+tot+objl+ARG2
b. ARG1l+objl « bevat — su+deel+mod+van+objl+ARG2

One advantage of using dependency paths over patterns based on the surface
string, is that dependency paths are able to deal with word order variation.
Note that this is especially relevant for languages like Dutch or German,

smain

mod hd mod su pc svp
advp | |treedtoes 00k, np pp toero
/\ /\
hd mod det mod hd hd obj1
begin np heg Spaang Telefonica totg Unisource
/\
mod hd
volg; jaars
Figure 1: Dependency tree for (3-a)
conj
cnj crd cnj
smain| |ern smain

- T

su -

1 hd obj1 su hd mod predc

np bevag alkaloidery 1 berg daarmeeg giftigio

det | hd | [mod
alleg deel pp
/\
hd obj1
vanp np
/\
det hd
des planty

Figure 2: Dependency tree for (3-b)

where there is considerable word order freedom, as illustrated by the (some-
what abbreviated) grammatical variants of (3-a) in (5).

(5) Ook Telefénica treedt begin volgend jaar tot Unisource toe
Ook Telefénica treedt begin volgend jaar toe tot Unisource
Telefénica treedt begin volgend jaar ook toe tot Unisource

d. Begin volgend jaar treedt Telefénica toe tot Unisource

oo w

For surface-based approaches, each word order variant may lead to a separate
pattern, whereas our method extracts the same dependency path in each
case. Another advantage is that dependency paths often capture more of the
relevant context than surface patterns. Note, for instance, that the verb stem
in (3-a) (treedt) precedes the subject, while a verbal particle (toe) follows the
object. Surface based pattern extraction methods tend to concentrate on
the string between the two arguments in a relation, and not always capture
enough of the preceding or following context to obtain an accurate pattern.
Finally, note that the preceding context contains an adverb, ook, and the
name Telefonica is prefixed with a determiner and a modifier (het Spaanse),
which most likely are not relevant for formulating an accurate pattern, and
thus would have to be ignored somehow.

Although dependency paths are more abstract than surface patterns,
some spurious variation remains. One important source of variation in de-
pendency patterns is coordination:

(6) Unisource sloot eerder allianties met Telefénica en SITA
ARG1 +su <« sluit — objl+alliantie+pc+met+objl+en+cnj+ARG2
Unisource sloot eerder een alliantie met Telefénica

ARG +su «— sluit — objl+alliantie+pc+met+objl+ARG2

/e o o

Note that (6-a) and (6-¢) give rise to two different dependency patterns link-
ing Unisource and Telefonica. In many scenarios, it is safe to ignore the fact
that in (6-a) Telefdnica is part of a coordination inside a prepositional phrase
which is a dependent of the verb. Therefore, we normalize such dependency
paths by removing coordinations embedded in a longer dependency path.
After normalization, the dependency pattern for sentence (6-a) is identical
to that of (6-c). Note that this normalization does not apply to entities that
are directly connected by means of a coordination, such as Telefénica en
SITA in (6-a). In those cases, we preserve the pattern ARGl+cnj «— en —
cnj+ARG2. We observed that applying this normalization step reduces the
number of unique dependency patterns by over 20%.

Stevenson and Greenwood (2009) compare various methods for using

Wikipedia Wiki4+News

all uniq all uniq
words (approx) 110 700
pairs 67.7 35.6 299.5 116.5
patterns 67.7 10.8 299.5 47.6
pair-patterns 67.7 51.3 299.5 225.2
pairs (f > 2) 387 6.6 211.4 283
patterns (f > 2) 59.7 2.9 2649 129

pair-patterns (f >2) 20.0 3.6 96.6 22.2

Table 1: Pairs and patterns extracted, in millions. The last three lines give
statistics for the data remaining after applying a minimum frequency cut-off
of 2.

dependency tree information in pattern creation for 1E. Methods extract-
ing only subject-verb-object tuples have limited coverage, whereas methods
extracting the minimal subtree containing both arguments suffer from lack
of generality. Their linked chain method corresponds to our shortest path
pattern extraction method, and performs well in an evaluation using the
Wall Street Journal and biomedical data.

It should be noted that the FEspresso algorithm requires that mutual
information scores be known for instance pairs and for dependency patterns
connecting these pairs. Thus, for any two entities (i.e. a noun or proper
name) occurring in a given sentence in the corpus, we need to determine
the shortest path connecting the two. For a sentence containing N entity
denoting words, N (N —1) patterns are extracted. Statistics on the number
of instance pairs, dependency patterns, and the combination of these two
are given in Table 1. Wikipedia refers to a parsed version of a dump of
Dutch Wikipedia (from June 2008). Wiki+News is a combination of the
Wikipedia corpus with a large, 600M-word, newspaper corpus (Ordelman et
al., 2007).

As mutual information scores for low frequency events tend to be inac-
curate, we only considered instance pairs, dependency patterns, and combi-
nations of these, with a minimum frequency of 2. Pantel and Pennacchiotti
(2006) use a discounting factor to correct for the overestimation of infre-
quent events by PMI. Using a discounting factor did not improve accuracy
over using a frequency cut-off in our experiments.

The amount of data we have at our disposal exceeds the amount of data
used by other researchers who have explored parsed data for related tasks,

such as paraphrase learning or acquisition of taxonomic information. Lin and
Pantel (2001), for instance, use 1 Gb of text parsed with Minipar (Lin, 2003),
from which they extract 7TM dependency paths and 200K unique paths,
for learning paraphrases. Snow, Jurafsky, and Ng (2005) use a newswire
corpus of 7M sentences, from which they extract 700K unique noun pairs,
for learning hypernyms. McCarthy et al. (2007) use 90M words from the
written portion of the British National Corpus, parsed with RASP (Briscoe
and Carroll, 2002) to construct a thesaurus for learning predominant word
senses. Padé and Lapata (2007), finally, use all of the 100M words from the
BNC parsed with Minipar for a range of lexical semantic acquisition tasks.

4 Learning Part-Whole Pairs

In our first experiment, we used the FEspresso algorithm to extract pairs
instantiating the part-whole relation from the parsed version of Dutch Wiki-
pedia. Automatic extraction of part-whole pairs for English is well-studied
(Berland and Charniak, 1999; Girju, Badulescu, and Moldovan, 2006), and is
also used by Pantel and Pennacchiotti (2006) for evaluating their algorithm.
The part-whole relation is actually quite heterogeneous (Keet, 2006), and
covers at least the following subcases: contained-in, located-in, member-of,
structural part-of and subquantity-of. We were particularly interested in
the question how the presence of instance pairs representing the different
subrelations influences the accuracy of results, and more in general, in the
question how the choice of seeds influences results.

The ‘general’ seed list for learning the part-whole relation contains in-
stance pairs representing each of the subtypes. Examples of the seeds we
used are given in table 2. In addition, we constructed seed lists where all
instance pairs were chosen from one subtype of the part-whole relation only.
All seed lists contained 20 instance pairs.

The results of learning the part-whole relation on the Wikipedia corpus
are given in Table 3. FEspresso parameters were set as in Pantel and Pen-
nacchiotti (2006), i.e. initially, the 10 most reliable patterns are selected,
and one pattern is added per iteration. The instance threshold (i.e. the
number of instances preserved for the next round) is incremented by 100
in each round. We evaluated after each iteration, until the 5th round (i.e.
approximately 500 instances).

Some examples (translated to English) of instance pairs found by the
general seeds are : island - lake, protein - membrane, recommendation -
report, actor - movie, picture - cover, descendant - family, altar - chapel,

Part

Whole

‘Freq‘ Type

beeld (statue)
abdij (abbey)
club (club)

geheugen (memory) computer (computer)

alcohol (alcohol)

kerk (church)

gemeente (community)

voetbal_bond (soccer union)

bier (beer)

120| contain

36| located

178| member

14| structural
28| subquant

Table 2: Sample seeds used for learning the part-whole relation, and their

frequency in the corpus

gen memb subq cont struc locat
110705 0.627 0.571 0.645 0.598 0.723
210.758 0.623 0.608 0.624 0.608 0.752
310.739 0.650 0.632 0.635 0.633 0.739
410723 0.662 0.621 0.623 0.624 0.722
510.710 0.680 0.601 0.602 0.600 0.704

Table 3: Accuracy (per iteration) for learning the part-whole relation using
a seed list composed of all types (general), and seed lists representing each

of the subtypes.

bacteria - digestive system, base player - band and batallion - brigade.

The results in table 3 suggest that the highest accuracy is achieved when
the seed list is mixed, but also that the member-of and located-in seeds give
rise to almost equally high accuracy figures. Note that for evaluating the
results obtained by using a specialized seed list, all part-whole instances
where counted as correct, not only instances corresponding to the relation
represented by the seed list. In fact, all seed lists lead to results in which all
subtypes are represented, although sometimes there is a strong bias towards
specific subtypes.

Closer inspection of these results showed that after 5 iterations, the
runs initialized with seeds representing the sub-quantity-of, contained-in,
and structural part-of relation, respectively, were highly similar. That is,
490 pairs were present in all three runs, and were ranked in almost the same
order (leading to a Spearman rank correlation in the range of p = 0.89—0.93
between the respective outputs). These three seed lists also led to discovery
of a substantial number of common and prototypical part-whole dependency
patterns such as W bevat P (W contains P), W omwvat P (W comprises P)
and P is onderdeel van W (P is part of W). The most distinct results were
obtained by the located-in and member-of seeds, with hardly any overlap
in instances with the other results. The patterns learned by bootstrapping
from the located-in and member-of seeds are more or less characteristic for
these relations only. Examples of such patterns for the located-in relation
include : P bevindt zich in W (P is located in W), P ligt in W (P lies in
W), P staat in W (P stands in W), P bouwt op W (P builds on W) and for
the member-of relation: P is lid van W (P is member of W), P richt W op
(P founds W), P verlaat W (P leaves W).

It has been observed that the results of experiments involving bootstrap-
ping from seeds depend heavily on the choice of seeds (McIntosh and Curran,
2009). We therefore also compared the output of runs initialized with dif-
ferent general seed lists with the results for specific subtypes. To this end,
we created 5 sets of general seed lists for Dutch, each time picking 4 seeds
from each of the subtypes. In two cases, the resulting output correlated very
strongly with that of the run for located-in (Spearman rank correlation of
p = 0.93), in the three other cases the output correlated with the output of
the three runs for contained-in, subquantity-of, and structural part-of (rank
correlations of p = 0.89 — 0.93).

We conclude from these findings that member-of and located-in are (lin-
guistically) clearly different from the other part-whole relations. Further-
more, when starting from a mixed seed list, it is unpredictable in which
direction the outcome converges. This could be seen as a subtle form of

10

politics soccer owner institute

0.971 0.358 0.355 0.732
1.000 0.299 0.286 0.698
0.977 0.247 0.299 0.698
0978 0.274 0.315 0.490
0.938 0.325 0.337 0.321

U W N =

Table 4: Accuracy (per iteration) for learning various relationships between
named entities: politician-party, soccer player - club, company - owner, and
institute - city.

semantic drift, where it is not the case that the accuracy of results decreases
strongly, but where there nevertheless is a strong bias towards patterns and
instances reprensentative for only a certain subtype of a given relation.

5 Learning Relations between Named Entities

Frequent question types for QA systems often ask for a named entity in a
specific relation to some other named entity, i.e. what is the capital of Togo?,
for which club does David Beckham play?, which company is owned by Ted
Turner?, or in which city does one find the Centre Pompidou? Some QA
systems (Soubbotin and Soubbotin, 2002; Fleischman, Hovy, and Echihabi,
2003; Mur, 2008) have used techniques for mining all potential instantiations
of such relations from a corpus beforehand, using hand crafted extraction
patterns or IE techniques similar to FEspresso. In a second experiment, we
concentrated on learning a number of such relations between named entities.
As named entities are more diverse than nouns, and only a few pairs are
expected to be highly frequent, we used the corpus composed of Wikipedia
and a large collection of newspaper text described in section 3.1.

We created seed lists (with 9-14 instance pairs) for the (Dutch) politi-
cian - (Dutch) political party, soccer player -club, company - owner and
institution - city relations. The frequency of seed instances varied strongly,
from 5 (Carnegie Mellon Universiteit - Pittsburgh) to 672 (Concertgebouw -
Amsterdam). Results for the different relations are given in Table 4.

The politics relation leads to very accurate results. The reason for this
appears to be that there are a number of frequent, and non-ambiguous
dependency patterns associated with this relation involving function names
(i.e. parliamentary group leader, member of parliament, opposition leader,

11

and (vice) minister).

For the soccer relation, results are much less accurate. Initially, the
system acquires patterns that appear to be typical for the soccer relation,
but which also admit for a good deal of ambiguity: C(lub), club of P(layer),
P plays for C, P is missing in C, P scores for C, P returns in C, P knows,
from his period with C but also the very general P (C) (where C is analyzed
as a modifier of P). After a number of rounds, patterns are added that are
clearly of lower quality: P, trainer of C, C, the organisation of P, C, the
thinktank of P and very general: P at C, P of C. It should be noted that
in some settings, even low accuracy results can be useful. Mur (2008),
shows, for instance, that even an IE system that is tuned only for recall,
and which achieves a meager accuracy of 1% for learning the soccer player -
club relation, can contribute positively to the performance of a QA system.
The reason for this somewhat surprising outcome is, we think, the fact that
in a QA system one of the arguments of the relation is always given in the
question, and second, that a QA system like Joost (Bouma et al., 2005) uses
additional heuristics, such as the frequency with which an answer is found,
to pick the most promising answer.

For the owner relation, the system learns patterns like O(wner) is owner
of C(company), O is the mother/holding company of C, O takes over C, and
O controls C. Some of the international instance pairs found by the system
are Stelios Haji-loannou - FasyJet, Mohammed Al Fayed - Harrods, Charles
Saatchi - Saatchi € Saatchi, Ted Turner - CNN and Richard Branson -
Virgin Atlantic. However, the system also finds many pairs in which one
of the arguments is a common noun, such as Al-Fayed - department store
and cable firm - MTV. A similar situation arises with institutions. The
system finds a reasonable number of correct instances. For the location
Paris, for instance, no less than 37 institutions are found, some of which are:
Opéra Bastille, Musée du Louvre, Théatre de I’Odéon, Centre Pompidou
Jeu de Paume, Palais des Congrés, Institut du Monde Arabe and Maison
Européenne de la Photographie. However, many erroneous pairs involve a
predicate, such as consulate - Rio de Janeiro or cultural heritage - Bonaire.

We experimented with two methods for improving accuracy. In both
cases, we filter the results of the Espresso algorithm by imposing additional
constraints on what counts as a reliable instance pair. For the owner and
institutions relation it seems most important to ensure that both arguments
are proper names. As we did not preserve part of speech tags in our depen-
dency patterns (so as to avoid spurious variation), the system has no means
to learn that patterns apply to proper nouns only. As a simple remedy, we
require that both arguments of an instance pair must start with an upper

12

case letter.

For the soccer relation, the problem is that the quality of the learned
patterns decreases, which leads to more incorrect instance pairs being ranked
high, which in turn leads to even lower quality patterns. Meclntosh and
Curran (2009) observe a similar problem when trying to learn biomedical
terms within a given semantic class. They propose to use distributional
similarity to reduce the effect of semantic drift. New candidates are ranked
higher if they are distributionally more similar to terms learned early (i.e.
terms that are more likely othato be correct) than with terms learned later.

We applied distributional similarity to filter unlikely instance pairs. We
used the thesaurus described in van der Plas and Bouma (2005) and van der
Plas (2008) to find distributionally similar terms. The thesaurus was built
using the same 700M word parsed corpus we used in our IE experiments.
For each noun and proper name, the syntactic context (the lexical head on
which the nominal is dependent, and its syntactic relation) was stored in a
feature-vector. Counts were weighted using pointwise mutual information
(Church and Hanks, 1990). Two nominals are distributionally similar if
the distance between their vectors is small, according to the cosine-metric.
The twenty most similar terms for keywords Bayern Miunchen and David
Beckham, for instance, are:

(7) a. Bayern Miinchen: Borussia Dortmund, AC Milan, Juventus,
Real Madrid, Manchester United, Chelsea, Lazio Roma, Celtic,
Arsenal, AS Roma, Glasgow Rangers, Bayer Leverkusen, Olym-
pique Marseille, Anderlecht, Inter, Lazio, Liverpool, Werder Bre-
men, Galatasaray
b. David Beckham: Roy Keane, Zinedine Zidane, Michael Owen,
Ryan Giggs, Alan Shearer, Paul Scholes, Beckham, Raul, Luis
Figo, Diego Maradona, Andy Cole, Eric Cantona, Figo, Zidane,
Ronaldo, Raul, Rivaldo, Jaap Stam, Romario

Van der Plas (2008) reports results for several alternative methods, and
shows that combining mutual information and cosine gives the best results
in terms of coverage and accuracy when evaluating against Dutch WordNet
(Vossen, 1998).

For filtering, we used the 100 most similar words for each noun or proper
name that was found at least 10 times in the corpus. The filter works by
accepting only new instance pairs for which each argument is distributionally
similar to the corresponding argument of at least one of seeds or a previously
found instance pair. In particular, a pair Figo - Barcelona is only accepted

13

Owner Institution Soccer
no filter filtered no filter filtered no filter filtered
N Acc N Acc N Acc N Acc N Acc N Acc

107 0.355 45 0.844 | 112 0.732 93 0.882 | 109 0.358 40 0.650
210 0.286 70 0.829 | 212 0.698 168 0.881 | 211 0.299 74 0.527
311 0.299 108 0.824 | 311 0.698 242 0.897 | 312 0.247 88 0.375
409 0.315 150 0.853 | 412 0.490 278 0.723 | 412 0.274 176 0.409
501 0.337 195 0.872 | 514 0.321 291 0.560 | 511 0.325 290 0.452

U i W N~

Table 5: Accuracy per iteration for learning the owner and institution re-
lation using the upper case filter, and for learning the soccer relation using
the distributional similarity filter.

if the list of similar names for Figo contains at least one name which is also
the first argument of a previously seen instance pair, or when the list of
similars for a first argument in a previously seen instance pair contains the
name Figo, and similarly for the second argument Barcelona. Note that if
a term T is among the N most similar terms of 7", it is not necessarily the
case that 7" is among the N most similar terms of 7.

Table 5 shows the results for the system with and without filtering. We
give both the accuracy and the number of instances that remained after
filtering (N). The upper case filter leads to an increase in accuracy of
around 50% for the owner relation and 20% for the institution relation. One
might argue that this increase in accuracy is only due to the fact that fewer
elements are acquired per iteration. However, if we compare the accuracy
of the 2nd round without filtering (210 pairs) with that of the 5th round
with filtering (195 pairs),® we still see that accuracy has gone up by almost
60%. The situation is a bit less clear for the institution relation, where
the 3rd iteration with filtering (242 pairs) is 20% more accurate than the
2nd iteration without filtering (211 pairs), but where the 5th iteration with
filtering (291 instances) is 13% less accurate than the 3rd iteration without
filtering (311 pairs). This suggests that the upper case filter by itself may
not be sufficient, if the quality of the patterns has deteriorated too much.

For the soccer relation, we used distributional similarity as a filter. Ac-
curacies per iteration increase by 13-30%. If we compare the 5th iteration

3The number of pairs per iteration in the system without filtering bootstrapped with
S seeds is N %100+ .S. We evaluate only on pairs not present in the seed list. This is why
the number of instances given per iteration does not always go up with 100 exactly.

14

of the system with filter (290 pairs) with the 2nd (211 pairs) or 3rd (312
pairs) iteration of the unfiltered results, we still see an increase in accuracy
of 16 and 21%.

6 Conclusion

In this paper, we have shown that the Espresso algorithm can be used to
perform IE on parsed corpora, using dependency paths instead of surface
strings as extraction patterns. In particular, we argue that available cor-
pora are large enough to obtain interesting and accurate results. In two
experiments, we investigated both the possibility of learning a very general,
taxonomic, relation (part-whole) and the possibility of learning narrowly
defined relations between named entities. The first type of relation is rep-
resentative for work that aims at (semi-)automatically extending wordnets
or other taxonomic resources, while the second type of relation can be used
as a component in automatic QA systems.

Except for normalizing patterns involving an embedded conjunction, we
extracted dependency paths from dependency trees without applying any
rules that might be useful for the IE process. In our QA system for Dutch,
the set of dependency triples (i.e. dependency paths of length 1) for a given
sentence is automatically expanded with additional triples that deal with
appositions, coordination, relative clauses, passives (Bouma, Mur, and van
Noord, 2005), adjectival forms of geographical names, and compounds such
as Fiat-topman (Fiat director) (i.e. where the first element is a name) are
decomposed. For compounding languages such as Dutch and German, the
latter type of rule seems to be very effective for improving performance on
relations involving named entities.

While filtering on the basis of distributional similarity worked well for
the soccer player - club relation, it turned out to be too restrictive for the
other relations between named entities. This suggest other methods for com-
bining distributional similarity and the scores assigned by Espresso should
be explored. Another option is to cluster similar names and to filter on the
basis of (reasonably large) clusters of names.

References

Berland, Matthew and Eugene Charniak. 1999. Finding parts in very large
corpora. In Proceedings of the 37th annual meeting of the Association for

15

Computational Linguistics on Computational Linguistics, pages 5764,
Morristown, NJ, USA. Association for Computational Linguistics.

Bouma, Gosse, Ismail Fahmi, Jori Mur, Gertjan van Noord, Lonneke van der
Plas, and Jorg Tiedeman. 2005. Linguistic knowledge and question
answering. Traitement Automatique des Langues, 2(46):15-39.

Bouma, Gosse, Jori Mur, and Gertjan van Noord. 2005. Reasoning over
dependency relations for QA. In Farah Benamara and Patrick Saint-
Dizier, editors, Proceedings of the IJCAI workshop on Knowledge and
Reasoning for Answering Questions (KRAQ), pages 15-21, Edinburgh.

Briscoe, T. and J. Carroll. 2002. Robust accurate statistical annotation
of general text. In Proceedings of the 3rd International Conference on
Language Resources and Evaluation, pages 1499—-1504. Citeseer.

Church, Kenneth Ward and Patrick Hanks. 1990. Word association
norms, mutual information & lexicography. Computational Linguistics,
16(1):22-29.

Fahmi, Ismail. 2009. Automatic Term and Relation Extraction for Medical
Question Answering Systems. Ph.D. thesis, University of Groningen.

Fleischman, Michael, Eduard Hovy, and Abdessamad Echihabi. 2003. Off-
line strategies for online question answering: Answering questions before
they are asked. In Proc. 41st Annual Meeting of the Association for
Computational Linguistics, pages 1-7, Sapporo, Japan.

Girju, R., A. Badulescu, and D. Moldovan. 2006. Automatic discovery of
part-whole relations. Computational Linguistics, 32(1):83-135.

Jijkoun, Valentin, Jori Mur, and Maarten de Rijke. 2004. Information
extraction for question answering: Improving recall through syntactic
patterns. In Coling 2004, pages 1284-1290, Geneva.

Keet, C.M. 2006. Part-whole relations in object-role models. Lecture Notes
in Computer Science, 4278:1118.

Lin, D. 2003. Dependency-based evaluation of MINIPAR. Treebanks: build-
ing and using parsed corpora, page 317.

Lin, Dekan and Patrick Pantel. 2001. Discovery of inference rules for ques-
tion answering. Natural Language Engineering, 7:343-360.

16

McCarthy, Diana, Rob Koeling, Julie Weeds, and John Carroll. 2007. Un-
supervised acquisition of predominant word senses. Computational Lin-
guistics, 33(4):553-590.

Meclntosh, T. and J.R. Curran. 2009. Reducing semantic drift with bagging
and distributional similarity. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the jth International Joint
Conference on Natural Language Processing of the AFNLP.

Mur, Jori. 2008. Off-line Answer Extraction for Question Answering. Ph.D.
thesis, University of Groningen, Groningen.

Ordelman, Roeland, Franciska de Jong, Arjan van Hessen, and Hendri Hon-
dorp. 2007. Twnc: a multifaceted Dutch news corpus. ELRA Newslet-
ter, 12(3/4):4-7.

Padé, S. and M. Lapata. 2007. Dependency-based construction of semantic
space models. Computational Linguistics, 33(2):161-199.

Pantel, P., D. Ravichandran, and E.H. Hovy. 2004. Towards terascale
knowledge acquisition. In Proceedings of COLING, Geneva, Switzerland.

Pantel, Patrick and Marco Pennacchiotti. 2006. Espresso: Leveraging
generic patterns for automatically harvesting semantic relations. In Pro-
ceedings of Conference on Computational Linguistics / Association for
Computational Linguistics (COLING/ACL-06), pages 113-120, Sydney,
Australia.

Pollard, Carl and Ivan Sag. 1994. Head-driven Phrase Structure Grammar.
Center for the Study of Language and Information Stanford.

Prins, Robbert and Gertjan van Noord. 2001. Unsupervised pos-tagging
improves parsing accuracy and parsing efficiency. In IWPT 2001: Inter-
national Workshop on Parsing Technologies, Beijing China.

Snow, R., D. Jurafsky, and A.Y. Ng. 2005. Learning syntactic patterns for
automatic hypernym discovery. Advances in Neural Information Pro-
cessing Systems, 17:1297-1304.

Soubbotin, M.M. and S.M. Soubbotin. 2002. Use of patterns for detection
of answer strings: A systematic approach. In Proceedings of TREC,
volume 11.

17

Stevenson, Mark and Mark Greenwood. 2009. Dependency pattern models
for information extraction. Research on Language and Computation,
3:13-39.

Tjong Kim Sang, Erik, Gosse Bouma, and Maarten de Rijke. 2005. Devel-
oping offline strategies for answering medical questions. In Diego Molla
and José Luis Vicedo, editors, AAAI 2005 workshop on Question An-
swering in Restricted Domains.

van der Plas, Lonneke. 2008. Automatic lexico-semantic acquisition for
question answering. Ph.D. thesis, University of Groningen.

van der Plas, Lonneke and Gosse Bouma. 2005. Automatic acquisition
of lexico-semantic knowledge for question answering. In Proceedings of
Ontolex 2005 — Ontologies and Lexical Resources, Jeju Island, South
Korea.

van Noord, Gertjan. 2004. Error mining for wide-coverage grammar engi-
neering. In Proceedings of the ACL 2004, Barcelona.

van Noord, Gertjan. 2006. At last parsing is now operational. In Piet
Mertens, Cedrick Fairon, Anne Dister, and Patrick Watrin, editors,
TALNOG6. Verbum FEx Machina. Actes de la 13e conference sur le traite-
ment automatique des langues naturelles. pages 20—42.

van Noord, Gertjan. 2009. Learning efficient parsing. In Proceedings of the
12th Conference of the European Chapter of the Association for Compu-
tational Linguistics, pages 817-825, Athens, Greece.

Vossen, P. 1998. Furowordnet a multilingual database with lexical semantic
networks.

18

