Natural Language Engineering 1 (1): 1-16. Printed in the United Kingdom 1
(© 2002 Cambridge University Press

Finite State Methods for Hyphenation

Gosse Bouma

Alfa-informatica, Rijksuniversiteit Groningen
Groningen, The Netherlands

(Received 30 March 2002; revised 80 September 2002)

Abstract

Hyphenation is the task of identifying potential hyphenation points in words. In this paper,
three finite-state hyphenation methods for Dutch are presented and compared in terms of
accuracy and size of the resulting automata.

1 Introduction

A typesetting program may have to hyphenate words to produce justified para-
graphs. Hyphenation can be carried out using a word list with hyphenation points
(usually derived from an electronic dictionary). The major drawback of this method
is that it will only cover words explicitly listed in the dictionary.

Pattern-based hyphenation methods use patterns of a sequence of two or more
characters, for which valid (or invalid) hyphenation positions are specified. A pat-
tern can be applied to all words containing the pattern as a substring. A well-known
pattern-based hyphenation-method, used in the typesetting package TEX, is that
of Liang (1983). Patterns are usually derived from a dictionary, but since patterns
represent substrings of words, they also apply to words not in the original list.

Rule-based hyphenation methods rely on syllable and morpheme structure. The
approach described in the next section uses syllable structure to implement a hy-
phenation procedure. No attempt was made, however, to deal accurately with mor-
pheme boundaries, and therefore the system achieves only modest accuracy. Rule-
based methods use dictionary information only indirectly and are therefore not
restricted to a fixed set of words.

It has been observed that rule-based and pattern-based hyphenation can be car-
ried out by a finite-state transducer (Kaplan and Karttunen, 1998). Such a trans-
ducer would take a character string as input and return a string with hyphenation
points. A transducer of this form can be constructed by translating hyphenation
rules or patterns into a finite state transducer or sequence of transducers. In this
paper, we investigate the feasibility of actually developing an accurate finite-state
hyphenator for Dutch.

Below, we consider three finite-state hyphenation methods. The core rule of Dutch
hyphenation is that hyphenation points fall between syllables, where words can be

2 Gosse Bouma

divided into syllables using a maximal onset rule. The first method implements this
rule as a deterministic finite state transducer. When evaluated on word list derived
from Celex (Baayen, Piepenbrock, and van Rijn, 1993), this simple system achieves
a hyphen accuracy of 94.5%.

The second system builds on the results of the first, but uses transformation-
based learning (TBL) (Brill, 1995) to derive rules which correct the errors of the first
system. The system is trained on the Celex word list. Induced rules typically help to
correct mistakes which are due to the fact that the first system ignores morpheme
structure. The hyphen accuracy after applying TBL is 99.35%. The rules induced by
TBL can be interpreted as a cascade of finite-state transducers (Roche and Schabes,
1997), . We present experimental results which suggest that composition of large
numbers of rules may be of limited practical use.

Finally, we present results for the pattern-based hyphenation method of Liang
(1983), which is used in TgX. The hyphenation patterns for Dutch (more than
8,000) are again derived from Celex. We compared the performance of TEX and the
TBL-system on running text. Hyphen accuracy of TgX is estimated to be 99.8%,
whereas the TBL-system achieves approximately 99.1% accuracy. We also present a
method for compiling hyphenation-patterns into a single FsT.!

2 Hyphenation rules for Dutch

Hyphenation in Dutch is determined by both morpheme and syllable structure. Hy-
phenation points fall between morpheme boundaries, and, within a morpheme, be-
tween syllables. In particular, Brandt Corstius (1978) describes a hyphenation pro-
cedure which first inserts hyphenation points (in morphologically complex words)
between word and (certain) morpheme boundaries, and next inserts hyphenation
points (at the morpheme level) between syllables, while maximizing onsets. The pro-
cedure can be illustrated using with the following example. The word drugspanden
(drug-houses) is a plural compound noun composed of drugs and panden. Thus, a
hyphenation point is inserted between s and p. Next, panden can be segmented into
syllables as pan-den or pand-en. The segmentation pan-den maximizes the second
onset, and thus is the correct one. Note that the first step must identify compounds
and derivational affixes, but not all morpheme structure. The word panden is a plu-
ral noun consisting of the noun pand and the plural suffix -en, yet it is segmented as
pan-den. There are only a few cases which are not covered by the procedure above.?

! One reviewer points points out that patterns can be used as input for a fourth finite-state
hyphenation method. E (ezamples) is a list of substrings of correctly hyphenated words.
C (counterezamples) is a list of the same substrings with an incorrectly placed hyphen.
A correctly hyphenated word may not contain a member of C-E. This constraint can be
checked by a FSA defined in terms of C and E. The accuracy and practical feasiblity of
this method depends on the length of the substrings considered. We have not evaluated
this method.

In some cases the spelling of a hyphenated word differs from that of its non-hyphenated
counterpart. The word eztraatje (extra + dimunitive suffix #je) is hyphenated as extra-
tje. This phenomenon is known in TEX as discretionary hyphenation (Sojka, 1995).
Another complication arises in cases where a word has an ambiguous morphological
structure, and hyphenation depends on which analysis is chosen. Daelemans and van

Finite State Methods for Hyphenation 3

O the empty string
[Riy..., Rn] concatenation
{Ri,..., Rn} disjunction
R” optionality
R zero or more occurrences of R
A:B the transducer which maps strings of A onto strings of B
id(A) identity: the transducer which maps each
element in A onto itself.
ToU composition of the transducers T and U.

macro(Term,R) use Term as an abbreviation for R.

Fig. 1. FsA regular expression syntax used in this paper. A and B are regular expressions
denoting recognizers, T and U transducers, and R can be either.

3 Syllable-based hyphenation

In this section, we present a finite-state transducer which inserts hyphens between
well-formed syllables, while maximizing onsets. The accuracy of the system is lim-
ited, as it ignores the fact that compounds and derived words may require hyphen-
ation patterns conflicting with the maximal onset rule.

Finite state automata will be defined using regular expressions, as defined in
figure 1. Regular expressions are compiled into automata by the FSA utilities toolkit
(van Noord, 1997; van Noord and Gerdemann, 2001).?

3.1 Implementation

Consider the problem of segmenting a word into a sequence of syllables. Given a
suitable definition of syllable, one might consider the following as a first attempt:

(1) [[syllable, [1:- 1%, syllable]

This regular expression defines a transducer that accepts non-empty sequences of
syllables as input and outputs the same sequence, with a hyphen inserted after
every syllable except for the last. Given an input such as alfabet (alphabet), it
will produce al-fa-bet, alf-a-bet, alf-ab-et, or al-fab-et, although in fact only the
first is correct. This transducer is non-deterministic and does not maximize onsets.
A second problem with this definition is that, in general, it will fail to give the
right results for syllables containing a nucleus represented by more than a single
character. Le. for a word such as waait (blows), (1) would produce, among others,
an output with three hyphenation points (wa-a-it), although in fact waait is a
monosyllabic word. The problem is caused by the fact that the characters a,a, and
1 represent a diphtong but can also each occur independently as a nucleus, and
form a syllable. Thus, it seems that apart from a maximal onset rule, there is also
something like a mazimal nucleus rule.

den Bosch (1992) mention kwartslagen as an example, which can be hyphenated as
kwart-slagen (quarter turns) or kwarts-lagen (quartz layers).
3 The Fsa utilities toolkit is available from www.let.rug.nl/"vannoord/fsa.

4 Gosse Bouma

A more accurate definition of hyphenation needs to define a deterministic au-
tomaton, which, given multiple ways of segmenting a string into valid syllables,
returns only the output in which both nuclei and onsets are maximal. The option
adopted below, also proposed in Karttunen (2001) , is to use the replace-operator
of Kaplan and Kay (1994) and Karttunen (1995), which supports longest match
replacements directly.*

In the FsA-notation of Gerdemann and van Noord (1999) a regular expres-
sion replace(Target, LeftContext, RightContext), where Target is a trans-
ducer and LeftContext and RightContext are recognizers, defines a transducer
which replaces all occurrences of the domain of Target between LeftContext and
RightContext by strings in the range of Target. Furthermore, replace performs
left-most, longest match, replacement, i.e. it operates as if moving through the
string from left to right, at each point identifying the longest possible replacement
target.

The regular expression for hyphenation given above can be rephrased as a replace
statement, which inserts hyphens between syllables:

(2) replace([]:-, syllable, syllable)

Again, given an adequate definition of syllable, this transducer will insert hyphens
between syllable strings. Note, however, that the left-to-right mode of application
of replace ensures that hyphens are inserted as early as possible, thus implicitly
ensuring that onsets are maximal. The word alfabet is hyphenated only as al-fa-bet
by this expression, and not as any of the alternatives mentioned above.

Implementing the mazimal nucleus rule required for the correct hyphenation of
words containing multiple character nuclei, can be achieved using the longest match
property of replace explicitly:

(3) replace([[]:@, identity(nucleus), [1:e 1, [1, [1)

This transducer inserts the marker ’Q’ before and after nuclei. As the target for
a replacement is determined using longest match, multiple character strings cor-
responding to a possible nucleus are always marked as a single nucleus. The word
waait is marked as w@aai@t only. Left-to-right, longest match, identification of
nuclei appears to be very accurate. ®

A gyllable-based finite-state hyphenation method is now simply the composition
of the transducers defined in (3) and (2), given a definition of syllable which incor-
porates the ’Q’-marker:

(4) replace([[]:@, identity(nucleus), [1:@1,[1,[1)
)
replace([]:-, syllable, syllable)

4 An alternative approach would be to formulate the problem in terms of (finite-state)
Optimality Theory, as described in Karttunen (1998) and Gerdemann and van Noord
(2000) in such a way that maximal onsets and nuclei are preferred.

5 One rare case where it fails is the word dieet (diet), which contains the nucleus 4 followed
ee, but longest match recognizes ¢e and e.

Finite State Methods for Hyphenation 5

macro (hyphenate,
replace([q,ul:Q, [1, [1) %h qu > Q

o replace([[1:@, id(nucleus),[]1:@ 1,[1,[1) %/ mark nucleus

o replace([e,@,0]:[@,@,e],i,{e,u}) %% d@ie@Qe@t -> d@iQCeelt

o replace([1:-, [@, cons *], [onset™ , @]) /% insert hyphens

o replace(-:[1, x, [@,{a,e,u,i,o,y}]) %% remove - after x

o replace(Q:[q,ul, [1, [1) %% Q > qu

o replace(@:[1, [1, [1)). %% remove markers
macro(nucleus,{ a, [a,il, [a,a,il, ..., u, [u,il, y,

[{[a,al,[0,0],[u,ul}, cons 1 }).

macro(onset, { b, [b,1]1, [b,r]l, ..., z, [z,w] }).

Fig. 2. Finite state syllable-based hyphenation of Dutch

The actual implementation, given in figure 2, imposes slightly weaker conditions on
the insertion of hyphens:

(5) replace([]:-, [@, consonant *], [onset™, @])

Instead of specifying a full syllable as left and right context, this definition only
requires a left context consisting of a marker followed by an arbitrary number of
consonants (corresponding to the coda of the preceding syllable), and a right context
consisting of an (optional) onset followed by a marker. It imposes no constraints on
codas, other than that they must form a sequence of consonants. While this does not
lead to overgeneration, it does account for the hyphenation of loan-words containing
codas which do not follow Dutch spelling (i.e. the words checklist, arctisch (arctic),
and pizza are hyphenated as check-list, arc-tisch, and piz-za in spite of the fact that
ck, rc and z are normally not used as coda).

The accuracy of the hyphenation method defined above can be further improved
by making a number of adjustments for irregular hyphenations of words containing
the bigram gu (which is treated as a consonant), the character z (which is never
followed by a hyphen), and words containing the bigrams aa, ee, 0o and wu, which
indicate long vowels in closed syllables, and therefore can never be followed by a
hyphen. Some cases (such as dieet) where the longest match strategy for marking
the nucleus fails can also be corrected easily.

3.2 Ewvaluation and Error-analysis

The deterministic FST for the regular expression for hyphenation as given in figure 2
has 89 states and 826 transitions.% For evaluation, we used the Celex (Baayen,

5 Transitions include predicates as described in (van Noord and Gerdemann2001). A
predicate ranges a set of symbols, and thus, the number of transitions is in general
(much) smaller than would normally have been the case.

6 Gosse Bouma

Piepenbrock, and van Rijn1993) bow-list (dutch orthograhpy words), which provides
hyphenation patterns for over 330,000 words. All duplicates and all items containing
capitals and diacritics were removed. This leaves approximately 290,000 items. The
average word length is 10.85 characters and there are approximately 2.5 hyphens
per word. On this list, hyphenate achieves a word accurary of 86.1% and a hyphen
accuracy of 94.5%.

A 10% subset of the data, was inspected for error analysis, where errors were
counted and classified using the alignment method described in the next section.
As the system implements the maximal onset rule, but has no way of recognizing
compounds or derivational affixes, errors are expected to occur typically in situa-
tions where a word or affix boundary conflicts with the maximal onset rule. This
is confirmed by the fact that 87.5% of the errors are cases where a hyphen is dis-
placed one position to the left (i.e. drug-span-den should be drugs-pan-den) and
1.1% of the errors are cases where a hyphen is displaced two positions to the left
(ang-staan-ja-gend (scary, lit. scare-on-making) should be angst-aan-ja-gend). A
hyphen was displaced one position to the right in 4.9% of the errors. These are all
caused by the fact that our list of onsets is not exhaustive. For instance, the system
produces ar-tis-jok (artichoke which should be hyphenated as ar-ti-sjok) because
it does not contain the onset sj. In 5.5% of the errors the system has produced
a spurious hyphen. These typically occur in loan words containing a nucleus not
included in the syllable-based system (coach is hyphenated as co-ach) . The system
missed a hyphen in 1.0% of the errors. Such errors are mostly caused by mistakes
in the identification of a nucleus. The word be-ij-ver (work towards) is hyphenated
as beij-ver because ei is a valid nucleus. This is a case, therefore, where the longest
match strategy for recognizing the nucleus fails and which was left unaccounted for
in the definition of hyphenate.

4 Improving accuracy using TBL

Transformation-based learning (TBL) (Brill, 1995) can be used to improve the ac-
curacy of the system outlined above. Given a word list hyphenated by the base
system, aligned with the correct hyphenation patterns, TBL will attempt to induce
a rule which corrects the maximal number of errors while introducing a minimum
of new errors. This rule is applied to the training data. This process iterates until
no new rules with a score (i.e. the number of corrections minus the number of errors
introduced by a rule) above a certain threshold can be found. The fact that most
rules are not 100% accurate (i.e. introduce new errors besides correcting existing
errors) is not necessarily a problem, as more specific rules can be learned later which
correct the newly introduced errors. The result of TBL can be tested on a data-set
by applying the induced rules in the order in which they have been induced.

4.1 Alignment

TBL requires aligned data for training and testing. Hyphenation can be seen as
a classification task, which decides, for instance, for each character whether it is

Finite State Methods for Hyphenation 7

preceded by a hyphen or not. Thus, the result of hyphenating a word list using the
base system can be encoded as a character string, where each character is aligned
with a 1 if it is preceded by a hyphen, and with a 0 otherwise. Furthermore, as
some rules should apply only to the beginning or end of a word, boundary markers
are added. The correct hyphenation can be aligned with this string as a similar list
of 0’s and 1’s:

word potato + aar dappel +
(6) system aar-dap-pell 0 0 0 0 1 0 0 1 0 0 O
correct aard-ap-pell 0 0 0 0 0 1 0 1 0 0 O

For TBL, the encoding in (6) has the disadvantage that correcting a single error
(i-e. aar-dap-pel — aard-ap-pel) requires learning two error-correction rules, one
changing a 1 into a 0 when aligned with a d in a suitable context, and one changing
a 0 into a 1 when aligned with an ¢ in a similar context. Obviously, these two rules
are closely related. Therefore, more effective error correction can take place if a
single rule could be learned to correct the error.

We therefore adopted a slightly more involved alignment procedure, where the
correct output can be marked with 0 and 1 as before, but also with 2 (the character
is followed by a hyphen), 3 (the next character is followed by a hyphen) or 9 (the
preceding character was preceded by a hyphen). Examples of the new alignment
method are given in figure 3.

Note that the system output is still given as a sequence of 0’s and 1’s, and
thus, that the aligned system output does not contain information which points
to the correct alignment. Alignment of the correct answer with the system data
requires a procedure which codes the correct answer relative to the system output.
As the number of hyphens in the system output and the correct output tends to be
equal (but see below), a procedure which determines for each correct hyphen where
it is located relative to the corresponding system hyphen gives good results. If no
corresponding system hyphen can be found in the two proceeding positions or in the
next position, a 0/1 alignment is introduced. Similarly, if a system hyphen cannot
be aligned with any hyphen in the correct answer, a 1/0 alignment is introduced.

4.2 Experiments

Training and test data consisted of the Celex word list described in the previous
section. The list was divided into 10 sections (selecting every 10th word, with an
offset of 0-9), hyphenated by the base system, and the result was aligned with the
correct hyphenation as provided by Celex.

For training and testing we used the fnTBL toolkit” (Ngai and Florian, 2001)
which implements an efficient version of Brill’s original algorithm. Training took
between a few minutes and 3 hours, depending on the amount of data used and the
complexity of the rule templates.

Rule templates for TBL were provided which change the value of one cell in the

" http://nlp.cs.jhu.edu/~rflorian/fntbl/index.html

8 Gosse Bouma

word (potato)

system aar-dap-pel
correct aard-ap-pel

word (coach)

system co-ach

correct coach

word artichoke)

system ar-tis-jok

correct ar-ti-sjok

word (scary)

system ang-staan-ja-gend
correct angst-aan-ja-gend
word (with make up on)
Sys gesch-minkt

cor ge-schminkt

—
o
o o -
S O+

oo o
oo
oS O
S O+

S ORMoOo oY ocop§ploOo OH|OCO W
SO oo OoBE|oOoROoOO0 0| C W
—_ o v oo~ R Ao~R oo
SO0 |WKF N oo "o oOoO|IN— QO
OO Do o oo O o o
OI—‘EOOQ’@I—‘;‘OO_FOO’U
OO Moo Mo oo

oo pIoo0op|IOoCo R

oo R RO o4

O O O O

DO+I—lI—l0‘Q

Fig. 3. Improved alignment

system output (i.e. change 1 into 2), using a surrounding window of maximally 5
characters as context to constrain the rule. For instance, to correct aar-dap-pel into
aard-ap-pel, the system might learn the following rule:

aard a

1

(7 .
2

An overview of some of the rules learned using 90% of the data for training is
given in figure 4. Half of the rules in the top-10 (1, 3, 4, 5, 8) illustrate that the
character ’s’ is problematic for hyphenation, as it can be the start of many different
onsets, but also can be the final character in many codas. The second rule correctly
hyphenates words with the suffix-morpheme -achtig, which counts as introducing
a boundary for the compound rule. The majority of induced rules are of the 1—2
type. Rule 16 is the highest-ranked rule which makes a different correction. It is of
the 2—1 type and corrects the effect of an earlier rule (rule 8 in particular). Rule
27 is the second rule which shifts a hyphen leftward. It recognizes the prefix ge-.
Note that according to the maximal onset rule, the hyphen would have been placed
in front of the s to begin with. Thus, this rule also corrects some of the errors
introduced by rule 8 (and possibly by other preceding rules).

We performed experiments on various portions of the Celex data. The results are
given in figure 5. When trained on only 10% of the available data, TBL learns a
relatively small number of highly effective rules. The error rate can be further re-
duced by using 90% of the data, although the number of induced rules also increases
substantially in that case.

The results in figure 5 improve on previous work. The best result of Daelemans
and van den Bosch (1992) (98.3% hyphen accuracy) used an exemplar-based learn-
ing method, trained on a word list of 19,000 words and using a fixed context window
of 7 (i.e. the window only refers to the target character and the three preceding and

Finite State Methods for Hyphenation 9

Rank| Good Bad Score Rule
1| 2918 314 2604 i-st — is-t
2| 1890 103 1787| -?achti — ?-achti
3| 1666 101 1565 a-st — as-t
4| 1411 135 1276 ing-s — ings-
5 714 37 677 u-st — us-t
8| 1333 703 630 e-ste — es-te
16 320 26 294 bes-t — be-st
1408 3 0 3| -7%id — 7-7eid

Fig. 4. Rules learned by TBL, trained on 90% of the data. ’?’ represents an arbitrary
character, '+’ is the word boundary symbol.

initial| 10%| 20%| 30%| 60%| 90%
Number of Induced Rules 264 507 737| 1,139| 1,409
Hyphen Accuracy 94.16| 98.15| 98.60| 98.82(99.04| 99.27
Word Accuracy 85.30(95.34| 96.49| 97.02| 97.59| 98.17

Fig. 5. Results of learning hyphenation rules using 10%-90% of the data.

following characters). Vosse (1994) trains a Hidden-Markov Model and a pattern-
based hyphenator similar to the system of Liang (1983) on a word list of 190,000
words and achieves 97.8% and 98.2% hyphen accuracy for the Markov Model and
pattern-based system respectively.

The results given in figure 5 can be improved upon only slightly by using more
context. Using 90% of the data for training, a context of 7 gives a hyphen accuracy of
99.35% (using 1,484 rules) and including information about the absence or presence
of other hyphens in the context gives an accuracy of 99.32% (using 1,404 rules).

4.3 Compilation of TBL rules to a FST

TBL rules can be interpreted as finite state transducers (Roche and Schabes, 1997).
A single rule corresponds to a transducer which interchanges characters and hy-
phens or, alternatively, changes digits. Rules learned by TBL are applied to the
data in the order in which they are learned. A sequence of TBL rules therefore
corresponds to the composition of the individual rule transducers.

The syllable-based hyphenation system transduces an input string into a hy-
phenated string. TBL rules can be interpreted as rules which correct errors of the
base-system by shifting, inserting, or deleting hyphens in specific contexts. Recall
that, given the alignment-method used for TBL, changing a ’1’ into a '2’ means that
a hyphen has to follow rather than precede the corresponding character. Thus, the
first rule induced by TBL corresponds to the following regular expression:

(8) replace([-,sl:[s,-1, [il, [1)

The base system hyphenates communisme (comunism) as com-mu-ni-sme. The reg-
ular expression above corrects this to com-mu-nis-me. Similar regular expressions

10 Gosse Bouma

can be given for rules which shift a hyphen two positions rightwards, which shift a
hyphen leftward, or which insert or delete a hyphen.

A second method for interpreting the TBL-rules makes more direct use of the
alignment-method. The output of the syllable-based system can be transduced eas-
ily into a string where each character is preceded by a ’0’ or a ’1’, indicating the
absence or presence of a hyphen in that position. Thus, com-mu-ni-sme would be
represented as (9). TBL-rules can now be interpreted as regular expressions for re-
placing a single digit. Thus, the first rule learned by TBL would correspond to the
regular expression in (10).

(9) 0c000m1mOulnilsOmOe
(10) replace(1:2, [i]l, [s1)

The output of a cascade of such rules is a character string interspersed with digits.
The corresponding hyphenated string is obtained by a transducer which deletes 0,
translates a 1 into a hyphen, [2,C] into [C,-] (for any character C), etc.

A finite state transducer implementing the base system and the result of TBL can
now be conceptualized as follows:

(11) hyphenate o introduce digits o apply rules o interpret digits

The advantage of the second method is that TBL-rules correspond to one character
substitutions, whereas the first method introduces more complicated replacement-
targets. In practice, we observed that the second method is also less computationally
demanding (both in terms of memory required during compilation and in terms of
the size of the resulting automaton).

A disadvantage of the second method is that it requires that contexts must refer
both to characters and digits. That is, the fourth rule learned by TBL does not
correspond to (13) but to (14), where digit is the disjunction defined in (12).

(12) macro(digit, {0, 1 ,2, 3, 9})
(13) replace(1:2, [i,n,gl, [s])
(14) replace(1:2, [i,digit,n,digit,gl, [s])

Rule contexts therefore become very large (i.e. a 5 character context gives rise
to a regular expression with a context of length 10). In practice, compilation of
such rules is difficult. We therefore also experimented with a rule templates which
allowed digits to be included in the rules. The effect of this is that instead of having
to insert digit in contexts, we now obtain rules where the value of each digit in
the context is known (usually, 0). For instance, instead of learning the rule in (14),
the system now learns:

(15) replace(1:2, [i,0,n,0,g], [s])

A second alternative we expermimented with is treating pairs of digits and char-
acters as a single symbol. This has the advantage that contexts are reduced even
further, but has the disadvantage that the alphabet increases to approximately 5 x
26 (i.e. all combinations of a digit used in the alignment and a character).

Finite State Methods for Hyphenation 11

Rules no digits digits combined
S T S T S T
25| 137 1155 112 704| 48 832
50| 355 4159 261 2184| 115 3163
100 783 9196| 611 5628 219 7673
200| 1,846 24,019| 1,206 11,748| 486 20,388

Fig. 6. Number of states S and transitions T for the FST consisting of the composition of
N TBL rules using various methods.

Some results for composing N FsT’s for individual TBL-rules into a single trans-
ducer for the initial system, the system with digits in contexts, and the system
with combined characters, are given in figure 6. Although the size of the transducer
grows approximately linearly with the number of incorporated rules, the overall
size of the transducer is nevertheless too large for incorporation of all 1,400 rules
induced by TBL. Using the Prolog-based FSA implementation on a 64-bit machine
with 1 Gb of memory, we managed to compile maximally 400 rules into a single
transducer. To apply the full set of induced rules to new data, the best one can do
therefore is compose FST’s for up to 400 rules, and use a pipeline architecture to
pass the output of one transducer as input to the next.

These results are less encouraging than those of Roche and Schabes (1997). Note,
however, that the rule-set they experimented with were the result of applying TBL
for part-of-speech tagging (as in Brill (1995)). Their rule set consisted of 280 rules
with a context of at most three symbols. If the rule set is much larger, and contains
lengthy contexts, compilation may not be feasible in practice.

5 A comparison with TEX

The pattern-based hyphenation method of Liang (1983), incorporated in TEX , uses
a word list to derive patterns which indicate legal and illegal hyphenation points.
The extraction of patterns is very similar to TBL in that it tries to find the patterns
which introduce most legal (or illegal) hyphenation points, while introducing a
minimal number of errors. In this section, we present two results which shed light on
the relationship between the hyphenation methods presented above and the pattern-
based method. We evaluate the accuracy of TEX and the TBL system for Dutch on
running text. Next, we present a method for compiling hyphenation patterns into
a single FST. We start with an overview of the pattern-based method.

5.1 Hyphenation in TgX

Hyphenation in TEX uses five levels of patterns to determine legal and illegal hy-
phenation points. Level 1 contains patterns which insert the digit 1, level 2 pat-
terns introduce 2, etc. In the resulting string, odd numbers stand for potential hy-
phenation points, while even numbers indicate illegal hyphenation points. Tutelaers
(1999) illustrates the method with the example in figure 7. First, word boundary
markers (.) are added to the word to be hyphenated. Next, level 1 patterns are

12 Gosse Bouma

Level Patterns String

(mark boundaries) .pijnappel.

1 jn.a ;na .pij.n.appel.

2 i,j jona ,nap .pi>j.n;appel.

3 3pijn psp -3Pi:jon.apgpel.

4 -Ps4 jnay 4Pp peyl 41.| .3psizjaniaspszpeyl.
5 PsP -3Psizj.mia,pspe,l.
(interpret result) pijn-ap-pel

Fig. 7. Pattern-based Hyphenation in TEX

applied. A pattern matches if it contains a character-string which matches some
part of the word. Application of the pattern means that the corresponding marker
is added to the word string. In this case, two patterns apply, introducing two mark-
ers. Next, level 2 patterns are applied. Higher level rules override the effects of
lower rules, and thus the j,na pattern overwrites the effect of the ;na pattern. In
the final step, odd numbers are realized as hyphens, while even numbers can simply
be discarded. TEX adopts the typographic convention of never hyphenating words
after the first or before the penultimate and last character.

The acquisition of patterns follows a procedure which is strikingly similar to TBL.
In a first round, patterns are collected which identify a high number of potential
hyphenation points, while overgeneralizing minimally. In a second round, patterns
are learned which block the erroneuos hyphenation points which are the result of
applying the level-1 rules. This process iterates three more times, giving rise to five
levels of rules in total.

There are also a few differences between this method and TBL. First, all patterns
on a given level can be applied simultaneously to an input string. Ordering of
patterns is only relevant between levels. TBL rules, on the other hand, should be
applied in the order in which the are acquired. Second, the score of each rule must
be above a certain threshold T', where the score of a pattern is computed as follows:

(16) Score = Good x G — Bad x B

Good and Bad are the counts for the number of correct and wrong applications of
the pattern to the data, G and B are weights which determine the accuracy of the
rule (i.e. by making B much higher than G, accurate rules will score higher than less
accurate rules which might correct a larger number of errors). The value of G, B
and the threshold T may vary according to level. Furthermore, the maximal length
of the patterns considered may vary per level. A typical set-up appears to be one
where the context is short and the threshold is high initially, while for higher levels,
the context is longer, the threshold is lower, and the value of B is much higher than
that of G. For TBL, there is no fixed number of levels, and parameters can only be set
globally. Finally, Liang’s method learns both legal and illegal hyphenation points.
The TBL method combines the effect of identifying legal and illegal hyphenation
points by learning rules which shift a hyphen. Shifting a hyphen implicitly classifies
the original position as an illegal hyphenation point and the target position as a
legal hyphenation point.

Finite State Methods for Hyphenation 13

TeX| TBL
Mistake 3| 36
Missing hyphen 12| 25
Total 15| 61

Estimated Hyphen Accuracy| 99.8| 99.1
Estimated Word Accuracy 99.8| 99.5

Fig. 8. Comparing TgX and TBL on 11,641 words (containing 7,024 potential
hyphenation points) of running text.

Hyphenation patterns for Dutch were created on the basis of the same Celex word
list used in the previous sections. As a consequence of a spelling reform in 19962
the construction of patterns has been redone recently (Tutelaers, 1999). The new
Dutch pattern file contains a total of 8,870 patterns, where patterns are maximally
8 characters long.

5.2 Hyphen accuracy on running text

Training and testing on word lists for which the correct hyphenation is known, is
convenient but also artificial, as the characteristics of running text differ sharply
from that of a word list. The average word length for the Celex list is 10.85 while it
is approximately 4.5 for Dutch running text. The average number of hyphenation
points per word is 2.5 for Celex, but only 0.6 for the fragment of running text
described below. Evaluation on running text may therefore give results which differ
from the results for a word list. Note also that, as the TEX patterns for Dutch were
derived using 100% of the Celex list, evaluation on data held out from the word list
is impossible.

A test set was created consisting of 1,000 sentences of newspaper text (selected
from the CD-ROM version of de Volkskrant, 1997). This set contained a total of
11,641 words. Approximately 10% of the word types in the test set were not included
in Celex. 4,219 of the words were hyphenated by TEX when forced to produce all
hyphenation points, giving rise to a total of 7,024 hyphens. Instead of checking all
results, we only inspected those cases where TEX and the TBL system disagreed.
This was the case for 83 words, 9 of which were typo’s which were discarded. The
results of the comparison are given in figure 8.

Both systems make very few mistakes, but TEX does considerably better than
the TBL system. The difference seems to be due mostly to the fact that TEX uses
well over 8,000 patterns, where the TBL system uses only 1,400 patterns. On the
other hand, the TBL system only corrects the output of the syllable-based system,
and thus is expected to require less rules. Both systems used the same data for
acquisition of rules or patterns, but the TEX system uses rules with more context
(up to 8 characters). Furthermore, it seems the careful tuning of parameters guiding

& See www.minocw.nl/spelling.

14 Gosse Bouma

the acquisition of patterns at each level allows the pattern-based system to acquire
more effective patterns than the generic TBL method.

It is tempting to think of the results in figure 8 as indications of accuracy. Note,
however, that, apart from the fact that the test set was small, the systems have
only been compared on words where there was disagreement. It is possible therefore
that the test results contain errors which have gone unnoticed because both systems
made the same mistake.

5.3 Compilation of patterns

Although Liang (1983) uses a finite-state method to store and apply patterns ef-
ficiently, patterns are not actually compiled into a transducer which takes a word
as input and produces the hyphenation according to the patterns as output. The
construction of such a transducer is proposed in Kaplan and Karttunen (1998).

A hyphenating FST for hyphenation patterns can be constructed as the compo-
sition of the following sequence of transducers. First, 0’s are introduced between
all characters in the input string. Next, level 1 rules are applied. Applying a level
1 rule means that a 0 is replaced by a 1 in the relevant context. For instance, the
pattern in (17) corresponds to the regular expression in (18). Note that contexts
must be interspersed with digits up to the corresponding level of rule application.
Application of all level 1 rules can be achieved by composing (in arbitrary order)
all regular expressions for the individual patterns into a single transducer. Higher
level rules must be able to overwrite the effect of earlier, lower level rules. This
can be achieved by interpreting a level 2 pattern such as (19) as the regular ex-
pression in (20). This pattern substitutes both 0’s and 1’s by 2’s in the relevant
context. The level 1 transducer is composed with the transducer for all level 2 rules,
etc. Finally, odd numbers are realized as hyphens and even numbers are discarded.
Schematically, we have the FST defined by the regular expression in (21).

(17) jm,a

(18) replace(0:1,[j,{0,1},n],[al)

(19) j.na

(20) replace({0,1}:2,[j1,[n,{0,1,2},al)
(21)

21) insert. digits(0) o patterns(l) o patterns(2) o patterns(3) o

patterns(4) o patterns(5) o digits2hyphens

The construction of an FST for hyphenation patterns is not unlike the construction
of an FST for TBL-rules. Yet, compilation of more than 8,000 patterns into a single
transducer turned out to be feasible. The result has over 600,000 transitions, and
gives rise to a binary of 15 Mb.?

® One reviewer points out that a similar compilation was carried out for English (4753
patterns) by Lauri Karttunen, using the Xerox finite-state tools. The resulting FST
contains 39.875 states and 683.440 arcs.

Finite State Methods for Hyphenation 15

It is not clear why compilation of hyphenation patterns is ‘easier’ than compi-
lation of TBL patterns for the same task. One possible explanation could be the
fact that hyphenation patterns are ordered in blocks, where the application of rules
within a block is not ordered, whereas TBL-rules have to be applied in order of ac-
quisition. The latter suggests more interaction between rules than the former, which
might have an effect on the complexity of the corresponding automaton. Strict or-
dering of TBL-rules is necessary because some rule may provide input for a later
rule (feeding), or because some rule blocks the application of a later rule (bleeding).
If no feeding or bleeding relationship exists between rules, they can be applied in
any order. We computed these relationships for the hyphenation rules learned by
TBL, and concluded that 19 blocks of rules (where the order of application within a
block is irrelevant) are needed to account for all feeding and bleeding relationships.
Thus, it seems that the interaction between rules is indeed more complex in the
TBL system than in the pattern-based system.

6 Conclusions

In this paper we have presented two finite-state methods for hyphenation as well
as a method for compiling an existing method into a finite-state transducer. The
use of the replace-operator was crucial in all methods. In particular, the syllable-
based method capitalizes both on the fact that replace performs a longest-match
replacement and on the fact that it preforms replacements from left to right. The
method for compiling TBL-rules into a single transducer proposed by Roche and
Schabes (1997) turned out to be impractical for the large number of rules required
for accurate hyphenation. Hyphenation patterns as used by TgX on the other hand,
proved to be compilable into a single FST, albeit a large one. It is unclear why TBL-
rules are ’harder’ in this respect than patterns.

Accuracy of hyphenation after applying TBL turned out to be higher than that
of previous systems for Dutch, that were trained and evaluated on word lists. The
numerous hyphenation patterns for Dutch used by TEX are even more accurate.
The acquisition of TBL-rules and hyphenation patterns is strikingly similar. By
using larger context windows for patterns, and by tuning the acquisition of patterns
carefully to the hyphenation problem, TEX is able to induce a much larger set of
patterns, which turns out to have a positive effect on accuracy.

Acknowledgements

This paper has benefitted from comments from reviewers and participants of the
workshop on Finite State Methods for Natural Language Processing 2001, held
during EssLLI X1I (Helsinki, 2001). Following suggestions by Lauri Karttunen en
Theo Jansen, the method for compiling TEX patterns into a FST was implemented
together with Gertjan van Noord, partially during the workshop. Gertjan van Noord
also provided useful feedback on all other aspects of the paper.

16 Gosse Bouma

References

Baayen, R. H., R. Piepenbrock, and H. van Rijn. 1993. The CELEX Lexzical Database
(CD-ROM). UPenn, Philadelphia, PA: Linguistic Data Consortium.

Brandt Corstius, H. 1978. Computer-taalkunde. Muiderberg: Coutinho.

Brill, Eric. 1995. Transformation-based error-driven learning and natural language pro-
cessing: A case study in part-of-speech tagging. Computational Linguistics, 21:543—-566.

Daelemans, Walter and Antal van den Bosch. 1992. Generalization performance of back-
propagation learning on a syllabification task. In Connectionism and Natural Language
Processing. Proceedings Third Twente Workshop on Language Technology, pages 27-38.

Gerdemann, Dale and Gertjan van Noord. 1999. Transducers from rewrite rules with
backreferences. In Proceedings of the Ninth Conference of the European Chapter of the
Association for Computational Linguistics, pages 126-133, Bergen.

Gerdemann, Dale and Gertjan van Noord. 2000. Approximation and exactness in finite
state optimality theory. In Jason Eisner, Lauri Karttunen, and Alain Thériault, editors,
Finite-State Phonology. Proceedings of the Fifth Workshop of the ACL SPecial Interest
Group in Computational Phonology, pages 34-45, Luxembourg.

Kaplan, Ronald and Martin Kay. 1994. Regular models of phonological rule systems.
Computational Linguistics, 20(3).

Kaplan, Ronald M. and Lauri J. Karttunen. 1998. Finite-state encoding system for
hyphenation rules. United States Patent 5,737,621.

Karttunen, Lauri. 1995. The replace operator. In 38th Annual Meeting of the Association
for Computational Linguistics, pages 16—23, Boston, Massachusetts.

Karttunen, Lauri. 1998. The proper treatment of optimality in computational phonol-
ogy. In Lauri Karttunen, editor, FSMNLP’98: International Workshop on Finite State
Methods in Natural Language Processing. Association for Computational Linguistics,
Somerset, New Jersey, pages 1-12.

Karttunen, Lauri. 2001. Applications of finite-state technology in natural language pro-
cessing. In S. Yu and A. Paun, editors, Implementation and Application of Automata,
volume 2088 of Lecture Notes in Computer Science. Springer Verlag, Berlin, Germany,
pages 34-46.

Liang, Franklin Mark. 1983. Word Hy-phen-a-tion by Com-put-er. Ph.D. thesis, Stanford
University.

Ngai, Grace and Radu Florian. 2001. Transformation-based learning in the fast lane. In
Proceedings of the second conference of the North American chapter of the ACL, pages
40-47, Pittsburgh.

Roche, Emmanuel and Yves Schabes. 1997. Deterministic part-of-speech tagging with
finite-state transducers. In Emmanuel Roche and Yves Schabes, editors, Finite state
language processing. MIT Press, Cambridge, Mass., pages 205-239.

Sojka, Petr. 1995. Notes on compound word hyphenation in TgEX. In TUGboat 1995.
Proceedings of the 16th annual meeting of the Tex users group.

Tutelaers, P. T. H. 1999. Afbreken in TgX, hoe werkt dat nou? available at
ftp://ftp.tue.nl/pub/tex/afbreken.

van Noord, Gertjan. 1997. FSA Utilities: A toolbox to manipulate finite-state automata.
In Darrell Raymond, Derick Wood, and Sheng Yu, editors, Automata Implementation.
Springer Verlag. Lecture Notes in Computer Science 1260.

van Noord, Gertjan and Dale Gerdemann. 2001. Finite state transducers with predicates
and identity. Grammars, 4(3).

Vosse, Theo. 1994. The Word Connection. Ph.D. thesis, Rijksuniversiteit Leiden.

