# Burning Ship fractal

High-quality overview image of the Burning Ship fractal
High-quality image of the large ship in the left antenna

The Burning Ship fractal, first described and created by Michael Michelitsch and Otto E. Rössler in 1992, is generated by iterating the function:

${\displaystyle z_{n+1}=(|\operatorname {Re} \left(z_{n}\right)|+i|\operatorname {Im} \left(z_{n}\right)|)^{2}+c,\quad z_{0}=0}$

in the complex plane ${\displaystyle \mathbb {C} }$ which will either escape or remain bounded. The difference between this calculation and that for the Mandelbrot set is that the real and imaginary components are set to their respective absolute values before squaring at each iteration. The mapping is non-analytic because its real and imaginary parts do not obey the Cauchy–Riemann equations.[1]

## Implementation

Animation of a continuous zoom-out to show the amount of detail for an implementation with 64 maximum iterations

The below pseudocode implementation hardcodes the complex operations for Z. Consider implementing complex number operations to allow for more dynamic and reusable code. Note that the typical images of the Burning Ship fractal display the ship upright: the actual fractal, and that produced by the below pseudocode, is inverted along the x-axis.

 1 For each pixel (x, y) on the screen, do:
2 {
3     x = scaled x coordinate of pixel (scaled to lie in the Mandelbrot X scale (-2.5, 1))
4     y = scaled y coordinate of pixel (scaled to lie in the Mandelbrot Y scale (-1, 1))
5
6
7     zx = x; // zx represents the real part of z
8     zy = y; // zy represents the imaginary part of z
9
10
11     iteration = 0
12     max_iteration = 1000
13
14     while (zx*zx + zy*zy < 4  AND  iteration < max_iteration)
15     {
16         xtemp = zx*zx - zy*zy + x
17         zy = abs(2*zx*zy) + y //abs returns the absolute value
18         zx = abs(xtemp)
19
20         iteration = iteration + 1
21     }
22
23     if (iteration == max_iteration) //Belongs to the set
24         return insideColor;
25
26     return iteration * color;
27 }


## References

1. ^ Michael Michelitsch and Otto E. Rössler (1992). "The "Burning Ship" and Its Quasi-Julia Sets". In: Computers & Graphics Vol. 16, No. 4, pp. 435–438, 1992. Reprinted in Clifford A. Pickover Ed. (1998). Chaos and Fractals: A Computer Graphical Journey — A 10 Year Compilation of Advanced Research. Amsterdam, Netherlands: Elsevier. ISBN 0-444-50002-2