
SWHi System Description: A Case Study in
Information Retrieval, Inference, and
Visualization in the Semantic Web

Ismail Fahmi, Junte Zhang, Henk Ellermann, and Gosse Bouma

Information Science Department and University Library,
University of Groningen

Broerstraat 4, 9712 CP Groningen, The Netherlands
{i.fahmi,junte.zhang,h.h.ellermann,g.bouma}@rug.nl

http://www.rug.nl

Abstract. Search engines have become the most popular tools for find-
ing information on the Internet. A real-world Semantic Web applica-
tion can benefit from this by combining its features with some features
from search engines. In this paper, we describe methods for indexing and
searching a populated ontology by using an information retrieval tool; its
results are enriched with inference. For visualization purposes, all of the
retrieved ontology instances are clustered based on their classes; and the
clusters are linked using instance properties. The approach is illustrated
using our SWHi (Semantic Web for History) prototype as a case study.

Keywords: semantic web, ontology, information retrieval, inference,
visualization.

1 Introduction

The Semantic Web can be seen as a general web which describes units of in-
formation. Once this information is available in some web documents (which
then become Semantic Web documents), people can gather and manipulate the
exchanged information using Semantic Web technologies in various useful ways.
Tim Berners-Lee in his Scientific American article “the Semantic Web” [2] il-
lustrated some examples of how the semantic information can help everyday
tasks, such as finding a health care provider, prescription treatments, making an
appointment, and planning a trip.

In order for Semantic Web technologies to have an impact, they should be
able to work together with existing general information retrieval technologies
[6], and even provide new services which cannot be delivered by general Web
search engines such as Google. The most popular Web search engine, Google1

combines instant responses, huge repositories, advanced search methods, and a
sophisticated relevance-ranking algorithm.

1 Google www.google.com

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 769–778, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.rug.nl


770 I. Fahmi et al.

We begin the development of our Semantic Web application from a library point
of view. In this case, Eric Miller [9] believes that “Libraries–digital libraries in
particular–are important memory organizations that form a keystone for the de-
velopment of the Semantic Web.” The digital library stands on collections of an-
notated data, in the form of metadata. This should naturally make the digital
library a successful primary adopter of the Semantic Web, and, on the other hand,
challenge the Semantic Web to improve and widen services provided by digital li-
braries, which nowadays still heavily rely on information retrieval technology.

In our Semantic Web for History (SWHi) project, we combine some features
from the Web search engine and the Semantic Web technology. From the Seman-
tic Web technology point of view, the adoption of the Web search engine tech-
nology is expected to improve its search performance. In this paper we describe
how the search engine tool Lucene2 can be used to index ontology instances,
parse user input queries, and retrieve matched instances. Given a plain list of
ontology instances from the search results, Semantic Web technology will enrich
the retrieved information. Inference will be applied during the indexing and en-
richment steps. For visualization purposes, we organize the results in clusters
based on classes of the retrieved instances (e.g. person, organization, document,
subject, and year) and relations between instances in the classes. We present the
clusters and their relationships using a two dimensional cluster map. Through
this map, users can browse search results interactively, and explore interesting
relationships in an ontology.

2 Motivation

2.1 Data Sources

The concept of a Semantic Web is promising but difficult to implement on most
current Web documents. The Semantic Web requires semantic information which
is typically not encoded in the documents. Considering the importance of such
information, metadata is added into the document. On the other hand, many
digital libraries do have metadata in place. Metadata is a key piece which de-
scribes every resource managed by the digital libraries.

Our SWHi application is developed from the digital library point of view,
where our main data sources are repositories which provide metadata (subsection
3.2). This metadata is mapped and stored into an ontology based on an ontology
schema. Furthermore, literal values in the metadata, for example describing title
and description properties, are analyzed, from which we extract named entities,
events and terminology. To enrich the ontology, we also extract new related
information from selected Web documents.

2.2 Information Retrieval in the Semantic Web

Current popular web search engines (e.g. Google and Yahoo3) provide both
simple and advanced search interfaces. While the advanced search interfaces
2 Lucene lucene.apache.org
3 Yahoo www.yahoo.com



SWHi System Description 771

provide more functionality, the simple search interfaces are preferred by most
users. A Semantic Web application will typically also provide these kinds of
search interfaces.

Using a simple search interface, a user can enter query terms regardless of the
question in which fields the terms would exist. For example, a user may want to
find any information (any document, year, person, or relation between persons)
in our SWHi ontology related to a topic such as French settling colonies involving
Mr. Samuel Kirkland and General Washington in 1777. Using a bag-of-words
searching technique, she might simply type kirkland washington 1777 french
settle into a search form. We face some issues while processing this query using
an RDF query language such as SeRQL[3]. A query processor (which generates
SeRQL queries) will face at least two problems. First, it does not know in which
class or property a word can be found. To avoid this problem, a Semantic Web
application such as OpenAcademia4 requires users to type a keyword into the
appropriate field (author, title or year) in its advanced search interface. Second,
there are some limitations in the substring matching of SeRQL using a wildcard
character ‘*’. Searching for general* will match general and generally only at
the beginning of a text. And searching for * general * (with a space between
the wildcards and the word) will only match general in the middle of a text,
but not at the beginning or end of the text. These problems can be solved using
an information retrieval application such as Lucene which provides powerful,
accurate, and efficient search algorithms. Besides the fielded searching feature,
Lucene also supports phrase queries, wildcard queries, proximity queries, range
queries and more5.

Prior uses of information retrieval technology in a Semantic Web applica-
tion can be found in QuizRDF[4], the Knowledge and Information Management
(KIM) platform[1], OWLIR and Swoogle[6]. QuizRDF creates RDF resource in-
dexes based on RDF Schema and retains this structure in its indexes. KIM uses
Lucene engine to index and retrieve semantically annotated documents while
OWLIR and Swoogle use the Haircut information retrieval engine to index and
retrieve RDF documents based on character n-grams as indexing terms.

2.3 Visualization

In the Semantic Web, visualization is becoming more important. In our case,
since the retrieved instances can be of any type (documents, persons, years,
etc.), a common plain list presentation is not suitable. There are complex rela-
tionships among the resource instances which cannot be presented using a plain
list. Moreover, this presentation typically only displays a small number of search
results (in the range of 10-20 results per page). Documents obscured in the tail
of a search result will likely never be accessed.

Various solutions to this problem have been proposed in the IR as well as
the SW area. Currently, popular result presentations in the information re-

4 OpenAcademia www.openacademia.org
5 Lucene’s Features lucene.apache.org/java/docs/features.html



772 I. Fahmi et al.

trieval technology use topical clustering and mapping techniques. Vivisimo6 and
Grokker7, for instance, both use clustering techniques to analyze and organize
search results according to topics found in the retrieved document descriptions.

In the Semantic Web, the complex nature of relationships between concepts in
an ontology has driven many efforts toward graphical visualization of ontology
browsing and navigation [10,12,11,7]. For example, Cluster Map [7] is used to
visualize instances of selected classes, organized by their classifications. This
map is designed to aid users when navigating their search results and ontologies.
The Spring embedding model [8,5] has been widely used to visualize collections
of instances and ontologies[10,7]. It draws highly related entities close to each
other with a directed edge and gives the effect of separation in a two-dimensional
plane.

3 System Architecture and Data Source

3.1 Architecture

The general architecture of the SWHi system is shown in Fig. 1. It consists of
three layers: Knowledge Management System (KMS), Semantic Web Applica-
tion, and User Interface layers. The bottom layer, is responsible for processing
(information extraction and semantic annotation), indexing, and storing histor-
ical resources (metadata and documents), also providing API for its upper layer
to query the knowledge base. This layer highly depends on several third party
tools, such as GATE8, Sesame9, and Lucene.

In the middle layer, several application modules which enable the Semantic
Web were developed to carry out the following functions: processing data sources
(text and metadata), processing user queries, and delivering results in several
ways (network graph, cluster map, and time line). And the top layer provides
interface to users which are being designed as simple and easy to use as possible.

3.2 Data Source and Ontology

It is obvious from the Fig. 1 that the ontology plays as a central role in the SWHi
system. For the development of the SWHi ontology, we reuse existing ontology
resources for structuring and storing historical information, namely: PROTON10

base ontology, the types of American history imprints identified (automatically)
in the metadata, the taxonomical subject classification by NewsBank/Readex11,
Dublin Core12, and Friend of a Friend13. This ontology is stored using the Sesame
2, an RDF storage and querying framework.
6 Vivisimo www.vivisimo.com
7 Grokker www.grokker.com
8 GATE gate.ac.uk
9 Sesame www.openrdf.org

10 PROTo ONtology proton.semanticweb.org
11 Newsbank InfoWeb infoweb.newsbank.com/?db=EVAN
12 Dublin Core dublincore.org
13 FOAF xmlns.com/foaf/0.1/



SWHi System Description 773

Fig. 1. The general architecture of the SWHi system

Our initial instances for this ontology are extracted from the Early American
Imprints, Series I: Evans, 1639-180014. This knowledge source gives insight in
all published works of the 17th- and 18th-century America. Its metadata con-
sist of 36,305 records, which are elaborately described (title, author, publication
date, etc) with numerous values, and have been compiled by librarians in the
format MARC21. In the future we will extend the data sources with other his-
torical electronic journal metadata as well as full texts, like digitized version
of Early American Imprints, Wikipedia, and biographical profiles that libraries
have about historical US figures.

4 Indexing, Searching, and Inference

4.1 Indexing and Inference

Performance is very important in a real-word application. No matter how so-
phisticated and accurate the logic behind a search engine, if it cannot provide a
fast search response, users will likely less appreciate it. To ensure that our sys-
tem will have an acceptable response time and process query terms efficiently,
we use the Lucene text search engine API to index our ontology instances. We
make use of Lucene fielded data feature to store and index instance properties.
When indexing, each instance in the SWHi ontology is added to a Lucene index
as if it is a new document, and instance properties are added to the document
as document fields.

In our experiments, getting information directly from an ontology through
inference could cost an unacceptable processing time, especially if the inference
14 Early American Imprints Series I www.readex.com



774 I. Fahmi et al.

queries are complex or repeated many times. However inference is required to
return the most relevant instances given user queries. For example, searching
for instances with literal values containing the term “washington” in the SWHi
ontology would give us 7 instances of Person class or 586 instances of all classes
(Person, Location, Event, and Document) in any order. Using inference, in-
stances with higher relevance can have higher position in the order. For example,
a person who is known by many people and created many documents would get
a higher score. For this purpose, we apply inference during an indexing step to
get additional information about an instance.

Table 1 illustrates how an instance of Person class should be indexed by
Lucene. For example, an instance with a label “George Washington” is being
indexed. Each Lucene field of the instance is populated by querying the ontology
repository. Then, the number of persons that Washington knows will be stored in
the foaf knows field, and the number of persons who know him will be stored in
the known by field. These numbers will not be searched, but will be used during
query analysis which boost particular fields based on their values.

Table 1. The Lucene fields of Person class instance. The container field will used by
search “All”

Field Lucene type Description
uri Field.UnStored a URI of an instance
rdfs label Field.Text a short label of an instance
container Field.Text contains all data from other fields (not stored)
foaf topic interest Field.Text a textual list of topics
foaf knows Field.Keyword the number of persons as String
known by Field.Keyword the number of persons as String
dc creator Field.Text a textual list of document titles
protont involvedIn Field.Text a textual list of events
protont startTime Field.Keyword a date as a String (YYYYMMDD)
protont endTime Field.Keyword a date as a String (YYYYMMDD)

4.2 Searching and Enrichment

Retrieving and processing information from the SWHi ontology will be done
through these processes: Query formulation, Query analysis and parsing, Search
and retrieval, Enrichment, and Clustering.

Query Formulation. When performing a query, users often encounter difficul-
ties whether they have to use “AND” or “OR” [13]. To overcome this problem,
we present a free-text search interface to users. Using a form in this interface,
users can type any query terms, such as a combination of terminology, person
name, year, and location. For advanced users, we provide an advanced search
interface where they can use multiple fields for their query terms.



SWHi System Description 775

Query Analysis and Parsing. All free-text search queries will be processed
by Lucene. Since its searches are case-sensitive, a general best practice is to
lowercase query terms during query analysis. The StandardAnalyzer which is
used during the indexing will be used again to perform this task. In this step,
we set different boosting factors to the index fields based on their importance to
the class being searched. For example, the field known by is a good indicator of
how well-known the person was. This can be implemented using FunctionQuery
feature of Lucene which can return a score based on fields’ values. For advanced
search queries, we generate SPARQL queries and send them directly to the
Sesame repository.

Search and Retrieval. Given a free-text search query, Lucene searches its in-
dex to find all matched resources, and given an advanced search query, Sesame
searches for instances from its ontology repository. Each time a search is per-
formed, the Search Module retrieves URIs of instances in the search results and
stores them into a cache memory. This will speed up the retrieval process when
a user clicks on other pages of the same search results, which could happen if
the number of instances exceed an allowed number of instances per page.

Enrichment. The goal of this step is to deduce new information given a list
of URIs in the search results retrieved by the previous search process. The
SWHi ontology will be used to enrich presented instances with important in-
formation and relationships. For this purpose, we define inference algorithms
for each instance class. Since the search phase typically produces many search
results, we have to optimize this enrichment phase to achieve an acceptable
performance. For example, we limit only to the first 200 instances returned by
Lucene that will be enriched for clustering, and 10 to 20 instances for a plain list
presentation.

Clustering and Visualization. Clustering is performed to preprocess the
results before they are presented in a cluster map to users. Since the results
consist of various resource types, a visual representation technique would be a
promising option. The underlying concept of our visualization is based on this
Visual Information Seeking Mantra [13]: “Overview first, then zoom & filter,
then details on demand”.

We implement this principle by clustering the results. Our cluster data will
be organized to support the following levels of presentation details:

Global view of results. Users can see a global view of all of the results in
a two-dimensional graphical visualization. In this view, the results are or-
ganized into clusters based on the results’ classes or topics. Grouping by
topics seems to be more interesting than by classes, because users can see
interactions between instances of different classes in a topic. Between the
clusters, we draw relationships based on properties carried by the results in
each cluster. Every instance in a cluster will be presented using a symbol.



776 I. Fahmi et al.

Zoom view of a cluster. Users can zoom into a cluster to see interactions
between instances in the selected cluster. For example, in a cluster of persons,
users can see how persons in that cluster know each other.

Detailed description view of a cluster or a node. Users can read a detailed
description of a cluster or a node (member of a cluster). For example, they
can see the name of a cluster, the number of its nodes (cluster’s members), a
complete list of the nodes’ titles and links, or a short description of a node.

5 Results

In this section, we describe the results of our system development and illustrate
them with some examples. Assume users want to find information about “George
Washington and wars” and type the keywords “+washington +wars” in a free-
text search interface. After receiving search results, the first task of the user
interface is to display a general view of the results. For this task we use the
Cluster Map [7] as shown in Fig. 2.

The user interface in the figure is divided into three main panes: left, right,
and bottom. The left pane shows the classification tree of the results, containing
the names of the clusters, their children and the numbers of objects within each
cluster. In this pane, the users perform cluster selection that will change the
visualization of the clusters in the right pane. For example, Document, Person,
and Topic clusters are selected together with some of their sub-clusters as shown
in the right pane. Objects in the results are now classified according to their

Fig. 2. Search results for the query “+washington +wars” visualized using ClusterMap



SWHi System Description 777

Fig. 3. Browsing objects and their relationships

clusters and intersections, which help users select objects satisfying their needs.
In the figure they can click on a cluster of 7 objects (documents) related to a
Political science topic. A list of objects (of any type, e.g., document, person,
date, or location) in the cluster are then displayed in the bottom pane. Detailed
information of an object will be presented when users click on a title in the
list.

A different visualization strategy is shown in Fig. 3. While ClusterMap shows
objects in the result set as clusters, the last strategy shows relationships between
objects in a cluster or in the whole result set. For example, the figure shows how
individuals in the Person class relate each other. Objects and their relations are
not limited by the result set, but can be retrieved directly from the repository
when requested information is not available in the set. This can be seen as an-
other way of browsing the result set and repository. We implement this strategy
using the TouchGraph15 tool.

6 Summary and Future Work

This paper has described a case study in implementing information retrieval, in-
ference, and visualization in the Semantic Web. The use of information retrieval
technology is mainly motivated by pragmatic reasons which are to provide rich
search functionalities and to return semantically related search results with high
performance. However, in this application, the ontology keeps playing an impor-
tant role, especially in shaping information structure in the indexes, in infer-
encing, and in clustering. Subject and terminology classes in the ontology help
generating clusters based on resource topics. Visualization based on this group-
ing technique is interesting because it combines information from the ontology
and information retrieval into a single graph.

The SWHi application is an on going project. We are also in a progress of
enriching the ontology by implementing named entity, event, and terminology
extraction.

15 TouchGraph www.touchgraph.com



778 I. Fahmi et al.

References

1. Kiryakov Atanas, Popov Borislav, Terziev Ivan, Manov Dimitar, and Ognyanoff
Damyan. Semantic annotation, indexing, and retrieval. Journal of Web Semantics,
2, 2005.

2. Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific
American, 2001.

3. Jeen Broekstra and Arjohn Kampman. An RDF Query and Transformation Lan-
guage, pages 23–39. Semantic Web and Peer-to-Peer. Springer Berlin Heidelberg,
2006.

4. John Davies, Richard Weeks, and Uwe Krohn. QuizRDF: Search technology for
the Semantic Web. In Proceedings of the 37th Annual Hawaii International Confer-
ence on System Sciences (HICSS’04), pages 112–119. BTexact Technologies, IEEE
Computer Society, 2004.

5. P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–160,
2000.

6. Tim Finin, James Mayfield, Clay Fink, Anupam Joshi, and Scott R. Cost. Infor-
mation Retrieval and the Semantic Web. In Proceedings of the 38th International
Conference on System Sciences, 2005. Received Best mini-track paper award.

7. Christiaan Fluit, Marta Sabou, and Frank Harmelen van. Ontology-based infor-
mation visualisation: Towards semantic web applications. Springer Verlag, 2005.

8. Thomas M.J. Fruchterman and Edward M. Reingold. Graph drawing by force-
directed placement. Softw. Pract. Exper., 21(11):1129–1164, 1991.

9. E Miller. Digital libraries and the semantic web. http://www.w3.org/2001/09/06-
ecdl/slide1-0.html, 2001. Accessed 11 December 2006.

10. Paul Mutton and Jennifer Golbeck. Visualization of semantic metadata and on-
tologies. In Seventh International Conference on Information Visualization (IV03),
pages 300–305. IEEE, 2003.

11. Bijan Parsia, Taowei Wang, and Jennifer Golbeck. Visualizing web ontologies with
cropcircles. In End User Semantic Web Interaction WS. ISWC 2005, 2005.

12. D.A. Quan and David R. Karger. How to make a semantic web browser. In WWW
’04: Proceedings of the 13th international conference on World Wide Web, pages
255–265, New York, NY, USA, 2004. ACM Press.

13. Ben Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations. In IEEE Visual Languages, pages 336–343, College Park, Maryland
20742, U.S.A., 1996.


	Introduction
	Motivation
	Data Sources
	Information Retrieval in the Semantic Web
	Visualization

	System Architecture and Data Source
	Architecture
	Data Source and Ontology

	Indexing, Searching, and Inference
	Indexing and Inference
	Searching and Enrichment
	Query Formulation.
	Query Analysis and Parsing.
	Search and Retrieval.
	Enrichment.
	Clustering and Visualization.


	Results
	Summary and Future Work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


