Margolus–Levitin theorem

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

The Margolus–Levitin theorem, named for Norman Margolus and Lev B. Levitin, gives a fundamental limit on quantum computation (strictly speaking on all forms on computation). The processing rate cannot be higher than 6 × 1033 operations per second per joule of energy. Or stating the bound for one bit:

A quantum system of energy E needs at least a time of to go from one state to an orthogonal state, where h is Planck's constant (6.626 × 10−34 J·s) and E is average energy.

See also[edit]

References[edit]

  • Norman Margolus, Lev B. Levitin (1998). "The maximum speed of dynamical evolution". Physica D. 120: 188–195. arXiv:quant-ph/9710043. Bibcode:1998PhyD..120..188M. doi:10.1016/S0167-2789(98)00054-2.CS1 maint: Uses authors parameter (link)
  • Deffner, Sebastian; Campbell, Steve (2017), "Quantum speed limits", Journal of Physics A, 50: 453001, arXiv:1705.08023, Bibcode:2017JPhA...50S3001D, doi:10.1088/1751-8121/aa86c6
  • Jordan, Stephen P. (2017), "Fast quantum computation at arbitrarily low energy" (PDF), Physical Review A, 95: 032305, arXiv:1701.01175, Bibcode:2017PhRvA..95c2305J, doi:10.1103/PhysRevA.95.032305
  • Lloyd, Seth; Ng, Y. Jack, "Black Hole Computers", Scientific American (April 2007), p. 53–61
  • Sinitsyn, Nikolai A. (2017). "Is there a quantum limit on speed of computation?" (PDF). arXiv:1701.05550. Bibcode:2018PhLA..382..477S. doi:10.1016/j.physleta.2017.12.042.