Urban forest

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

This article is about forests in cities. For the general use of trees in cities, see Urban forestry.


An urban forest is a forest, or a collection of trees, that grow within a city, town or a suburb. In a wider sense, it may include any kind of woody plant vegetation growing in and around human settlements. As opposed to a forest park, whose ecosystems are also inherited from wilderness leftovers, urban forests often lack amenities like public bathrooms paved paths, or sometimes clear borders which are distinct features of parks. Care and management of urban forests is called urban forestry. Urban forests may be publicly owned municipal forests, but the latter may also be located outside of the town or city to which they belong.[1]

Urban forests play an important role in ecology of human habitats in many ways. Aside from the beautification of the urban environment, they offer many benefits like impacting climate and the economy while providing shelter to wildlife and recreational area for city dwellers.[2]

Urban forests around the world[edit]

In many countries there is a growing understanding of the importance of the natural ecology in urban forests. There are numerous projects underway aimed at restoration and preservation of ecosystems, ranging from simple elimination of leaf-raking and elimination of invasive plants to full-blown reintroduction of original species and riparian ecosystems.[3][4]

Some sources claim that the largest man-made urban forest in the world is located in Johannesburg in South Africa.[5][6][7] Others have disputed this claim due to satellite pictures revealing how developed the city is with roads and buildings. Johannesburg, however, is still a very densely wooded city with reportedly 6.0 million trees planted throughout streets and private lots.[8]

Cherry Blossoms lining the Tidal Basin in Washington, D.C.

Tijuca Forest, in Rio de Janeiro, has also been considered to be the largest urban forest.[9][10] It began as a restoration policy in 1844 to conserve the natural remnants of forest and replant in areas previously cleared for sugar and coffee.[11] The larger metropolitan area encircle the forest which moderates the humid climate and provides sources of recreation for urban dwellers.

Nebraska National Forest is the largest man-made forest in the United States located in the state of Nebraska. It lies in several counties within the state and is a popular destination for campers year-round.[12]

Several cities within the United States have also taken initiative investing in their urban forests to improve the well-being and economies of their communities.[13] Some notable cities among them are Austin, New York, Seattle, and Washington, D.C. New York, for example, has taken initiative to combat climate change by planting millions of trees around the city.[14] In Austin, private companies are funding tree-planting campaigns for environmental and energy-saving purposes.[15]

Environmental impact[edit]

Urban forests play an important role in benefitting the environmental conditions of their respective cities. They moderate local climate, slowing wind and stormwater, and filter air and sunlight. They are critical in cooling the urban heat island effect, thus potentially reducing the number of unhealthful ozone days that plague major cities in peak summer months.

Air pollution reduction[edit]

As cities struggle to comply with air quality standards, trees can help to clean the air. The most serious pollutants in the urban atmosphere are ozone, nitrogen oxides (NOx), sulfuric oxides (SOx) and particulate pollution. Ground-level ozone, or smog, is created by chemical reactions between NOx and volatile organic compounds (VOCs) in the presence of sunlight. High temperatures increase the rate of this reaction. Vehicle emissions (especially diesel), and emissions from industrial facilities are the major sources of NOx. Vehicle emissions, industrial emissions, gasoline vapors, chemical solvents, trees and other plants are the major sources of VOCs. Particulate pollution, or particulate matter (PM10 and PM25), is made up of microscopic solids or liquid droplets that can be inhaled and retained in lung tissue causing serious health problems. Most particulate pollution begins as smoke or diesel soot and can cause serious health risk to people with heart and lung diseases and irritation to healthy citizens. Trees are an important, cost-effective solution to reducing pollution and improving air quality.

Trees reduce temperatures and smog

With an extensive and healthy urban forest air quality can be drastically improved. Trees help to lower air temperatures and the urban heat island effect in urban areas. This reduction of temperature not only lowers energy use, it also improves air quality, as the formation of ozone is dependent on temperature. Trees reduce temperature not only by directly shading: when there is a large number of trees it create a difference in temperatures between the area when they are located and the neighbor area. This creates a difference in atmospheric pressure between the two areas, which creates wind. This phenomenon is called urban breeze cycle if the forest is near the city and park breeze cycle if the forest is in the city. That wind helps to lower temperature in the city.[16]

  • As temperatures climb, the formation of ozone increases.
  • Healthy urban forests decrease temperatures, and reduce the formation of ozone.
  • Large shade trees can reduce local ambient temperatures by 3 to 5 °C
  • Maximum mid-day temperature reductions due to trees range from 0.04 °C to 0.2 °C per 1% canopy cover increase.
  • In Sacramento County, California, it was estimated that doubling the canopy cover to five million trees would reduce summer temperatures by 3 degrees[vague]. This reduction in temperature would reduce peak ozone levels by as much as 7% and smoggy days by 50%.
Lower temperatures reduce emissions in parking lots[17]

Temperature reduction from shade trees in parking lots lowers the amount of evaporative emissions from parked cars. Unshaded parking lots can be viewed as miniature heat islands, where temperatures can be even higher than surrounding areas. Tree canopies will reduce air temperatures significantly. Although the bulk of hydrocarbon emissions come from tailpipe exhaust, 16% of hydrocarbon emissions are from evaporative emissions that occur when the fuel delivery systems of parked vehicles are heated. These evaporative emissions and the exhaust emissions of the first few minutes of engine operation are sensitive to local microclimate. If cars are shaded in parking lots, evaporative emissions from fuel and volatilized plastics will be greatly reduced.

  • Cars parked in parking lots with 50% canopy cover emit 8% less through evaporative emissions than cars parked in parking lots with only 8% canopy cover.
  • Due to the positive effects trees have on reducing temperatures and evaporative emissions in parking lots, cities like Davis, California, have established parking lot ordinances that mandate 50% canopy cover over paved areas.
  • "Cold Start" emissions

The volatile components of asphalt pavement evaporate more slowly in shaded parking lots and streets. The shade not only reduces emissions, but reduces shrinking and cracking so that maintenance intervals can be lengthened. Less maintenance means less hot asphalt (fumes) and less heavy equipment (exhaust). The same principle applies to asphalt-based roofing.

Active pollutant removal

Trees also reduce pollution by actively removing it from the atmosphere. Leaf stomata, the pores on the leaf surface, take in polluting gases which are then absorbed by water inside the leaf. Some species of trees are more susceptible to the uptake of pollution, which can negatively affect plant growth. Ideally, trees should be selected that take in higher quantities of polluting gases and are resistant to the negative effects they can cause.

A study across the Chicago region determined that trees removed approximately 17 tonnes of carbon monoxide (CO), 93 tonnes of sulfur dioxide (SO2), 98 tonnes of nitrogen dioxide (NO2), and 210 tonnes of ozone (O3) in 1991.

Carbon sequestration

Urban forest managers are sometimes interested in the amount of carbon removed from the air and stored in their forest as wood in relation to the amount of carbon dioxide released into the atmosphere while running tree maintenance equipment powered by fossil fuels.

Interception of particulate matter

In addition to the uptake of harmful gases, trees act as filters intercepting airborne particles and reducing the amount of harmful particulate matter. The particles are captured by the surface area of the tree and its foliage. These particles temporarily rest on the surface of the tree, as they can be washed off by rainwater, blown off by high winds, or fall to the ground with a dropped leaf. Although trees are only a temporary host to particulate matter, if they did not exist, the temporarily housed particulate matter would remain airborne and harmful to humans. Increased tree cover will increase the amount of particulate matter intercepted from the air.

  • Large evergreen trees with dense foliage collect the most particulate matter.
  • The Chicago study determined that trees removed approximately 234 tonnes of particulate matter less than 10 micrometres (PM10) in 1991.
  • Large healthy trees greater than 75 cm in trunk diameter remove approximately 70 times more air pollution annually (1.4 kg/yr) than small healthy trees less than 10 cm in diameter (0.02 kg/yr).

Rainwater runoff reduction[edit]

Virginia opossum being sheltered by an old tree

Urban forests and trees help purify water sources by slowing down rain as it falls to the earth and help it soak into the soil, thereby naturally filtering out pollutants that can potentially enter water supply sources. They reduce storm water runoff and mitigate flood damage, protecting the surrounding rivers and lakes.[18] Since water is an irreplaceable resource, planting trees, hence enhancing urban forestry, can help protect and clean a city's water supply.

Urban wildlife[edit]

Trees in urban forests provide food and shelter for wildlife in cities. Birds and small mammals use trees as nesting sites, and reptiles use the shade they provide to keep cool in the hot summer months.[19] Furthermore, trees provide shade necessary for shrubbery. Not only do urban forests protect land animals and plants, they also sustain fish and water animals that need shade and lower temperatures to survive.[18]

Economic impacts[edit]

The economic benefits of trees and various other plants have been understood for a long time. Recently, more of these benefits are becoming quantified. Quantification of the economic benefits of trees helps justify public and private expenditures to maintain them. One of the most obvious examples of economic utility is the example of the deciduous tree planted on the south and west of a building (in the Northern Hemisphere), or north and east (in the Southern Hemisphere). The shade shelters and cools the building during the summer, but allows the sun to warm it in the winter after the leaves fall.The physical effects of trees—the shade (solar regulation), humidity control, wind control, erosion control, evaporative cooling, sound and visual screening, traffic control, pollution absorption and precipitation—all have economic benefits.

Energy and CO2 consumption[edit]

Urban forests contribute to the reduction of energy usage and CO2 emissions primarily through the indirect effects of an efficient forestry implementation [20][21]. The shade provided by trees reduces the need for heating and cooling throughout the year.[22] As a result, energy conservation is achieved which leads to a reduction of CO2 emissions by power plants.[21] Computer models indicate that annual energy consumption can be reduced by 30 billion kWh using 100 million trees in U.S. urban areas. This energy consumption decrease equates to monetary savings of $2 billion. Additionally, the reduction of energy demand would reduce power plant CO2 emissions by 9 million tons per year.[20]

Water filtration[edit]

The stormwater retention provided by urban forests can provide monetary savings even in arid regions where water is expensive or watering conservation is enforced.[20] One example of this can be seen in a study carried out over 40 years in Tucson, AZ, which analyzed the savings of stormwater management costs. Over this period, it was calculated that $600,000 in stormwater treatment costs were saved.[20] It was also observed that the net water consumption was reduced when comparing the water required for irrigation against power plant water consumption due to the effects of urban forests on energy usage.[20]

In another instance, New York City leaders in the late 1990s chose to pursue a natural landscape management instead of an expensive water treatment system to clean the Catskill/Delaware watershed. New Yorkers today enjoy some of the healthiest drinking water in the world.[18]

Tourism and local business expansion[edit]

The USDA Guide[23] notes on page 17 that "Businesses flourish, people linger and shop longer, apartments and office space rent quicker, tenants stay longer, property values increase, new business and industry is attracted" by trees.

Increases in property values[edit]

Urban forests have been linked to an increase in property value surrounding residents. An empirical study from Finland showed a 4.9% increase in property valuation when located just one kilometer closer to a forest. [24] Another source claims this increase can range as high as 20%. [25]The reduction of air, light, and noise pollution provided by forests is cause for the notable pricing differentials.

Sociological impacts[edit]

Community health impact[edit]

Urban forests offer many benefits to their surrounding communities. Removing pollutants and greenhouse gases from the air is one key reason why cities are adopting the practice. Removing pollutants from the air, urban forests can lower risks of asthma and lung cancer.[26] [27] Communities that rely on well-water may also see a positive change in water purity due to filtration.[28][29] The amenities provided by the city of each urban forest varies. Some amenities include trails and pathways for walking or running, picnic tables, and bathrooms. These healthy spaces provide for the community a place to gather and live a more active lifestyle.

Mental health impact[edit]

Living near urban forests have shown positive impacts on mental health. As an experimental mental health intervention in the city of Philadelphia, trash was removed from vacant lots, some of them being selectively "greened" by plantings trees, grass, and installing small fences. Residents near the "greened" lots who had incomes below the poverty line reported a 68% decrease in feelings of depression, while residents with incomes above the poverty line reported a decrease of 41%.[30] The Biophilia hypothesis argues that people are instinctively drawn to nature, while Attention Restoration Theory goes on to demonstrate tangible improvements in medical, academic and other outcomes, from access to nature. Proper planning and community involvement are important for the positive results to be realized.

See also[edit]

References[edit]

Notes[edit]

  1. ^ Ranasinghe ,WC and Hemakumara, GPTS(2018), Spatial modelling of the householders' perception and assessment of the potentiality to improve the urban green coverage in residential areas: A case study from Issadeen Town Matara, Sri Lanka, Ruhuna Journal of Science, Vol 9(1); http://rjs.ruh.ac.lk/index.php/rjs/article/view/174 Archived 2018-08-03 at the Wayback Machine
  2. ^ Jiri Lev (2017). "The power of streetscape and how to protect it". Newcastle Herald. Newcastle NSW Australia. Archived from the original on 2017-09-03. Retrieved 2017-09-03.
  3. ^ Nowak, David J.; Randler, Paula B.; Greenfield, Eric J.; Comas, Sara J.; Carr, Mary A.; Alig, Ralph J. (2010). "Sustaining America's urban trees and forests: a Forests on the Edge report". Gen. Tech. Rep. NRS-62. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 27 p. 62. doi:10.2737/NRS-GTR-62.
  4. ^ Elmqvist, T; Setälä, H; Handel, SN; van der Ploeg, S; Aronson, J; Blignaut, JN; Gómez-Baggethun, E; Nowak, DJ; Kronenberg, J; de Groot, R (2015-06-01). "Benefits of restoring ecosystem services in urban areas". Current Opinion in Environmental Sustainability. Open Issue. 14: 101–108. doi:10.1016/j.cosust.2015.05.001. ISSN 1877-3435.
  5. ^ "Green tourism in Gauteng – Gauteng Tourism Authority: Visit The Province Built On Gold". Archived from the original on 2013-05-16. Retrieved 2013-05-19.
  6. ^ "city of Johannesburg - Joburg's urban forest to grow". Archived from the original on 2015-04-30. Retrieved 2013-05-19.
  7. ^ "Johannesburg expands its urban forest". Archived from the original on 2013-12-19. Retrieved 2013-05-19.
  8. ^ "Is Johannesburg the world's largest man-made forest? The claim is a myth | Africa Check". Africa Check. Archived from the original on 2018-02-27. Retrieved 2018-03-07.
  9. ^ Matos, D. M. Silva; Santos, C. Junius F.; Chevalier, D. de R. (2002-09-01). "Fire and restoration of the largest urban forest of the world in Rio de Janeiro City, Brazil". Urban Ecosystems. 6 (3): 151–161. doi:10.1023/A:1026164427792. ISSN 1083-8155.
  10. ^ "Contested understandings of the world's largest urban forest | Abstract Gallery | AAG Annual Meeting 2018". aag.secure-abstracts.com. Archived from the original on 2018-03-08. Retrieved 2018-03-07.
  11. ^ Drummond, José (1996). "The Garden in the Machine: An Environmental History of Brazil's Tijuca Forest". Environmental History. 1 (1): 83–104. doi:10.2307/3985065. ISSN 1084-5453.
  12. ^ Lefevers, Delana (2019-07-28). "The Largest Man-Made Forest In The U.S. Is In Nebraska And It's A Unique Place To Visit". OnlyInYourState. Retrieved 2019-11-08.
  13. ^ "The Best Urban Forests". American Forests. 2013-02-05. Retrieved 2019-11-08.
  14. ^ Sutton, Michelle (2018-04-16). "NYC's 25-Year Plan for its Urban Forests". New York State Urban Forestry Council. Retrieved 2019-11-08.
  15. ^ Dolan, Maria. "The Movement for Urban Tree Expansion Is Growing". Pacific Standard. Retrieved 2019-11-08.
  16. ^ "Climate Change Management". American Planning Association. American Planning Association. Archived from the original on 2017-12-22. Retrieved 21 December 2017.
  17. ^ Klaus I. Scott, James R. Simpson, and E. Gregory McPherson. "Effects of Tree Cover on Parking Lot Microclimate and Vehicle Emissions" Archived 2013-09-03 at the Wayback Machine USDA Forest Service Pacific Southwest Research Station Western Center for Urban Forest Research and Education
  18. ^ a b c Rosenow, John. "Trees play key role in purifying our water". ajc. Retrieved 2019-11-04.
  19. ^ "Losing Urban Trees—and the Wildlife that Depends on Them". Good Nature Travel. 2018-12-11. Retrieved 2019-11-08.
  20. ^ a b c d e Dwyer, John; Mcpherson, E.; Schroeder, Herbert; Rowntree, Rowan (1992-01-01). "Assessing the benefits and costs of the urban forest". J. Arbor. 18.
  21. ^ a b Tyrväinen, Liisa; Pauleit, Stephan; Seeland, Klaus; de Vries, Sjerp (2005), Konijnendijk, Cecil; Nilsson, Kjell; Randrup, Thomas; Schipperijn, Jasper (eds.), "Benefits and Uses of Urban Forests and Trees", Urban Forests and Trees: A Reference Book, Springer Berlin Heidelberg, pp. 81–114, doi:10.1007/3-540-27684-x_5, ISBN 9783540276845, retrieved 2019-10-28
  22. ^ McPherson, Greg; Simpson, James R.; Peper, Paula J.; Maco, Scott E.; Xiao, Qingfu (2005-12-01). "Municipal Forest Benefits and Costs in Five US Cities". Journal of Forestry. 103 (8): 411–416. doi:10.1093/jof/103.8.411. ISSN 0022-1201.
  23. ^ Craig W. Johnson; Fred A. Baker; Wayne S. Johnson (1990). "Urban & Community Forestry, a Guide for the Interior Western United States" (PDF). USDA Forest Service, Intermountain Region, Ogden, Utah.
  24. ^ Tyrväinen, Liisa; Miettinen, Antti (2000-03-01). "Property Prices and Urban Forest Amenities". Journal of Environmental Economics and Management. 39 (2): 205–223. doi:10.1006/jeem.1999.1097. ISSN 0095-0696.
  25. ^ "Local Economics :: Green Cities: Good Health". depts.washington.edu. Retrieved 2019-11-09.
  26. ^ Konijnendijk, Cecil; Nilsson, Kjell; Randrup, Thomas; Schipperijn, Jasper, eds. (2005). "Urban Forests and Trees". doi:10.1007/3-540-27684-x. Cite journal requires |journal= (help)
  27. ^ Brack, C. L. (2002-03-01). "Pollution mitigation and carbon sequestration by an urban forest". Environmental Pollution. 116: S195–S200. doi:10.1016/S0269-7491(01)00251-2. ISSN 0269-7491.
  28. ^ Rosenow, John. "Trees play key role in purifying our water". ajc. Retrieved 2019-11-08.
  29. ^ "The Important Relationship between Forests and Water". American Forests. 2016-04-26. Retrieved 2019-11-08.
  30. ^ South, Eugenia C.; Hohl, Bernadette C.; Kondo, Michelle C.; MacDonald, John M.; Branas, Charles C. (2018-07-06). "Effect of Greening Vacant Land on Mental Health of Community-Dwelling Adults: A Cluster Randomized Trial". JAMA Network Open. 1 (3): e180298–e180298. doi:10.1001/jamanetworkopen.2018.0298.

Bibliography[edit]

  • Nowak, D. (2000). Tree Species Selection, Design, and Management to Improve Air Quality Construction Technology. Annual meeting proceedings of the American Society of Landscape Architects (available online, pdf file).
  • Nowak, D. The Effects of Urban Trees on Air Quality USDA Forest Service (available online, pdf file).
  • Nowak, D. (1995). Trees Pollute? A "Tree Explains It All". Proceedings of the 7th National Urban Forest Conference (available online, pdf file).
  • Nowak, D. (1993). Plant Chemical Emissions. Miniature Roseworld 10 (1) (available online, pdf file).
  • Nowak, D. & Wheeler, J. Program Assistant, ICLEI. February 2006.
  • McPherson, E. G. & Simpson, J. R. (2000). Reducing Air Pollution Through Urban Forestry. Proceedings of the 48th meeting of California Pest Council (available online, pdf file).
  • McPherson, E. G., Simpson, J. R. & Scott, K. (2002). Actualizing Microclimate and Air Quality Benefits with Parking Lot Shade Ordinances. Wetter und Leben 4: 98 (available online, pdf file).

External links[edit]