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Introduction

Human readers have the extraordinary capability to infer the meaning of a word from
text, even if they have never heard of the word before, and there are no visual cues
present to support its interpretation. Take for example sentences (1) – (3):

(1) Fomalhaut
Fomalhaut

staat
stands

op
on

24
24

lichtjaren
light years

van
of

de
the

zon,
sun

en
and

is
is

15
15

keer
times

zo
as

helder.
bright

Fomalhaut is 24 light years away from the sun, and is 15 times as bright.

(2) Zelfs
Even

een
a

rijpe
ripe

kumquat
kumquat

smaakt
tastes

nog
still

tamelijk
rather

zuur.
sour

Even a ripe kumquat still tastes rather sour.

(3) Op
On

een
a

statig
stately

deuntje
tune

danste
danced

men
one

de
the

pavane.
pavane

On a stately tune, they danced the pavane.

Even if we have never heard of words like Fomalhaut, kumquat and pavane before, we
can still make reasonable assumptions about their meaning. The surrounding words
allow us to assume that Fomalhaut is probably a star, that kumquat is some kind of
edible organic object – most likely a fruit – and that a pavane is some kind of dance.
We are able to infer the meaning of words because the context gives us cues about their
semantic content. Likewise, we might be able to use the context of unknown words to
infer their meaning automatically.

Of course, we can only get at the meaning of Fomalhaut because we are already
familiar with the other words in the sentence, such as lichtjaar ‘light year’ and zon
‘sun’. Likewise, we know what kind of objects might be ripe and taste sour, and we
have a general idea of what it is that can be danced. The situation becomes more
complicated if we want to use a computer to automatically infer the meaning of words:
unlike humans, a computer does not have any a priori knowledge of words whatsoever.
For this reason, most work on the acquisition of semantics from text has focused on
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6 INTRODUCTION

semantic similarity. Determining how similar a word is to other known words is much
easier than determining what its actual meaning is. It is hard to extract the meaning of
Fomalhaut from scratch, but it is much easier to determine that Fomalhaut appears in
the same contexts as words like Sirius and Betelgeuse. Likewise, the word kumquat
will appear in similar contexts as words like orange, lemon and apple, and pavane will
be found in locations similar to words like bourrée, gigue or polka.

The semantic similarity of a word can thus be determined by accumulating its
different contexts in a large corpus, and comparing those contexts to the contexts of
other words. If two words have similar contexts, they are likely to be semantically
related. Likewise, if two words share only few or no contexts at all, they are probably
semantically unrelated. This process of determining a word’s semantics by looking at
the way it is distributed in texts is called DISTRIBUTIONAL SIMILARITY, and it will be
the main foundation of this dissertation.

The extraction of semantics from text is a very broad and extensive subject. It
therefore makes sense to clearly demarcate what will be our object of research, and also
mention what this dissertation will not be about. The main subject of this dissertation
is the lexico-semantic extraction of nouns from large-scale written corpora. The three
italicized words are important here. By lexico-semantic extraction, we mean that we
restrict ourselves to the extraction of semantic information on the lexical level: we are
interested in extracting the semantics of single words, as they might be described in a
dictionary. Of course, the lexical level is only a part of the vast domain that is semantics.
Humans combine words into sentences to form complex meanings. Moreover, the
combination of words has an influence on the meaning of the combined parts. These
phenomena belong to the domain of compositional semantics, and they are beyond the
scope of this dissertation.

Secondly, this dissertation mainly investigates the extraction of nouns. It goes
without saying that there are many more word classes – adjectives, verbs and even
function words – that deserve our attention with regard to the determination of their
semantics. Verbs, in particular, make up an interesting word class with complex
semantic behaviour. This dissertation, however, is limited to the extraction of nouns,
and the lexico-semantic extraction of other word classes is again largely beyond its
scope.1

Thirdly, we will investigate the lexical semantics of nouns by looking at their
distribution in large written text corpora of newspaper texts. It is very well possible
that the semantics present in these corpora is very different from the semantics to be
found in spoken corpora, or in sources that go beyond the realm of linguistics. The

1Note, however, that we will touch upon the extraction of verb semantics in the last chapter, where we
discuss the extraction of selectional preferences.
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semantics that we investigate in this dissertation, however, will be the semantics of
words as they appear in written newspaper texts.

With these reservations set aside, we can introduce the three main research questions
that will be investigated in this dissertation. First of all, we want to determine what
kind of semantic similarity is captured by different context models. We will present
three different groups of models (each based on a different notion of context), and we
will quantitatively investigate what kind of semantic similarity is captured by them.
At the same time, we will investigate the usefulness of the models (and the resulting
lexico-semantic resources) in a number of applications, notably multi-word expression
extraction and word sense discrimination.

Secondly, we want to investigate the applicability of dimensionality reduction meth-
ods for semantic similarity extraction. Dimensionality reduction – or factorization – is
the collective name for mathematical techniques that try to reduce an abundant number
of overlapping features to a limited number of independent, informative dimensions.
We will discuss a number of dimensionality reduction methods, and quantitatively
evaluate whether they are beneficial for semantic similarity extraction. Again, their
usefulness is also investigated in two applications: word sense discrimination and
selectional preference induction.

Thirdly, we will investigate the use of three-way methods for lexico-semantic
information extraction. Up till now, most research on the extraction of lexical semantics
from text has focused on two-way methods, in which two-way co-occurrences (e.g.
terms× documents) are used. Co-occurrences need not be limited to two ways, though;
it is easy to think of entities that occur in three (or more) ways (e.g. verbs × subjects
× direct objects). We will present the mathematical machinery to deal with multi-way
co-occurrences, and test the usefulness of three-way methods in an application, namely
the induction of selectional preferences.

The outline of this dissertation is as follows. The first part provides a theoretic
framework – grounding the distributional similarity theorem and setting up a formal
framework for a computational implementation. This includes a thorough overview
of two dimensionality reduction algorithms – singular value decomposition and non-
negative matrix factorization – and a discussion of three-way methods. The second part
investigates the three different groups of models and their various model parameters,
and provides a quantitative evaluation of their ability to extract semantic similarity. The
final part of this dissertation provides a number of applications, in which the different
models and techniques presented in the first part are applied.
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Chapter 1

The Nature of Meaning

If we want to extract meaning automatically from text, we first need to investigate what
‘meaning’ actually is. What does it mean for a word to mean something? How is a
particular word able to convey a particular content? And how is this content built up?
What is, in short, the nature of meaning?

1.1 Theories of meaning

In the course of history, the nature of meaning has been one of the major issues in the
philosophical debate. The issue was first raised in the ancient Greek world, and was
subsequently tackled by numerous philosophers. In the 19th century, meaning also
entered the realm of linguistics – first in the context of diachronic linguistics,1 later
also as a synchronic study. In the following paragraphs, we briefly discuss the different
theories of meaning (and their relation to reality) that have been proposed both in
philosophy and linguistics, and assess their potential to serve within computationally
implemented procedures of meaning extraction.

1.1.1 Referential theory of meaning

In a referential theory of meaning, the meaning of a particular word is regarded as a
pointer to the designated object in the real world. The meaning of a word is what it
refers to. If we utter a word like apple, we refer to an actual apple (or the set of all
apples) in reality. Intuitively, a referential theory of meaning seems very appealing.

1Christian Karl Reisig proposed the study of ‘Semasiologie’ in 1825, Michel Bréal coined the term
‘sémantique’ in 1883.

11



12 CHAPTER 1. THE NATURE OF MEANING

If parents want to teach their children the meaning of a word like apple, chances are
pretty high that they will point to an actual apple – or a picture of one. At first sight
words indeed seem no more than references to things (entities, actions or relations)
existing in the outside world. There are, however, a number of problems with such a
referential theory of meaning. The theory is able to account for what is generally called
the denotation or extension of words, but fails to describe other semantic characteristics,
generally referred to as connotation or intension. The German philosopher Gottlob
Frege (1848–1925) illustrated this deficiency with a by now well-known example.
Compare the following sentences:

(1) The morning star is the morning star.

(2) The morning star is the evening star.

Both morning star and evening star refer to the same entity, viz. the planet Venus,
which might be visible either in the morning or in the evening (depending on the
relative position of Venus and the earth). Sentences (1) and (2), however, significantly
differ in meaning. Sentence (1) expresses a simple tautology, whereas sentence (2)
expresses a new and important astronomical truth. Sentences (1) and (2) do not mean
the same thing, but a referential theory of meaning does not account for the difference
between them.

Frege’s solution to the morning/evening star paradox was to make a distinction
between Sinn (sense) and Bedeutung (reference). Bedeutung is the object that the word
refers to, whereas Sinn is the cognitive representation of the object. By making this
distinction, it is possible for words to have a different sense but the same referent (as in
the paradox above).

The referential theory of meaning has been popular with logicians (e.g. the young
Wittgenstein and Bertrand Russell). It provides a parsimonious and straightforward
model of meaning, but the previous examples have shown that it is incapable of captur-
ing all aspects of meaning. Moreover, it is unclear how we ought to proceed in order to
extract these ‘meaning references’ in a computational way. The theoretical problems
as well as the practical drawbacks make the referential theory rather unattractive for
the computational extraction of meaning.

1.1.2 Mentalist theory of meaning

Another solution – one that has been very popular throughout the history of philosophy,
starting with the Greek philosopher Plato – is to represent meaning exclusively as ideas.
A mentalist theory of meaning associates the meaning of a particular word with a
particular idea in the human mind. This theory effectively solves the morning/evening
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star paradox: The morning star might be the same thing as the evening star in reality,
but the idea of the morning star and the evening star may very well differ. The question
that immediately follows is what this notion of idea actually entails. Surely, it cannot
be the mental representations that are present in each individual person. These mental
representations differ a lot among different persons. If one person hears the word
strawberry, an image of an appetizing dessert plate – possibly covered with lots of
whipped cream – might pop up. Another person might prefer them with powder sugar,
and another one without any topping at all. Or one might even be disgusted by the
idea of strawberries, because of a severe allergic reaction in the past. To be practically
usable, the ideas need to have some generality, exceeding the individual level. But it
is difficult to achieve this generalization without resorting to the notion of idea in the
platonic sense, that is somehow mysteriously present in people’s minds. This is not the
direction we want to venture into, especially if we want to implement semantics in a
computational way. If we want a sound theory of semantics that can be implemented
computationally, we will need a theory that is not dependent on reference or ideas.

1.1.3 Behavioural theory of meaning

The vagueness and non-generality that inevitably seems to surround the mentalist
view has led people to abandon the mentalist theory of meaning in favour of a theory
that sticks to ‘observable’ facts. Inspired by the behaviourist movement that became
popular within the field of psychology, the American linguist Leonard Bloomfield
defines meaning of a linguistic form as ‘the situation in which the speaker utters it
and the response which it calls forth in the hearer’. (Bloomfield, 1933, p. 139). The
meaning of a word is thus reduced to the speaker’s stimulus that elicits its use, and/or
the hearer’s response to that word.

Although the behavioural theory of meaning claims to overcome the vagueness of
ideas in the mentalist view, it seems almost as problematic as the theory it opposes.
There is a plethora of different stimuli that elicit the same word, and the number of
different responses evoked by that word is equally high. Take, for example, a word like
jazz. In some situations, a person might utter the word to indicate they would like to
hear some jazz tunes. In other situations, they might utter the word to approve – or
disapprove – of the music they are listening to at that moment. And one odd person –
not particularly familiar with different music styles – might even utter jazz when in fact
they are listening to hip hop. Similarly, people’s reactions to the word jazz may differ
quite a lot. One person might turn on the radio and look for a suitable radio station,
another one might start nodding their head whistling a Duke Ellington tune, while
yet another might make an unhappy face and stick out their tongue. Every language
utterance has a similar abundance of stimuli eliciting it, and a similar abundance of
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responses following it. This makes it practically impossible to describe the meaning of
a particular word in terms of the utterance’s stimuli and responses.

Moreover, behaviourists have a rather vague and untenable view of what this
behaviourist meaning description practically should look like. In his main textbook on
linguistics, Language, Bloomfield notes:

The situations which prompt people to utter speech, include every object
and happening in their universe. In order to give a scientifically accurate
definition of meaning for every form of a language, we should have to
have a scientifically accurate knowledge of everything in the speaker’s
world. (Bloomfield, 1933, p. 139)

Bloomfield himself acknowledges that

. . . the statement of meanings is therefore the weak point in [behavioural]
language-study, and will remain so until human knowledge advances very
far beyond its present state. (Bloomfield, 1933, p. 140)

Bloomfield also deems it necessary to ‘resort to makeshift theories’ whenever scientific
description is impossible – one of those theories being a referential theory of meaning.

In addition to the theoretical and practical drawbacks associated with a behaviour-
ist’s description of meaning, the theory obviously doesn’t stand a chance to function
within a computational framework. In order to implement meaning in a behavourial,
computational framework, a computer should be able to observe, interpret and classify
human stimuli and responses. The current state of artificial intelligence does not allow
such complex cognitive computations just yet.

1.1.4 Use theory of meaning

A radically different theory of meaning qualifies the meaning of an expression as its
use in a language system. A use theory of meaning does not refer to an external entity
(a referent, an idea, or stimuli and responses) to qualify a word’s meaning, but instead
qualifies the meaning of a word as the value it gets through the (linguistic) system in
which it is used. It was Wittgenstein who famously noted that ‘the meaning of a word
is its use in the language’ (Wittgenstein, 1953).

The use theory of meaning differs radically from the previous theories of meaning.
In the previous theories, there is an existing order of things (a ‘meaning’) outside of the
language system; the words of a language are used to talk about existing entities, but
entities and words belong to two different classes, and there is no influence between
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the two classes. A use theory of meaning, on the other hand, advances a system in
which meaning is defined and constructed within the language itself.

The first person to explore this radically different view in the context of linguistic
theory was the Swiss linguist Ferdinand de Saussure (1857–1913), who is the founding
father of the linguistic movement nowadays known as structuralism. In his most
important work, the Cours de Linguistique Générale (Course in General Linguistics),
Saussure lays out the foundations for a differential view on language. Saussure defines
a linguistic sign as a combination of the signifiant (‘signifier’) – representing the sound
form of the sign – and the signifié (‘signified’) – representing the linguistic meaning of
the sign.

According to Saussure,

. . . la langue est un système dont tous les termes sont solidaires et où la
valeur de l’un ne résulte que de la présence simultanée des autres . . .
[language is a system in which all terms are equal, and in which the
value of one is only the result of the simultaneous presence of the others]
(Saussure, 1916)

This quote represents Saussure’s structuralist view on language: the linguistic
meaning of a sign is not a given, existing truth in the outside world, but it is defined in
terms of its use in particular contexts (and its non-use in other contexts). The meaning
of a particular word is not an independent or transcendental fact, but it is defined within
a network of different embedded meanings, which in turn get their values from their
position in the network of meanings.

The structuralist view on language has been further developed by a number of
linguists, one of the most notable being Zellig Harris. Harris advocated a distributional
method for linguistic research: linguistic elements (words, but also morphemes or
phonemes) can be investigated by looking at the way they are distributed in language.
As such, the distributional method is also able to discover the semantic properties of a
word. Harris notes:

The fact that, for example, not every adjective occurs with every noun
can be used as a measure of meaning difference. For it is not merely that
different members of the one class have different selections of members of
the other class with which they are actually found. More than that: if we
consider words or morphemes A and B to be more different in meaning
than A and C, then we will often find that the distributions of A and B are
more different than the distributions of A and C. In other words, difference
of meaning correlates with difference of distribution. (Harris, 1954, p.
156)
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The hypothesis that semantically similar words tend to occur in similar contexts
has been coined the DISTRIBUTIONAL HYPOTHESIS in subsequent work, and Harris’
work is often cited as the main source of inspiration. The distributional hypothesis
not only turns out to provide a sound basis for meaning description, it also provides a
suitable starting point for an implementation in a computational framework, as will be
shown in chapter 2.

1.2 Context

In the first part of this chapter, we have shown that a use theory of meaning is a sound
basis for the computational extraction of lexico-semantic meaning: the sum of a word’s
contexts is a good indicator of the word’s use, and hence its ‘meaning’. In the second
part of this chapter, we focus on the notion of context. The context of a particular
word can be interpreted in a number of ways: the context might be the document the
word appears in, it might be a window of words around a particular word, or it might
be the syntactic context in which the word takes part. In this section, we will have
a look at these different kinds of context, investigate which parameters are involved,
and examine how different contexts might be useful for lexico-semantic knowledge
extraction. The next chapter will then investigate how these various contexts can be
formalized and implemented in a computational way.

1.2.1 Document-based context

First of all, a particular word always appears in a particular document. This gives rise
to our first instantiation of the distributional hypothesis:

Hypothesis 1. Words are semantically similar if they appear in similar documents.

Words that appear in the same documents tend to be thematically related: texts
usually focus on one particular topic (or a few topics), so that the majority of content
words is related to these topics. Take for example the three newspaper paragraphs in
figure 1.1, taken from the MEDIARGUS newspaper corpus, a 1.4 billion word corpus of
(Belgian) Dutch newspaper texts.

The three paragraphs all contain words related to the medical domain (printed
in boldface). Note that a word like patiënt ‘patient’ appears in all three documents.
Likewise, words like dokter ‘doctor’ and arts ‘doctor’ appear in the same documents.
In a similar vein, words related to another topic – say economics, soccer, or rock music
– appear together in the same documents. If such related words appear in the same
documents sufficiently frequently, a computer algorithm might be able to infer that
they are indeed semantically related.
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Uit het onderzoek blijkt ook dat
slechts de helft van de patiënten
naar de dokter gaat. Veertig pro-
cent praat over z’n probleem met
vrienden. Maar 20 procent van de
patiënten heeft het er met niemand
over. Patiënten die hun kwaal voor
de buitenwereld verbergen zeggen
‘de juiste woorden niet te vinden om
hun toestand te beschrijven’, of ‘zich
te schamen over hun toestand’. Som-
migen hadden zelfs schrik om er met
iemand over te praten. Volgens het
onderzoek dient de reden waarom
mensen er niet over praten ook bij
de arts te worden gezocht.

The research also shows that only
half of the patients goes to the doc-
tor. Forty percent talks about their
problem with friends. But twenty per-
cent of the patients does not talk to
anybody. Patients hiding their condi-
tion for the outside world claim ‘not
to find the right words to describe
their situation’, or ‘to be ashamed
of their situation’. Some were even
frightened to talk to someone about
it. The research shows that the reason
why people are not talking about it
also has to be sought with the doctor.

In heel wat gevallen kunnen dokters
zich beter concentreren op de oorza-
ken van de pijn in plaats van op
de behandeling, zo wil de nieuwe
denktrant in de medische wereld.
Operaties zijn uitzonderlijk, het
gros van de patiënten is gebaat bij
de zogenaamde conservatieve (niet-
operatieve) therapieën. De topper
is oefentherapie onder begeleiding
van een kinesitherapeut.

In many cases, doctors would better
concentrate on the causes of the pain
instead of the treatment, that is the
new way of thinking in the medical
world. Surgeries are exceptional, the
majority of the patients benefits from
so-called conservative (non-surgical)
therapies. The top therapy is training
therapy, coached by a physiotherap-
ist.

Zaterdagvoormiddag werd in-
gebroken in de wagen van een
arts die op huisbezoek was bij een
patiënt. De dader sloeg een ruit van
de wagen stuk, vond de doktersjas
en nam een aantal spuiten mee.

Saturday morning, the car of a doctor
visiting a patient was burgled. The
offender broke a window, found the
doctor’s coat and took a couple of
injections.

Figure 1.1: Three document paragraphs from different newspapers – all containing
words from the medical domain – extracted from the MEDIARGUS corpus
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The main parameter to be set is the size of the document context. This will depend
on the corpus used and the application in mind. In a newspaper corpus, the unit might
be an article, or a paragraph. When using a web corpus, one might consider a particular
web page as document context.

1.2.2 Window-based context

Secondly, a particular word appears within the context of other words in its vicinity,
which brings us to our second instantiation of the distributional hypothesis:

Hypothesis 2. Words are semantically similar if they appear within similar context
windows.

Below are some examples taken from the TWENTE NIEUWS CORPUS (TWNC), a
500M word corpus of Dutch newspaper texts. Examples (3) to (5) all contain the word
courgette ‘zucchini’. Examples (6) to (8) all contain the word aubergine ‘eggplant’.

(3) Kies
choose

eens
once

voor
for

tomaat,
tomato

paprika,
pepper

dun
thin

geschaafde
sliced

courgette
zucchini

en
and

plakjes
slices

rauwe
raw

champignons.
mushrooms

Pick a tomato, pepper, thinly sliced zucchini and slices of raw mushrooms for
once.

(4) Serveer
serve

met
with

pasta
pasta

en
and

gebakken
fried

groente,
vegetable

zoals
like

paprika,
pepper

courgette
zucchini

en
and

tomaat.
tomato
Serve with pasta and fried vegetables, such as pepper, zucchini and tomato.

(5) Deze
this

Indiase
Indian

currysoep
curry soup

(mulligatawny)
mulligatawny

krijgt
gets

een
a

zomers
summery

tintje
touch

door
through

de
the

courgette
zucchini

en
and

paprika.
pepper

This Indian curry soup (mulligatawny) gets a summery touch because of the
zucchini and pepper.

(6) Snijd
cut

groenten,
vegetables

zoals
like

paprika,
pepper

aubergine
eggplant

en
and

ui
onion

in
in

kleine
small

stukjes.
pieces

Cut vegetables, such as pepper, eggplant and onion in small pieces.
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(7) Natuurlijk,
of course

in
in

Purmerend
Purmerend

verkopen
sell

ze
they

ook
also

tomaten,
tomatoes

en
and

aubergine,
eggplant

en
and

paprika.
pepper
Of course, tomatoes, eggplants and peppers are also sold in Purmerend.

(8) Voeg
addverb

aubergine,
eggplant

aardappelen,
potatoes

bataat
bataat

(zoete
sweet

aardappel)
potato

en
and

paprika
pepper

toe.
addparticle
Add eggplant, potatoes, bataat (sweet potato) and peppers.

Note that courgette and aubergine in the examples above have a tendency to occur with
the same words, such as paprika ‘pepper’, tomaat ‘tomato’, and groente ‘vegetable’.
Again, if such related words (like courgette and aubergine) occur with the same words
(like paprika and tomaat) sufficiently frequently, a computer algorithm might be able
to infer that they are indeed semantically related. Note that courgette and aubergine
even do not have to occur together (although they might). It is their co-occurrence with
other words that is indicative of their semantic relatedness.

A simple context window as described above is often called a BAG OF WORDS
context. This expression is used to indicate the fact that no order (or syntax) is taken
into account; the ordered words are mixed together (‘put together in one bag’) so that
their internal order is lost.

The main parameter to be set is the size of the window in which a word’s context
words occur. One might take into account a small window, in which only the left and
right co-occurring word are used as context. A medium-sized window might use two
or five words to the left and right of the word in question. A large window might take
into account all context words that occur in the same sentence, or even in the same
paragraph.

One can imagine that different context window sizes will lead to different kinds of
semantic similarity. When using a small context window, an algorithm might be able
to find tight semantic relationships: in a small context window, more closely related
context words might appear in the word’s vicinity, and the algorithm might even be
able to discover some basic syntactic facts (e.g. the fact that a particular word appears
with an article). When using a larger context window, more loosely related words
might show up, and all order gets lost in the bag of words. Using larger windows, the
algorithm might be more likely to discover topically similar words again. In the second
part of this thesis, we will investigate whether this hypothesis is true.
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1.2.3 Syntax-based context

Thirdly, a particular word always takes part in particular syntactic relations. This gives
rise to our third and final instantiation of the distributional hypothesis:

Hypothesis 3. Words are semantically similar if they appear in similar syntactic
contexts.

In this research, syntactic context will be instantiated in the form of dependency
graphs; dependency graphs provide a theory-neutral instantiation of a sentence’s syntax,
since no particular grammatical framework is assumed. More specifically, this research
will use dependency structures that conform to the guidelines for the Corpus Spoken
Dutch (CGN, Hoekstra et al. (2001)). The dependency structures used in the CGN
syntactic annotation have developed into a de facto standard for the computational
analysis of Dutch (Bouma, van Noord, and Malouf, 2001) and they are used as output
format of the Dutch dependency parser ALPINO (van Noord, 2006). Formally, a
CGN dependency structure D = 〈V,E〉 is a labeled directed acyclic graph, with node
labels V representing the categories (phrasal labels and POS labels) and edge labels E
representing the dependency relations.

top
smain

mod
mwu

mwp
adv
’s0

mwp
adv

avonds1

hd
verb

drink2

su
pron
we3

obj
np

det
det

een4

hd
noun

bierDIM5

Figure 1.2: Dependency structure for the sentence ’s avonds drinken we een biertje
(‘in the evening we’ll drink a beer’)

Figures 1.2 and 1.3 show dependency structures for two sentences from the ME-
DIARGUS corpus, parsed with ALPINO. Table 1.1 shows the set of dependencies that
can be deduced from the structures. In our syntax-based models of semantic similarity
(discussed in the next chapter), we will use these dependency triples as the input data.
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top
smain

su
1

noun
wijn0

hd
verb

word1

vc
ppart

obj1
1

mod
adv

weer2

mod
adj

veel3

hd
verb

drink4

mod
adj

tegenwoordig5

Figure 1.3: Dependency structure for the sentence wijn wordt weer veel gedronken
tegenwoordig (‘wine is drunk a lot again today’)

〈drink mod ’s avonds 〉
〈drink su we 〉
〈drink obj1 bierDIM 〉
〈word su wijn 〉
〈drink obj1 wijn 〉
〈drink mod weer 〉
〈drink mod veel 〉
〈drink mod tegenwoordig〉

Table 1.1: The set of dependency triples extracted from the two parses in figures 1.2
and 1.3

Note that both biertje2 and wijn appear as direct object of the verb drink. Again, if
we look at a large number of sentences, we might notice that biertje and wijn appear in
similar syntactic contexts.

One important parameter in syntax-based models is the set of dependency relations
that will be incorporated into the model. A number of dependency relations that might
be useful in distributional similarity models are given in table 1.2. These are the
dependency relations that will be used in the syntax-based models presented in this
thesis.

2DIM indicates the word is a diminutive form.
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abbr. relation example

SU subject 〈author, SU, write〉
OBJ1 direct object 〈wine, OBJ1, drink〉
OBJ2 indirect object 〈him, OBJ2, give〉
PC prepositional complement 〈dog, PC, look after〉
MOD modifier 〈red, MOD, apple〉
PREDC predicative complement 〈apple, PREDC, tasty〉
COO coordination 〈apple, COO, pear〉
APP apposition 〈London, APP, city〉

Table 1.2: Dependency relations used as contexts

1.3 Tight vs. topical similarity

We already briefly mentioned the difference between tight, synonym-like semantic
similarity and more loosely related, topical similarity. With tight similarity, we indicate
the fact that two words are very similar, i.e. there is a (near-)synonymous or (co-
)hyponymous relationship between the two words. With topically similar words, we
mean words that belong to the same semantic domain.

The example below makes clear the difference between both kind of similarities.
Two sets of words are given that are semantically similar to the word arts ‘doctor’.
The first set contains words that are tightly similar to arts, containing synonyms (e.g.
dokter ‘doctor’) and hyponyms (e.g. chirurg ‘surgeon’). The second set of words is
topically related to arts, containing words that all belong to the medical domain. The
topically related words are related to the target word by more loose relationships, such
as association and meronymy (part-whole relationships).

1. dokter ‘doctor’, medicus ‘doctor’, huisarts ‘family doctor’, chirurg ‘surgeon’,
specialist ‘specialist’, gynaecoloog ‘gynaecologist’

2. patiënt ‘patient’, ziekte ‘disease’, diagnose ‘diagnosis, behandeling ‘treatment,
ziekenhuis ‘hospital’, stethoscoop ‘stethoscope’

In the evaluation part (the second part of this thesis), we will not only try to evaluate
the performance of the various models for the extraction of semantic similarity; we will
also try to determine the nature of the similarity, i.e. whether the models are extracting
tight, synonym-like similarity or more loosely related, topical similarity.



Chapter 2

The Computation of Meaning

In the last chapter, we made clear that the context of a particular word is able to suitably
inform us about its semantics, and we looked at the various contexts that might be
useful for the induction of semantic similarity. In this chapter, we will investigate how
this notion of context can be formally implemented in a computational framework.

2.1 Formal model

The last chapter provides an intuitive idea of how the context of a word might be used
to calculate its semantic similarity to other words. Now, in order to implement this idea
in a computational framework, it needs to be expressed in more formal terms. In this
section, we will have a look at some existing literature that stipulates semantic space
models and the notion of context in more formal terms.

Lowe (2001) provides a formal definition of a semantic space model; he defines the
model as a quadruple 〈A,B,S,M〉. B is a set of basic elements (b1. . . bD) determining
the dimensionality D of the vector space and the interpretation of each dimension. B
might be a set of documents, words, or dependency relations, depending on the context
that is used. A specifies the function that maps the standard co-occurrence frequencies
of basis elements and words to their final value, so that each word is represented by
a vector v = [A(b1, t),A(b2, t), . . . ,A(bD, t)]. A may be the identity function (so that
the final vector contains simple co-occurrence counts), but often a more advanced
mapping is used. A is called the lexical association function or weighting function. The
weighting function is discussed in section 2.3. S is a similarity measure that maps pairs
of vectors onto a real number that represents semantic similarity. Different similarity
measures are discussed in 2.2. Finally, M is a mathematical transformation that takes

23
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one semantic space and maps it onto another, e.g. by reducing its dimensionality. M
may be an identity mapping, so that the original space remains unchanged, but often
a mathematical transformation proves beneficial for countering data sparseness and
reducing noise. Various dimensionality reductions are discussed in chapter 3.

Pado & Lapata (2007) extend Lowe’s framework for constructing semantic space
models based on syntax (dependency parses). Dependency parses are interpreted as
directed graph structures of nodes and labeled edges. A particular dependency path
π for a particular target word t can then be represented as an ordered set of tuples
according to the dependency graph (ensuring connectedness and cycle-freeness).

In their framework, a semantic space is a tuple 〈B,T,M,S,A,cont,µ,v〉. B is the
set of basis elements, T is the set of target words, M is the matrix M = B×T , A is the
lexical association function, and S is the similarity measure. These parameters do not
differ significantly from Lowe’s model. The additional parameters used are the content
selection function cont : T → 2π , the basis mapping function µ : π → B, and the path
value function v : π → R.

The context selection function cont allows us to select certain paths in the graph
that contribute to the context of a particular target word. This function allows us to
select only paths with a particular length, or paths that are labeled with a particular
dependency relation. The basis mapping function µ maps paths onto basis elements.
This way, the dependency paths are decoupled from their representation in the final
semantic space. Such decoupling allows, for example, to use words instead of syntactic
features in the final representation. The path value function v is used to assign weights
to particular paths. E.g., longer dependency paths might be given less weight; another
possibility is to give more weight to particular dependency relations.

2.2 Similarity calculations: geometry vs. probability

Semantic similarity can be implemented in two different – albeit related – ways: in a
(geometrically oriented) vector space model or in a (statistically oriented) probability
distribution model. Both models are instantiations of the formal model described above.
We will discuss the former in section 2.2.1 and the latter in section 2.2.2. Different
similarity measures S are presented for both models.

2.2.1 Vector space model

In a semantic vector space model, each word in a language is mapped to a point in a
real finite dimensional vector space. The vector space model is one of the most widely
used models for the acquisition of semantic similarity. The model makes it possible to
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express ‘semantic proximity’ between entities in terms of spatial distance. In a vector
space model, particular entities (words, for example) are represented as vectors of
features (the word’s different contexts) in a multi-dimensional Euclidean space. By
applying a suitable similarity measure (cfr. infra), one can straightforwardly calculate
the similarity between the different entities.

The vector space model was first developed in the context of information retrieval
(Salton, Wong, and Yang, 1975), representing documents and queries as vectors of the
words they contain. The documents that are the closest to a particular query in this
vector space (i.e. the documents that are using the same words as in the query) will
most likely represent the documents that the user was looking for.

This model can straightforwardly be applied to similarity calculations between
words. The two words for which the semantic similarity is to be calculated, are
represented as vectors of the words’ various contexts. Figure 2.1 shows an example
matrix M containing vectors for four different target words (using dependency relations
as features). In this example the set of target words is

T = {apple,banana,car, truck}

and the set of basic elements is

B = {redad j,yellowad j, tastyad j, f astad j,eatob j,driveob j}

redad j yellowad j tastyad j fastad j eatob j driveob j

apple 200 24 129 0 289 0
banana 1 152 87 1 214 1
car 120 74 0 98 1 386
truck 67 44 0 37 0 175

Figure 2.1: A noun-by-features matrix

The value in matrix cell (i, j) is the co-occurrence frequency of word i with value j.
In the example above, the adjective red appears 200 times with the word apple, and the
word car appears 386 times as the object of drive.

To facilitate computations, vectors are often normalized to vector length of 1. The
vector length or norm of a vector −→v with length k is calculated with equation 2.1.

|−→v |=

√√√√ k

∑
i=1

v2
i (2.1)
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Dividing a vector by its vector length normalizes it to a vector length of 1. When
normalizing the vectors in figure 2.1, the resulting matrix looks like the one in figure 2.2.

redad j yellowad j tastyad j fastad j eatob j driveo b j

apple .533 .064 .344 .000 .770 .000
banana .004 .550 .315 .004 .774 .004
car .284 .175 .000 .232 .002 .914
truck .342 .224 .000 .189 .000 .893

Figure 2.2: A noun-by-features matrix normalized by vector length

In order to calculate the contextual overlap between two vectors −→v and −→w (which
– as has been described in the previous chapter – we think of as a good predictor for
semantic similarity), we need a proper vector similarity measure S = sim(−→v ,−→w ).

The two simplest measures for vector similarity are the Manhattan distance and the
Euclidean distance. The Manhattan distance or L1 norm is defined as

distMANHATTAN(−→v ,−→w ) =
k

∑
i=1
|vi−wi| (2.2)

and the Euclidean distance, or L2 norm, is defined as

distEUCLIDEAN(−→v ,−→w ) =

√√√√ k

∑
i=1

(vi−wi)2 (2.3)

Both distance measures are intuitively easy to understand, and provide a straight-
forward extension of semantic similarity calculations in terms of spatial distance. In
practice, though, neither the Manhattan distance nor the Euclidean distance are fre-
quently used as word similarity measures. Both measures are very sensitive to extreme
values – which often occur with frequency counts – even after normalization.

Two other similarity measures that do show up in word similarity calculations –
Jaccard and Dice – are derived from set theory. Originally, they were designed for
binary vectors, but they can easily be extended in order to deal with frequency data.

The Jaccard similarity measure is defined as

simJACCARD(−→v ,−→w ) = ∑
k
i=1 min(vi,wi)

∑
k
i=1 max(vi,wi)

(2.4)

and the Dice similarity measure is defined as
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simDICE(−→v ,−→w ) =
2×∑

k
i=1 min(vi,wi)

∑
k
i=1(vi +wi)

(2.5)

Intuitively, both measures calculate the weight of overlapping features (the numer-
ator with the min function) compared to the total feature weight (the denominator,
either using the max function for the Jaccard measure or the sum of both vectors’
feature values for the Dice measure).

The best known and most widely used similarity measure, however, is the cosine
similarity measure. The cosine similarity is easy to compute, and it often achieves the
best results. It has therefore become the best known and most widely used vector space
similarity measure. The cosine similarity measure is calculated as

cos(−→v ,−→w ) =
−→v ·−→w
|−→v | |−→w |

(2.6)

where −→v ·−→w is the dot product between vector −→v and −→w , both of length k

−→v ·−→w =
k

∑
i=1

viwi (2.7)

Note that, when both vectors −→v and −→w are normalized to unit length, the denomin-
ator is redundant, so that the cosine similarity amounts to a simple dot product between
two vectors.

Once we have defined the similarity measure S, we can calculate the similarity
between the different word vectors. The resulting calculation yields the similarity
matrix Ssim of size n× n, where n is the number of target words T . The similarity
matrix is represented in figure 2.3.

apple banana car truck

apple 1.000 .741 .164 .197
banana .741 1.000 .103 .129
car .164 .103 1.000 .996
truck .197 .129 .996 1.000

Figure 2.3: A word by word similarity matrix
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2.2.2 Probabilistic model

The vector space model is the oldest, best known and most widely used model for
semantic similarity, but it is not the only one. A word’s contextual information can
also be captured in a statistically oriented probability distribution model. Probability
distribution models allow for the use of well-known information-theoretic measures
of similarity, and they offer the possibility of implementing semantic similarity in a
Bayesian framework.

The probabilistic model of semantic similarity looks similar to the vector space
model of semantic similarity, but its underpinnings are different. In a probabilistic
semantic similarity model, a word’s context is represented as a proper probability
distribution, obeying the laws of probability. Each feature on a word’s vector represents
the probability p( f |w), the probability of the feature given the word. This means that
the original frequency matrix is normalized, so that each vector sums to 1, i.e. each
feature value is divided by the sum of the vector’s feature values. If applied to the
matrix in figure 2.1, this gives the matrix in figure 2.4.

redad j yellowad j tastyad j fastad j eatob j driveo b j

apple .312 .037 .201 .000 .450 .000
banana .002 .333 .191 .002 .469 .002
car .177 .109 .000 .144 .001 .568
truck .207 .136 .000 .115 .000 .542

Figure 2.4: A noun-by-features matrix normalized to probability p( f |w)

A number of similarity measures S = sim(−→v ,−→w ) are available to calculate the
similarity between two probability vectors; the best known measure to calculate the
similarity between probability distributions is the Kullback-Leibler (KL) divergence,
which is defined as:

DKL(P ‖ Q) = ∑
i

P(i) log
P(i)
Q(i)

(2.8)

The KL divergence measures how well probability distribution Q approximates
probability distribution P; it tells us how much information we lose if we encode data
with Q when P is the actual probability distribution.

There are, however, a number of problems with the KL divergence. First of all, it
is undefined if there is a dimension i with Q(i) = 0 and P(i) 6= 0. Secondly, the KL
divergence is an asymmetric distribution, which means that DKL(P ‖Q) 6= DKL(Q ‖ P).
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There are other similarity measures that overcome these problems. The first one is
the Jensen-Shannon (JS) divergence. The JS divergence is defined as:

DJS(P ‖ Q) =
1
2

DKL(P ‖ P+Q
2

)+
1
2

DKL(Q ‖ P+Q
2

) (2.9)

Intuitively, the JS divergence tells us how much information is lost if the two
probability distributions P and Q are replaced by the average of both distributions. The
JS divergence does not have any problems with infinite values, and it is symmetric.

Another possibility is to approximate the KL divergence as close as possible by
mixing it to a small degree with the other distribution. This is what the skew divergence
does. The skew divergence is defined as:

Dskew(α)(P,Q) = DKL(P ‖ αQ+(1−α)P) (2.10)

The skew divergence constant α is a number between 0 and 1, usually set close to
1 to approximate the KL divergence as close as possible; a normal value of α = 0.99.
The measure remains asymmetric, but mixing in the other probability distribution to a
small degree, effectively solves the infinity problem with zero values.

2.3 Weighting schemes

The methods described above can be applied to raw frequency counts. Often, though,
an extra weighting step is applied in order to adapt the feature value according to its
actual importance. In our formal model, this is the lexical association function or
weighting function A. Many different weighting functions have been applied to the
problem of semantic similarity. In the following paragraphs, we will have a look at the
intuition behind them, and investigate the different possibilities.

2.3.1 Introduction: Zipf’s law

Zipf’s law states that the frequency of a word in any particular corpus is inversely
proportional to its rank in a frequency list. As a result, word distributions are extremely
skewed: the majority of words occur very infrequently, whereas the top few most
frequent words take up the largest part of the corpus. This fact brings about a frequency
bias: words with similar frequencies will be considered more similar than they actually
are.

Intuitively, it is more significant for a word’s semantics to appear with an infrequent
but highly specific, ‘meaningful’ feature than to appear with a very frequent, broad,
‘meaningless’ feature. As an example, compare denim skirt with nice skirt. It seems
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reasonable to attach more weight to the first feature denim than to the second feature
nice. The former feature is highly specific and appears with a small subset of words
(like denim pants, denim jeans, a denim jacket), whereas the latter is more broad and
unspecific, and appears with a much larger set of words (a nice girl, a nice feeling, a
nice zebra, . . . ). Moreover, a co-occurrence like denim skirt is much more informative
than e.g. a skirt, although the latter one will have a much higher frequency. By applying
a suitable weighting, we can neutralize the skewed frequencies arising from the Zipfian
distribution.

Weighting functions can be divided into local and global weighting functions,
according to the information they use in order to calculate the weighted value; local
weighting functions only use a particular co-occurrence frequency count on its own
to calculate the weighted value, whereas global weighting functions make use of
global word and feature distribution statistics calculated over the corpus as a whole.
In the following paragraphs, we will have a look at both types, and discuss their most
important instantiations in the scope of semantic similarity.

2.3.2 Local weighting

A local weighting function is a function that is applied to a particular co-occurrence fre-
quency without any knowledge about the corpus frequencies as a whole. In the simplest
case, this amounts to applying the identity function to a particular co-occurrence fre-
quency. Another simple local weighting is the application of a binary function, which
assigns a value of one if the co-occurrence frequency is larger than zero (i.e. the
combination occurs at least once in the corpus) and zero otherwise.

A local weighting function that is often used in the scope of semantic similarity is
a logarithmic weighting function. A logarithmic weighting dampens large frequency
values, so that frequent words are assigned less extreme values. The base of the
logarithm is often taken to be natural, though in practice the algorithm’s base does not
influence the results.

Alog( fi j) = 1+ log( fi j) (2.11)

for fi, j > 0. The function is represented graphically in figure 2.5.

2.3.3 Global weighting

Entropy

In information theory, entropy is a measure to express the uncertainty (or surprise) that
is associated with a random variable. Intuitively, if a particular word appears with only
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Figure 2.5: A logarithmic function is used to smooth extreme frequency values

a few features (documents), it will be much more informative than a word that appears
with lots of features (documents). Words that appear in many documents (i.e. words
that are more uniformly distributed) will have a high entropy value. Words that appear
in only a limited number of documents, on the other hand, will have a low entropy
value.

Formally, entropy weighting is usually calculated according to the formula in 2.12.

Aent(i, j) = fi j(1+
n

∑
k=1

pik log(pik)
log(n)

), pik =
fik

∑
n
l=1 fil

(2.12)

with fi j being the original co-occurrence frequency and n the total number of features
(documents). This formula actually calculates an entropy ratio G(i) = 1− H(d|i)

H(d) , where
H(d) is the entropy of the uniform distribution of the documents, and H(d | i) is the
entropy of the conditional distribution given that the noun i appeared. The original
co-occurrence frequency is then multiplied by this ratio.

We will evaluate entropy as a weighting function in the document-based models.
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Pointwise mutual information

Another popular weighting function is called pointwise mutual information (PMI). PMI
was first proposed by Church and Hanks (1990), and is based on the information-
theoretic notion of mutual information. Mutual information measures the mutual
dependence between to random variables X and Y. It is defined as

I(X ,Y ) = ∑
x

∑
y

p(x,y) log
p(x,y)

p(x)p(y)
(2.13)

Pointwise mutual information – i.e. the mutual information for particular events –
is defined as

I(i, j) = log
p(i, j)

p(i)p( j)
(2.14)

Intuitively, PMI tells us how much information a particular feature contains about
a target word (and vice versa). PMI measures how often two events i and j occur,
compared to the expected value if they were independent. The numerator gives the
actual probability of the target word and feature occurring together, whereas the denom-
inator contains the probability of the target word and feature occurring independently
(multiplying the marginal probabilities). Thus, the ratio indicates how much more the
target word and feature co-occur than we would expect by chance.

Although PMI is used a lot as weighting function, it is problematic for low fre-
quency counts: the score will depend on the frequency of individual words. Thus,
low-frequency co-occurrences will receive a higher score than high-frequency co-
occurrences (all other things being equal). One solution to this problem is to use a
particular cut-off (e.g. a co-occurrence frequency of at least 3). Another solution is the
use of an extra weighting factor dependent on the frequency (Pantel and Lin, 2002).

We will evaluate PMI as a weighting function in the window-based and syntax-based
models.



Chapter 3

Dimensionality Reduction

3.1 Introduction

In the previous chapters, semantic similarity calculations have been carried out using
the words’ original feature space, which usually contains a large number of highly
correlated features. The goal of a dimensionality reduction – also called factorization –
is to find a smaller number of uncorrelated or lowly correlated dimensions (factors).
There are two reasons for applying such a transformation to the data:

• When the feature space is large, similarity calculations often become computa-
tionally expensive or even impossible. A dimensionality reduction reduces the
feature space to a much smaller number of dimensions, so that computations
become tractable again.

• A dimensionality reduction is able to discover latent structure present in the
data. This way, a dimensionality reduction is able to generalize over individual
data samples. By classifying the data according to the latent structure and
not according to the individual features, a dimensionality reduction is able to
overcome data sparseness and noise.

One of the most famous dimensionality reduction methods for text processing
is latent semantic analysis (LSA). LSA allegedly finds ‘latent semantic dimensions’,
according to which nouns and documents can be represented more efficiently. In the
subsequent section, we will first have a look at LSA and its underlying singular value
decomposition. Next, we will examine non-negative matrix factorization, an algorithm
that overcomes some of the problems linked to LSA.

33
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3.2 Latent semantic analysis

3.2.1 Introduction

Latent semantic analysis (Landauer and Dumais, 1997; Landauer, Foltz, and La-
ham, 1998) models the meaning of words and documents by projecting them into a
vector space of reduced dimensionality; the reduced vector space is built up by applying
singular value decomposition (SVD) – a well known linear algebraic method – to a
simple term-by-document frequency matrix A. The resulting lower dimensional matrix
Â is the best possible fit in a least squares sense (minimization of the Frobenius norm;
equation 3.1).

argmin
Â
‖ A− Â ‖F (3.1)

By enforcing a lower number of dimensions, the algorithm is forced to make general-
izations over the simple frequency data. Co-occurring terms are mapped to the same
dimensions; terms that do not co-occur are mapped to different dimensions.

In the next section, we have a closer look at the principles and mathematics behind
SVD. Next, some example SVD’s are provided in order to exemplify their generalization
capacity. We conclude with a discussion of the drawbacks linked to LSA.

3.2.2 Singular value decomposition

While rooted in linear algebra, singular value decomposition has proven to be a
useful tool in statistical applications. It is closely akin to statistical methods such
as principal components analysis, and has been used as a versatile dimensionality
reduction technique in different scientific fields, such as image recognition, signal
processing (Deprettere, 1988), and information retrieval. SVD stems from a well known
theorem in linear algebra: a rectangular matrix can be decomposed into three other
matrices of specific forms, so that the product of these three matrices is equal to the
original matrix:1

Am×n = Um×z Σz×z (Vn×z)T (3.2)

where z = min(m,n). A graphical representation of SVD (with z = n) is given in
figure 3.1.

1The singular value decomposition that is presented here is called the ‘thin’ or ‘reduced’ SVD. In
applications such as LSA, it is unusual to compute the full SVD; the reduced version is faster to compute and
more economical in storage, and it provides sufficient information for statistical applications.
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Figure 3.1: Graphical representation of SVD

Matrix A is the original matrix of size m× n. Matrix U is an m× z matrix that
contains newly derived vectors called left-singular vectors. Matrix VT denotes the
transpose of matrix V, an n× z matrix of derived vectors called right-singular vectors.
The third matrix Σ is a z× z square diagonal matrix (i.e. a square matrix with non-zero
entries only along the diagonal); Σ contains derived constants called singular values. A
key property of the derived vectors is that all dimensions are orthogonal (i.e. linearly
independent) to each other, so that each dimension is uncorrelated to the others.

The singular value decomposition can be interpreted as a method that rotates the
axes of the n-dimensional space in such a way that the largest variation is captured
by the leading dimensions. The diagonal matrix Σ contains the singular values sorted
in descending order. Each singular value represents the amount of variance that is
captured by a particular dimension. The left-singular and right-singular vector linked to
the highest singular value represent the most important dimension in the data (i.e. the
dimension that explains the most variance of the matrix); the singular vectors linked to
the second highest value represent the second most important dimension (orthogonal to
the first one), and so on. Typically, one uses only the first k� z dimensions, stripping
off the remaining singular values and singular vectors. If one or more of the least
significant singular values are omitted, then the reconstructed matrix will be the best
possible least-squares approximation of the original matrix in the lower dimensional
space. Intuitively, SVD is able to transform the original matrix – with an abundance of
overlapping dimensions – into a new, many times smaller matrix that is able to describe
the data in terms of its principal components. Due to this dimension reduction, a more
succinct and more general representation of the data is obtained. Redundancy is filtered
out, and data sparseness is reduced.

The calculation of SVD involves iteratively solving a number of eigenvalue prob-
lems. A thorough understanding of the algorithm’s computational details requires a
firm background in linear algebra, and explaining all the mathematical nuts and bolts
is well beyond the scope of this thesis. Suffice it to say that there are a number of
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programs available that can handle the kind of large-scale singular value decomposi-
tions necessary for linguistic data sets. In this research, SVDPACK (Berry, 1992) has
been used. SVDPACK is a program that is able to handle sparse matrices quickly and
efficiently (depending on the number of singular values one wants to retain).

3.2.3 Examples

Consider two documents, one about Belgium (B) and one about the Netherlands (NL).

• Belgium is a kingdom in the middle of Europe, and Brussels is its capital.
Brussels has a Dutch-speaking and a French-speaking university, but the largest
student city is Leuven. Leuven has 31,000 students.

• The Netherlands is a country in Western Europe, located next to the North Sea.
The Netherlands’s capital is Amsterdam. Amsterdam has two universities.
Groningen is another important student city. In Groningen, there are 37,000
students.

As we have seen in the previous chapter, these documents can easily be transformed
into a term-document matrix, in which each document is represented by a column
vector. Each element in the column vector corresponds to the frequency of a particular
term (in this case cities) in the document. Similarly, each element on the row vector
indicates how often a term appears in a particular document. The resulting matrix,
together with its singular value decomposition, is given in figure 3.2.

A


B NL

Groningen 0 2
Leuven 2 0

Amsterdam 0 2
Brussel 2 0

 =

U


0.00 0.71
−0.71 0.00
0.00 0.71
−0.71 0.00

Σ

[
2.83 0

0 2.83

]
VT

[
−1 0
0 1

]

Figure 3.2: Singular value decomposition of a term-document matrix

The original matrix A is decomposed into three other matrices U, Σ and VT . The
singular values in Σ show that two equally important dimensions are found; furthermore,
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the left- and right-singular vectors show that the frequencies are evenly divided among
terms as well as among documents.

Figure 3.3 shows what happens when we add another document about Belgium,
with a slightly different frequency distribution of terms: the Belgian dimension becomes
the most important (i.e. captures the most variation, 2.92), while the Dutch dimension
remains the same (2.83). The third dimension (0.68) captures the remaining variation
(the fact that the third document only talks about Brussels).

A


B NL B

Groningen 0 2 0
Leuven 2 0 0

Amsterdam 0 2 0
Brussel 2 0 1

 =

U


0.00 −0.71 0.00
−0.66 0.00 0.75
0.00 −0.71 0.00
−0.75 0.00 –0.66

Σ

 2.92 0.00 0.00
0.00 2.83 0.00
0.00 0.00 0.68



V T

 −0.97 0.00 0.26
0.00 −1.00 0.00
–0.26 0.00 –0.97

∼= Â


0.00 2.00 0.00
1.87 0.00 0.50
0.00 2.00 0.00
2.12 0.00 0.56


Figure 3.3: Truncated singular value decomposition

If we now truncate the SVD by keeping only the two most important dimensions,
and then reconstruct our original matrix, we get matrix Â, which is the best possible
reconstruction from only two dimensions. Note that matrix Â resembles matrix A,
except for the numbers of the third document: instead of assigning all frequency mass
to the term Brussel, the mass is almost evenly divided among the Belgian terms Brussel
and Leuven. When keeping only two dimensions, the SVD ‘guesses’ the best possible
distribution. This is an example of how the technique is used to obtain a more succinct
model that is able to generalize among the data.

Below, we describe a more elaborate example, illustrating once again the gener-
alization capacity of a singular value decomposition. Figure 3.4 represents another
term-by-document matrix, containing Dutch nouns that are related to two distinct
semantic topics. The nouns tulp ‘tulip’, tuin ‘garden’, and park ‘park’ are related to
the topic of gardening. The nouns ei ‘egg’, kaas ‘cheese’, and boter ‘butter’ all relate



38 CHAPTER 3. DIMENSIONALITY REDUCTION

to the topic of food. The noun bloem is an ambiguous word in Dutch, meaning ‘flower’
(related to the gardening topic) as well as ‘flour’ (related to the food topic). Figure 3.4
represents the distribution of the seven nouns across five different documents. The
complete SVD (matrices U, Σ and VT ) is given in figures 3.5 to 3.7.

A =



d1 d2 d3 d4 d5
tulp 1 0 1 0 0
tuin 1 1 0 0 0
park 0 1 0 0 0
ei 0 0 0 1 1
kaas 0 0 0 1 0
boter 0 0 0 1 1
bloem 1 0 0 0 1


Figure 3.4: Term-by-document matrix A

U =



dim1 dim2 dim3 dim4 dim5
tulp −0.21 0.52 −0.48 −0.58 0.35
tuin −0.22 0.60 0.46 0 −0.40
park −0.05 0.22 0.65 0 0.55
ei −0.56 −0.30 0.06 0 0.20
kaas −0.26 −0.22 0.17 −0.58 −0.55
boter −0.56 −0.30 0.06 0 0.20
bloem −0.47 0.30 −0.31 0.58 −0.20


Figure 3.5: The left-singular matrix U

Σ =


2.30 0 0 0 0

0 1.93 0 0 0
0 0 1.30 0 0
0 0 0 1.00 0
0 0 0 0 0.52


Figure 3.6: The square diagonal matrix Σ
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VT =


d1 d2 d3 d4 d5

dim1 −0.39 −0.12 −0.09 −0.60 −0.69
dim2 0.74 0.43 0.27 −0.43 −0.16
dim3 −0.26 0.85 −0.37 0.22 −0.15
dim4 0 0 −0.58 −0.58 0.58
dim5 −0.49 0.28 0.67 −0.28 0.39


Figure 3.7: The right-singular matrix VT

We can now easily project the terms and documents of the original matrix into
a space of reduced dimensionality; in the following example, we will retain two
dimensions. Matrix B gives the terms after a reduction to two dimensions, scaled with
the singular values. The matrix is obtained by multiplying a slice of matrix U (U7×2)
with a slice of matrix Σ (Σ2×2). Matrix B is given in figure 3.8. The term vectors –
normalized to vector length – are represented graphically in figure 3.9.

B =



dim1 dim2
tulp −0.48 1.01
tuin −0.51 1.16
park −0.12 0.43
ei −1.28 −0.58
kaas −0.60 −0.43
boter −1.28 −0.58
bloem −1.08 0.58


Figure 3.8: Matrix B, the multiplication of U7×2 and Σ2×2

In figure 3.9, we can clearly distinguish the two different topics: the ‘garden’ topic
(with tulp, tuin and park) in the second quadrant, and the ‘food’ topic (with ei, kaas and
boter) in the third quadrant. Note that the terms tulp and park do not appear together in
the same document in the original matrix; in the reduced two-dimensional SVD space,
however, they are clearly closely related. This is again an example of the generalization
capability of the SVD. Also note that the ambiguous word bloem, related to both the
‘garden’ topic and the ‘food’ topic, ends up in between them.

Similarly, we obtain matrix C – the projection of the documents into the two-
dimensional reduced vector space – by multiplying Σ2×2 with VT

2×5. Matrix C is
given in figure 3.10. The document vectors – again normalized to vector length – are
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dim 1

dim 2

tulptuin
park

ei

kaas
boter

bloem 0.5

1.0

−0.5

−0.5−1.0

Figure 3.9: A graphical representation of the term vectors in the reduced dimensional
space

represented graphically in figure 3.11.

C =

 d1 d2 d3 d4 d5
dim1 −0.89 −0.27 −0.21 −1.37 −1.58
dim2 1.42 0.82 0.52 −0.82 −0.30


Figure 3.10: Matrix C, the multiplication of Σ2×2 and VT

2×5

Again, we see the same topic division among the document vectors. Documents
d1, d2 and d3 are grouped together in the second quadrant, and documents d4 and d5
appear together in the third quadrant. Note again that documents d2 and d3 appear
closely together, although they do not share any terms in the original term-document
matrix.
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dim 1

dim 2

d1

d2
d3

d4

d5

0.5

1.0

−0.5

−0.5−1.0

Figure 3.11: A graphical representation of the document vectors in the reduced dimen-
sional space

3.2.4 Drawbacks

LSA suffers from a number of drawbacks, that have been regularly noted in the literature.
(Manning and Schütze, 2000, p. 565)

The first major drawback is that a singular value decomposition assumes normally
distributed data. A normal distribution is inappropriate for frequency count data,
such as textual co-occurrence data. There are other distributions – such as a Poisson
distribution – that are better suited for modeling count data. As a consequence of
the normality assumption, the reconstruction A′ of the original matrix A may contain
negative numbers, which clearly is a bad approximation for frequency counts.

A second drawback – related to the first one – is the presence of negative values in
the derived dimensions themselves. The derived dimensions are said to represent actual
‘latent semantic’ dimensions. A particular term or document can have a positive or
negative value on those dimensions. It is not clear what negative values on a semantic
scale should designate. A particular term or document either is related (positive value)
or is not related (zero value) to a particular topic; it seems counterintuitive to say that a
particular word is negatively related to a particular topic. This intuition is confirmed by
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experiments. In the following section, we will present an algorithm that only allows
non-negative data in its dimensionality reduction. By enforcing this constraint, the
algorithm is able to find much more distinct and clear-cut semantic dimensions.

3.3 Non-negative matrix factorization

3.3.1 Introduction

In this section, we describe a dimensionality reduction technique called non-negative
matrix factorization (NMF) that does not suffer from the drawbacks of LSA and its
underlying singular value decomposition. Non-negative matrix factorization is a
dimensionality reduction technique that has become popular in fields such as image
recognition, speech recognition and machine learning. Its key idea is to impose a non-
negativity constraint on the factorization. This constraint brings about a parts-based
representation, because only additive and no subtractive combinations are allowed.
In many cases, this constraint proves beneficial for the inductive capabilities of the
dimensionality reduction: the algorithm is able to extract more clear and distinct
characteristics from the data.

The difference between the parts-based induction of NMF and the holistic induction
of non-constrained methods such as PCA (and the related singular value decomposition)
can be illustrated with an example from facial image recognition (Lee and Seung, 1999).
A famous method in facial image recognition uses so-called ‘eigenfaces’ (Turk and
Pentland, 1991). These are a small number of prototypical faces represented by the
eigenvectors that are found by applying PCA to a database of facial images. Eigenfaces
may contain positive as well as negative values. A key characteristic is that they
are ‘holistic’: an eigenface contains all kinds of facial traits, and thus represents a
prototypical face. By taking a linear combination of various ‘eigenfaces’, a particular
instance of a face may be reconstructed.

The representation that is found by NMF looks quite different: instead of finding
holistic, prototypical faces, the algorithm induces particular facial traits (different kinds
of eyes, noses, mouths, . . . ). By enforcing a non-negative constraint, the algorithm is
able to build up a parts-based representation of facial images. A particular instance of
a face may then be reconstructed by taking a linear combination of the different parts.
The very same characteristic will also prove to be beneficial for building up semantic
representations from text.
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3.3.2 Theory

Non-negative matrix factorization (NMF) (Lee and Seung, 2000) is the name for a
group of algorithms in which a matrix V is factorized into two other matrices, W and
H.

Vn×m ≈Wn×rHr×m (3.3)

Figure 3.12 gives a graphical representation of non-negative matrix factorization.

Figure 3.12: A graphical representation of non-negative matrix factorization

Typically r is much smaller than n,m so that both instances and features are
expressed in terms of a few components. As mentioned above, non-negative matrix
factorization enforces the constraint that all three matrices must be non-negative, so all
elements must be greater than or equal to zero.

There are two objective functions that may be used in order to quantify the quality
of the approximation of the original matrix. One objective function minimizes the sum
of squares (equation 3.4).

min ‖ V−WH ‖F = min ∑
i

∑
j
(Vi j− (WH)i j)2 (3.4)

The other one minimizes the Kullback-Leibler divergence (equation 3.5).

min DKL(V ‖WH) = min ∑
i

∑
j

(
Vi j log

Vi j

(WH)i j
−Vi j +(WH)i j

)
(3.5)

Practically, the factorization can be efficiently carried out through the iterative
application of multiplicative update rules. The set of update rules that minimize the
Euclidean distance are given in 3.6 and 3.7.

Haµ ←Haµ

(WT V)aµ

(WT WH)aµ

(3.6)
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Wia←Wia
(VHT )ia

(WHHT )ia
(3.7)

The set of update rules that minimize the Kullback-Leibler divergence are given
in 3.8 and 3.9.

Haµ ←Haµ

∑i Wia
Viµ

(WH)iµ

∑k Wka
(3.8)

Wia←Wia
∑µ Haµ

Viµ
(WH)iµ

∑v Hav
(3.9)

Matrices W and H are randomly initialized, and the update rules are iteratively
applied – alternating between them. In each iteration, the matrices W and H are suitably
normalized, so that the rows of the matrices sum to 1. The algorithm stops after a
fixed number of iterations, or according to some stopping criterion (the change of the
objective function drops below a certain threshold). The update rules are guaranteed
to converge to a local optimum. In practice, it is usually sufficient to run the NMF
algorithm repeatedly in order to find the global optimum.

3.3.3 Example

In the following example, we take matrix V in figure 3.13 (reproduced from matrix
A used in the SVD example on page 38), and factorize it to two dimensions using
non-negative matrix factorization. As objective function, we take the Kullback-Leibler
divergence (which implies the use of the update rules in 3.8 and 3.9). The globally
optimal matrices W and H are represented in figures 3.14 and 3.15.2

Matrices W and H can be interpreted as conditional probabilities. Matrix W
represents the probability of a word given a particular topical, ‘semantic’ dimension.

Matrix H gives the probability of a dimension given a document (in the example,
each document contains one particular topic).

By multiplying matrices W and H, we get matrix V′, containing the probabilities
of a word given a document.

Note that the values of (tulp, d2), (tuin, d3), and (park, d1,3) – that have zeros in
the original co-occurrence matrix – have received appropriate probability values in the
reconstructed matrix V′. The factorization model has made correct inferences about

2Note once again that the update rules are guaranteed to converge to a local optimum; it might take a
number of tries to find the globally optimal solution.
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V =



d1 d2 d3 d4 d5
tulp 1 0 1 0 0
tuin 1 1 0 0 0
park 0 1 0 0 0
ei 0 0 0 1 1
kaas 0 0 0 1 0
boter 0 0 0 1 1
bloem 1 0 0 0 1


Figure 3.13: Term-by-document matrix V

W =



dim1 dim2
tulp 0 1

3
tuin 0 1

3
park 0 1

6
ei 1

3 0
kaas 1

6 0
boter 1

3 0
bloem 1

6
1
6


Figure 3.14: Matrix W, containing the original nouns and a reduced number of dimen-
sions

H =

 d1 d2 d3 d4 d5
dim1 0 0 0 1 1
dim2 1 1 1 0 0


Figure 3.15: Matrix H, containing the original documents and a reduced number of
dimensions

words related to the gardening topic appearing in sentences related to the gardening
topic. Likewise, (kaas, d5) has received an appropriate probability value. The am-
biguous word bloem – related to the two topics – has received appropriate probability
values across the whole document range.
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V′ =



d1 d2 d3 d4 d5
tulp 1

3
1
3

1
3 0 0

tuin 1
3

1
3

1
3 0 0

park 1
6

1
6

1
6 0 0

ei 0 0 0 1
3

1
3

kaas 0 0 0 1
6

1
6

boter 0 0 0 1
3

1
3

bloem 1
6

1
6

1
6

1
6

1
6


Figure 3.16: The reconstructed matrix V′, the multiplication of W and H



Chapter 4

Three-way Methods

4.1 Introduction

In the former chapters, language data has been treated as two-way co-occurrences; we
have shown that the semantic similarity of words can be investigated by looking at
the contextual features with which those words appear. The two-way co-occurrence
data has been represented in the form of a matrix. It is the form that is best suited for
representing two-way co-occurrence frequencies. The matrix representation allows
for the application of algebraic and statistical methods, which in turn allows for the
induction of semantic generalizations.

Reducing language to two-way co-occurrence frequencies is of course a vast
oversimplification. Language is a complex system of interrelated words, driven by
grammar rules and subcategorization frames. By keeping track of multi-way co-oc-
currences, we can attempt to do some more justice to this complexity (although the
framework represented here remains a major simplification). Compare the following
sentences:

(1) De
The

voetbalclubsu
soccer team

speelt
plays

een
a

goede
good

wedstrijdob j.
game

The soccer team is playing a good game.

(2) De
The

acteursu
actor

speelt
plays

Hamletob j.
Hamlet

The actor is playing Hamlet.

47
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〈speel su voetbalclub〉
〈speel obj wedstrijd 〉
〈speel su acteur 〉
〈speel obj Hamlet 〉

Table 4.1: Extracted dependency relations

The dependency relations (subject-verb and verb-object) for examples (1) and (2) are
given in table 4.1.

Say we now want to investigate the semantics of Dutch verbs (like spelen ‘to
play’). In our standard two-way framework, we would then take the verbs to be one
mode, and combine the syntactic dependencies that the verbs appear with (subjects and
direct objects in this case) together in the other mode, yielding a matrix like the one in
figure 4.1.

V =


voetbalclubsu acteursu wedstri jdob j Hamletob j . . .

speel 1 1 1 1
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .


Figure 4.1: Two-way co-occurrence matrix

This is a genuine, appropriate way of investigating a verb’s semantics, but we
do lose some more complex and interesting relations between a verb and its objects.
By capturing a verb’s co-occurrences in a matrix form, we are able to investigate its
co-occurrence with particular subjects and direct objects separately, but we are not able
to investigate a verb’s co-occurrence with subjects and direct objects at the same time:
we lose the three-way relationship that exists between verb, subject and direct object.

It is possible, however, to capture in a matrix the relationship between subjects
and direct objects for one particular verb. For the examples with spelen above, this
yields the matrix given in figure 4.2. The rows of the matrix represent the subjects, the
columns represent the direct objects. A graphical representation of this matrix is given
in figure 4.3.

We can now construct similar matrices for each verb we want to investigate. Say
we want two include two more verbs, winnen ‘to win’, and bewerken ‘to adapt’. The
matrices for these verbs are given in figures 4.4 and 4.5. Note that the two matrices
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Vspeel =


wedstrijd Hamlet . . .

voetbalclub 1 0 . . .
acteur 0 1 . . .
. . . . . . . . . . . .


Figure 4.2: Two-way co-occurrence matrix of subjects and direct objects for the verb
spelen ‘to play’

. . .
acteur voet-bal-club

wed-

stri
jd

Ham-

let

. . .

. . .
0

1

. . .
1

0

. . .
. . .

. . .

Figure 4.3: Graphical representation of the co-occurrence matrix for the verb spelen
‘to play’

Vwin and Vbewerk contain the same instances and features (subjects and direct objects)
in their rows and columns as the first matrix Vspeel .

Vwin =


wedstrijd Hamlet . . .

voetbalclub 1 0 . . .
acteur 1 0 . . .
. . . . . . . . . . . .


Figure 4.4: Two-way co-occurrence matrix of subjects and direct objects for the verb
winnen ‘to win’

As a last step, we can now stack the three matrices together, which yields a three-
dimensional cube like the one in figure 4.6.

It will have become clear by now that we are leaving the familiar domain of two-
dimensional matrices. As we have noted before, a matrix is not a suitable form for
the representation of multi-way data. For co-occurrence data beyond two modes, we
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Vbewerk =


wedstrijd Hamlet . . .

voetbalclub 0 0 . . .
acteur 0 1 . . .
. . . . . . . . . . . .


Figure 4.5: Two-way co-occurrence matrix of subjects and direct objects for the verb
bewerken ‘to adapt’

. . .
acteur voet-bal-club

. . .
acteur voet-bal-club

. . .
acteur voet-bal-club

wed-

stri
jd

Ham-

let

. . .

wed-

stri
jd

Ham-

let

. . .

wed-

stri
jd

Ham-

let

. . .

. . .
0

1

. . .
1

0

. . .
. . .

. . .

speel←

win←

bewerk←

Figure 4.6: Graphical representation tensor

need a more general representation. The generalization of a matrix is called a tensor.
A tensor is able to encode co-occurrence data of any n modes. Figure 4.7 shows a
graphical comparison of a matrix and a tensor with three modes – although a tensor
can easily be generalized to more than three modes.1

We are now leaving the familiar domain of two-dimensional matrix algebra, and
enter the realm of higher-dimensional tensor algebra. Tensor algebra involves some
novel mathematical machinery. The goal of the next section is to provide a succinct
introduction.

1We will stick to examples that use no more than three modes; it is easy to construct higher order tensors
mathematically, but it is impossible – or at least very difficult – to represent them visually.
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Figure 4.7: Matrix representation vs. tensor representation

4.2 Tensor algebra

In this overview of tensor algebra, we will review some conceptual and notational
preliminaries (based on Kiers (2000) and Kolda and Bader (2009)), and focus on some
vital tensor operations required for the tensor-based dimensionality reductions that are
explained in the subsequent sections.

The order of a tensor is the number of ‘dimensions’.2 Vectors (tensors of order
one) are denoted by boldface lowercase letters (x). Matrices (tensors of order two) are
denoted by boldface capital letters (X). Higher-order tensors (order three or higher) are
denoted by boldface calligraphic letters (X). Scalars are denoted by lowercase letters
(x).

The ith entry of a vector x is written as xi, element (i, j) of a matrix X is written
as xi j, and element (i, j,k) of a third-order tensor X is written as xi jk. Indices range
from 1 to D, so i = 1, . . . ,D. The nth element in a sequence is written as a superscript
in parentheses, so A(n) denotes the nth matrix in a sequence.

The norm of a tensor X ∈ RD1×D2×D3 – analogous to the Frobenius norm for
matrices – is the square root of the sum of squares of all its elements (equation 4.1).

‖X ‖=

√√√√ D1

∑
i1=1

D2

∑
i2=1

. . .
DN

∑
iN=1

x2
i1i2...iN (4.1)

An N-order tensor X ∈ RD1×D2×...×DN is of rank one if it can be written as the
outer product of N vectors.

X = a(1) ◦a(2) ◦ . . .◦a(N) (4.2)

2The term dimension is ambiguous, because it is also used to denote the cardinality of vectors and vector
spaces. Therefore, the dimensions of a tensor are usually referred to as modes or ways.
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The small circle (◦) denotes the outer product, and it is calculated by multiplying
for each element of the tensor the corresponding vector elements.

xi1i2...iN = a(1)
i1

a(2)
i2

. . .a(N)
iN for all 1≤ in ≤ In (4.3)

A third order rank one tensor is given in figure 4.8.

X a

b

c

Figure 4.8: A third order rank one tensor, which can be written as the outer product of
three vectors

Finally, the rank of a tensor X is defined as the smallest number of rank one tensors
whose sum is equal to X. Figure 4.9 shows a tensor that can be generated with the sum
of three rank one tensors (the sum of three outer products). Therefore, rank(X) = 3.

Figure 4.9: A third order tensor of rank three, which can be written as the sum of three
outer products

4.3 Three-way factorization algorithms

To be able to cope with multi-way data, several algorithms have been developed as mul-
tilinear generalizations of the SVD. In statistics, three-way component analysis has been
extensively investigated (for an overview, see Kiers and van Mechelen (2001)). The two
most popular methods are parallel factor analysis (PARAFAC, Harshman (1970), Carroll
and Chang (1970)) and three-mode principal component analysis (3MPCA, Tucker
(1966)), also called higher order singular value decomposition (HOSVD, De Lathauwer



4.3. THREE-WAY FACTORIZATION ALGORITHMS 53

et al. (2000)). Three-way factorizations have been applied in various domains, such as
psychometry and image recognition (Vasilescu and Terzopoulos, 2002). In information
retrieval, three-way factorizations have been applied to the problem of link analysis
(Kolda and Bader, 2006).

One last important method dealing with multi-way data is non-negative tensor
factorization (NTF, Shashua and Hazan (2005)). NTF is a generalization of non-negative
matrix factorization, and can be considered an extension of the PARAFAC model with
the constraint of non-negativity.

In the next sections, we will look in some more detail at two different factorization
algorithms: parallel factor analysis and non-negative tensor factorization.

4.3.1 Parallel factor analysis

Parallel factor analysis (PARAFAC) is a multilinear analogue of the singular value
decomposition (SVD) used in latent semantic analysis. The key idea is to minimize the
sum of squares between the original tensor and the factorized model of the tensor. For
the three mode case of a tensor T ∈ RD1×D2×D3 this gives equation 4.4, where k is the
number of dimensions in the factorized model (recall that ◦ denotes the outer product).

min
xi∈RD1,yi∈RD2,zi∈RD3

‖ T−
k

∑
i=1

xi ◦ yi ◦ zi ‖ (4.4)

The factorization algorithm finds a tensor (as a sum of rank one tensors) that is as
similar as possible to the original tensor in the least squares sense, but has a fixed lower
rank k: it is the best possible low rank approximation of the original tensor for rank k.

The algorithm results in three matrices, indicating the loadings of each mode on the
factorized dimensions. The model is represented graphically in figure 4.10, visualizing
the fact that the PARAFAC decomposition consists of the summation over the outer
products of n (in this case three) vectors.

Figure 4.10: Graphical representation of PARAFAC as the sum of outer products
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Figure 4.11 represents the factorization as three loadings matrices, containing the
loadings on each factor for the three different modes. The representation is equivalent
to the representation with the sum of outer products – it differs only conceptually.

X A
B

C

Figure 4.11: Graphical representation of PARAFAC as three loadings matrices

There are a number of algorithms available to calculate the PARAFAC decomposition.
The most popular one is the alternating least squares method (ALS), that was proposed
in the original papers by Harshman (1970), and Carroll and Chang (1970). In each
iteration, two of the modes are fixed and the third one is fitted in a least squares
sense. This calculation is done for each mode in turn, and the process is repeated until
convergence.

4.3.2 Non-negative Tensor Factorization

Our second multi-way factorization is called non-negative tensor factorization (NTF; it
is the generalization of non-negative matrix factorization for multi-way data. The NTF
model is similar to the PARAFAC analysis, with the constraint that all data needs to be
non-negative (i.e. ≥ 0).

With non-negative tensor factorization, the non-negativity constraint is enforced,
yielding a model like the one in equation 4.5:

min
xi∈RD1

≥0,yi∈RD2
≥0,zi∈RD3

≥0

‖ T−
k

∑
i=1

xi ◦ yi ◦ zi ‖2
F (4.5)

As with the PARAFAC model, the algorithm results in three matrices, indicating the
loadings of each mode on the factorized dimensions.

There are again a number of ways to compute the factorization. Bro and De
Jong (1997) use again an alternating least squares algorithm (similar to the ALS
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algorithm for PARAFAC, but with some adaptations to enforce non-negativity; the non-
negativity can be enforced by using a non-negative least squares computation, based
on Lawson and Hanson (1974). Another possibility is to use multiplicative update
rules – similar to the update rules for non-negative matrix factorization, explained in
section 3.3.2 (Welling and Weber, 2001).
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Chapter 5

Evaluation of Wordnet-based
Similarity

5.1 Introduction

In this chapter – and the next two – we provide a quantitative evaluation of differ-
ent word space models and their parameters. More specifically, we investigate three
different groups of models that have been built up according to the three hypotheses for-
mulated in chapter 1 (viz. document-based, window-based and syntax-based models),
using the formal framework presented in chapter 2. With this quantitative evaluation,
we want to determine which models are best suited for the extraction of lexico-semantic
information. Also, we want to find out whether there are differences in the kind of
lexico-semantic information that is captured by the different models. Special attention
is devoted to models applying some form of dimensionality reduction; we want to
investigate whether the use of dimensionality reduction algorithms proves beneficial
for particular models.

In this chapter, the models are evaluated by comparing them to CORNETTO, a
handcrafted lexico-semantic hierarchy for Dutch, similar to WordNet. If two words
are close to each other in the hierarchy, they are semantically similar. By comparing a
model’s output to the CORNETTO database, we can determine how good a particular
model is at extracting semantic similarity. More specifically, we are able to determine
the different models’ ability to induce tight, synonym-like similarity (cfr. section 1.3).
By nature, words that are close to each other in an IS-A hierarchy tend to be tightly
related. The results presented in this chapter thus evaluate the models’ ability to extract
tight, synonym-like similarity. In chapter 6, we will evaluate the same synonym-
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like similarity extraction by comparing the output of a clustering algorithm to a gold
standard classification. In chapter 7, we will then evaluate the models’ ability to induce
semantically related, i.e. topically similar words.

We start out with a description of the different resources and tools that have been
used for the construction of the models and their evaluation. Next, we describe the
evaluation framework employed for the calculation of wordnet-based similarity. The
next part – the main section of this chapter – presents the evaluation results for the
three different models (document-based, window-based and syntax-based) and their
various parameters. In the last section, we compare the different models, and draw
some conclusions about their ability to extract semantic similarity – and their aptness
for particular applications.

5.2 Methodological remarks

5.2.1 Corpus

All contextual co-occurrence information that has been used for building the models
has been extracted from the Twente Nieuws Corpus (TWNC), a 500M word corpus of
Dutch newspaper texts from the period 1999-2005.1 The corpus has been consistently
divided into articles and paragraphs, which can be used as document sizes in the
document-based models. Additionally, the corpus has been parsed with ALPINO (van
Noord, 2006) – a dependency-parser for Dutch – so that dependency-relations are
available for use in the syntax-based models.

5.2.2 Lexico-semantic database

The models are evaluated by comparing the results to the Dutch lexico-semantic data-
base CORNETTO (Horak, Vossen, and Rambousek, 2008). CORNETTO is a recently
developed database that combines information from the Dutch part of EuroWordNet
(Vossen, 1998) and Referentiebestand Nederlands (Maks, Martin, and de Meerse-
man, 1999). The database contains hierarchically structured IS-A relations, similar
to the original WordNet (Fellbaum, 1998). CORNETTO contains about 70K synsets,2

which altogether contain about 100K words. About 50K of all synsets are noun synsets,
accounting for about 75K nouns in total. A sample extract of CORNETTO’s noun
hierarchy is given in figure 5.1 on page 63.

1The corpus contains articles from four different Dutch newspapers, viz. Algemeen Dagblad, NRC
Handelsblad, Parool, Trouw and Volkskrant.

2A synset is a set of synonymous words within the semantic IS-A hierarchy.
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5.2.3 Tools & implementation

All models and corresponding similarity calculations have been implemented in PY-
THON, partially using the NUMPY module for scientific computations (which is useful
for a number of linear algebraic operations). SVD calculations have been carried out
using the SVDPACKC library (Berry, 1992), which allows fast sparse truncated singular
value decompositions, depending on the number of singular values one wants to retain.
NMF calculations have been carried out in MATLAB, using a sparse implementation of
the NMF algorithm. The evaluation framework itself has been implemented in PYTHON
as well, making extensive use of the PYCORNETTO interface developed by Erwin
Marsi.

5.3 Evaluation framework

5.3.1 Introduction

The models are automatically evaluated by comparing them to the lexico-semantic
database CORNETTO. By looking up the distance between two words in the database,
we can determine how similar they are. A number of similarity measures have been
developed in order to formalize this distance measurement in WordNet-like hierarchies.
First, we provide a description of the two wordnet similarity measures used in the
subsequent evaluations. Next, we describe the actual evaluation framework and the
design of the test set.

5.3.2 Similarity measures

In this section, we describe two wordnet similarity measures that will be used for
measuring the similarity between words in a wordnet taxonomy. We will use the
following definitions and notation, largely following Budanitsky and Hirst (2006):3

• The length of the shortest path from synset ci to synset c j (measured by counting
the edges between nodes) is denoted by len(ci,c j). A top root node ensures the
existence of a path between any two nodes.

• The depth of a node is the length of the path from the global root to the node,
i.e., depth(ci) = len(root,ci).

• the least common subsumer – lcs(c1,c2) – is the common subsumer for which
the path length len(c1,c2) is minimal, i.e. the most specific common superclass.

3An extensive overview of different similarity measures is provided in this paper as well.
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• Given any formula simx(c1,c2) for semantic similarity between two concepts
c1 and c2, the similarity simx(w1,w2) between two words w1 and w2 can be
calculated as

simx(w1,w2) = max
c1∈s(w1),c2∈s(w2)

simx(c1,c2) (5.1)

where s(wi) is ‘the set of concepts in the taxonomy that are senses of word
wi’ (Resnik, 1995), and simx(c1,c2) is either of the two similarity measures
described below. So we make the assumption that the similarity of two words is
equal to the similarity of the words’ most related senses.

Similarity by path length

Wu and Palmer (1994) propose a measure that computes the similarity between two con-
cepts by looking at the path length between them in the wordnet taxonomy. Intuitively,
it seems reasonable to take the path length into account when determining semantic
similarity: the closer two nodes are together in a taxonomy, the more semantically
similar they are. Some precaution needs to be taken, however. If we only consider path
length, then all links need to represent a uniform ‘semantic distance’. Usually, this is
not the case. Particular subtaxonomies might be much denser than others,4 and the
distance that one particular link represents may therefore differ a lot. Wu and Palmer
propose the following measure to measure the path length – while at the same time
scaling the outcome to the relative position of the words in the taxonomy:

simwp(c1,c2) =
2C

A+B+2C
(5.2)

where A = len(c1, lcs(c1,c2)), B = len(c2, lcs(c1,c2)), and C = depth(lcs(c1,c2)). Note
that len(c1, lcs(c1,c2))+ len(c2, lcs(c1,c2)) denotes the path length from c1 to c2, and
depth(lcs(c1,c2)) denotes the global depth of the path in the taxonomy. If a particular
path has a large depth, it will be given more weight compared to a path that is high up
in the taxonomy.

Let us illustrate the Wu and Palmer similarity measure with an example. In
figure 5.1, an extract of the CORNETTO database is given.

4Some taxonomies might concentrate on technical topics, or have a detailed subtaxonomy for particular
scientific fields such as biology.
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iets:noun:2
‘entity’

p = 4,03×10−1

object:noun:1
‘object’

p = 8,77×10−2

wezen:noun:1
‘being’

p = 5,38×10−2

organisme:noun:2
‘organism’

p = 4,73×10−2

dier:noun:1
‘animal’

p = 4,62×10−2

zoogdier:noun:1
‘mammal’

p = 4,44×10−2

beer:noun:1
‘bear’

p = 1,11×10−5

ijsbeer:noun:1
‘polar bear’

p = 6,27×10−7

vis:noun:1
‘fish’

p = 2,59×10−4

riviervis:noun:1
‘freshwater fish’
p = 1,38×10−5

goudvis:noun:1
‘goldfish’

p = 1,12×10−6

Figure 5.1: CORNETTO extract
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Say we want to calculate the Wu and Palmer similarity between ijsbeer ‘polar bear’
and haai ‘shark’, i.e. simwp(ijsbeer,haai).5 To do so, we first determine the least com-
mon subsumer lcs(ijsbeer:noun:1, goudvis:noun:1) = dier:noun:1. Next, we determine
that len(ijsbeer:noun:1, dier:noun:1) = 3, that len(goudvis:noun:1, dier:noun:1) =
3, and that depth(dier:noun:1) = 4.6 It is now straightforward to determine that
simwp = 2×4

3+3+(2×4) = 0.571.
Wu and Palmer’s similarity measure is not the only similarity measure based on

path length in a taxonomy. A similar measure has been proposed by Leacock and
Chodorow (1998).

The Wu and Palmer similarity measure is able to mend the problem of varying link
distances, and in practice proves to correlate well with human judgments of semantic
similarity. However, the measure still depends on the actual taxonomic structure. In the
next section, an alternative method for measuring semantic similarity in a taxonomy is
presented, based on information theory. It takes into account the taxonomic structure,
but does not depend directly on the link distances.

Information-theoretic similarity

Intuitively, the more information two particular concepts share, the more similar they
are. This information is captured indirectly by edge-counting methods. If two concepts
are subsumed by a common subsumer low in the taxonomy, they are likely to share
many characteristics; if two concepts only have a subsumer higher up in the taxonomy,
they probably do not share many characteristics.

If we associate probabilities with concepts in the taxonomy, we are able to capture
the same information without being dependent on the (varying and unreliable) link
distances. For every concept c in the taxonomy, we calculate the probability p(c), the
probability of encountering an instance of concept c.7 We can then straightforwardly
calculate the information content of a concept c as the self-information of p(c):

I(p(c)) =− log p(c) (5.3)

5Note that this means looking up the different concepts that are designated by ijsbeer and goudvis. In
this case, there is only a single concept for each word, ijsbeer:noun:1 and goudvis:noun:1. If there were
more concepts for the words we want to look up, we would calculate the similarity between each pair of
concepts, and take the maximum of these similarity scores.

6Note that we determine the path length by counting the edges between nodes. Another option is
to count the number of nodes themselves, which is the option that Wu and Palmer take in their original
implementation. Other researchers (Resnik, 1999) have opted for the edge-counting method in order to
determine the path length, which is the approach we adopt here.

7Note that this means that the probability function p is monotonically nondecreasing when moving up
in the taxonomy: if c1 subsumes c2, then p(c1)≥ p(c2).
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Note that, as the probability increases, informativeness decreases. So the more
abstract a concept, the lower its information content. This quantitative characteriza-
tion of the information content of a concept provides an alternative way to compute
the semantic similarity of concepts. “The more information two different concepts
share, the more similar they are, and the information shared by two concepts is indic-
ated by the information content of the concepts that subsume them in the taxonomy.”
(Resnik, 1999)

Formally, this can be defined as:

simIC = max
c∈S(c1,c2)

−logp(c) (5.4)

where S(c1,c2) is the set of concepts which subsume both c1 and c2. The synset that
achieves the maximum value in equation 5.4. In practice, this will always be the least
common subsumer of c1 and c2, because no subordinate synset is less informative than
its superordinates:8

simIC =−logp(lcs(c1,c2)) (5.5)

Information content in itself is a suitable measure of semantic similarity (see Resnik
(1999)), but in our evaluation framework we will make use of Lin’s (1998b) measure
as an information-theoretic measure of semantic similarity. Lin’s measure for semantic
similarity can be seen as a normalized version of information content. It is defined as:

simlin(c1,c2) =
2× log p(lcs(c1,c2))
log p(c1)+ log p(c2)

(5.6)

Note that – except for the multiplicative constant 2 – the measure is the same as
the information content similarity measure in equation 5.5, but normalized by the
combined information content of the two concepts assuming they are independent.
Lin’s measure thus not only takes the commonality of the two concepts into account,
but also the differences (both expressed in terms of their information content).

To be able to implement the measure, we need to estimate the probabilities of all
concepts in the taxonomy. To do so, we look at the frequencies of the words in a
large corpus. Each word in the corpus is counted as an occurrence of the concept that
subsumes it. In the example in figure 5.1, an occurrence of the word ijsbeer counts as
an occurrence of all the superordinate classes (beer, zoogdier, dier, organisme, and so
on). Formally,

8The formula was designed this way to be able to cope with multiple inheritance. In this case, two nodes
might both be least common subsumers, but they will have different information content values.
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f req(c) = ∑
n∈words(c)

f req(n) (5.7)

where words(c) is the set of words subsumed by concept c. The probabilities then just
amount to the relative frequencies:

p(c) =
f req(c)

N
(5.8)

where N is the total number of words in the corpus (that are present in the taxonomy).
To be able to precisely estimate the probabilities of all concepts, we would need a

sense-tagged corpus. But large sense-tagged corpora are not readily available, espe-
cially for Dutch. Therefore, upon encountering a particular word in the corpus, the
frequency of all senses of the word will be increased. This method makes the frequency
estimation weaker but more generally applicable. In practice, it is the only method that
allows the use of a large corpus.

Let us illustrate the Lin similarity measure again with the example in figure 5.1. To
calculate the Lin’s similarity between ijsbeer ‘polar bear’ and haai ‘shark’, we first
extract the probabilities of the two words and their least common subsumer:

p(ijsbeer:noun:1) = 6,27×10−7 p(goudvis:noun:1) = 1,12×10−6

p(dier:noun:1)9 = 4,62×10−2

It is now straightforward to calculate Lin’s similarity according to equation 5.6:

simlin(ijsbeer,haai) =
2× log(4,62×10−2)

log(6,27×10−7)+ log(1,12×10−6)
= 0.220

5.3.3 Evaluation of pairwise similarity

In order to evaluate a model’s performance for a particular word, we calculate the
pairwise similarity between that word and its top k similar words. For each target word,
the top k similar words are extracted. We then calculate the similarity between the
target word and each of its top k nouns (using one of the similarity measures described
above). The pairwise similarity value for a particular word at k is then the average of
the pairwise similarity values. Formally,
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simx,k(w0) = ∑
k
i=1 simx(w0,wi)

k
(5.9)

where w0, . . . ,wk is a list of top similar words (the first word w0 being the target word
for which the similar words are calculated), simx is either simwp or simlin, and k is the
number of similar words over which the average pairwise similarity is calculated. The
similarity score for a particular model is then again the average of the average pairwise
similarity for all target words in the test set.

Let us illustrate this procedure with an example target word. In (1), the 5 most
similar words for the target word wedstrijd ‘game’ are given (using a syntax-based
model):

(1) wedstrijd ‘game’: duel ‘duel’, toernooi ‘tournament’, race ‘race’, finale ‘final’,
ronde, ‘round’

It is now straightforward to calculate the average pairwise similarity using a particular
similarity measure and a particular value of k, e.g. simlin,3(wedstri jd)

=
simlin(wedstri jd,duel)+ simlin(wedstri jd, toernooi)+ simlin(wedstri jd,race)

3

=
.796+ .799+ .793

3
= .796

As mentioned before, the score for the whole test set is then the average of these
individual average pairwise similarities for all target words in the test.

5.3.4 Test set

For the construction of the evaluation’s test set, we extracted the 10K most frequent
nouns from the TWNC. From those nouns, we selected the ones that also appeared in
the CORNETTO database. This amounts to a total test set of 5478 nouns.

A random baseline for the evaluation is provided in table 5.1. The baseline has been
created by combining each of the 5478 nouns with 5 other nouns randomly selected
from the same test set. The table provides means and standard deviations calculated
over 5 different random runs.
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similarity k = 1 k = 3 k = 5

1 simwp .128±2.60×10−3 .126±1.53×10−3 .126±8.08×10−4

2 simlin .164±9.62×10−4 .163±6.02×10−4 .163±7.17×10−4

Table 5.1: CORNETTO similarity scores for the random baseline

wu & palmer’s similarity lin’s similarity
model k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

1 wpar .337 .302 .284 .330 .302 .287
2 wart .379 .331 .309 .354 .320 .304

Table 5.2: Evaluation results for different document sizes in the document-based model

5.4 Results

5.4.1 Document-based model

In this section, we investigate the aptness of document-based models for the induction
of semantic similarity. First, the influence of different document sizes is examined. In
the second part, we inspect the influence of different weighting parameters. The third
part then looks at the influence of dimensionality reduction algorithms.

For the construction of document-based models, a smaller subset of the Twente
Nieuws Corpus has been used, amounting to ± 3-6 years of newspaper text (dependent
on the document size). When more data is used, the models become too large, so
that computations become prohibitively expensive. All models have been constructed
using 30K nouns as target words, and 500K documents as features. No cut-offs have
been applied, so all frequency data is taken into account. Cosine has been used as a
similarity measure (this holds for all evaluations performed in this chapter).

Document size

Table 5.2 gives the result for two different document sizes – paragraph (wpar) and
article (wart). The models both use a combination of local logarithmic weighting and
global entropy weighting, and an SVD dimensionality reduction to 300 dimensions.
These are the best scoring parameters for both document sizes in the document based
model (cfr. table 5.5 and 5.6).

The results indicate that a model using a larger document size is able to achieve
better results. This is most likely due to data sparseness in the model with small
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wu & palmer’s similarity lin’s similarity
model k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

1 A f req .315 .272 .259 .318 .284 .272
2 Alog f req .323 .285 .267 .325 .294 .279
3 Aent .315 .271 .259 .318 .284 .272
4 Alogent .323 .285 .267 .325 .294 .279

Table 5.3: Evaluation results for different weighting parameters in the document-based
model with paragraph size

document size: the model uses a (rather small) paragraph size, and is not able to encode
as many collocations as the model with a larger document size. Also, the model with a
small document size uses less corpus data due to the feature limit of 500K documents.

Weighting

Table 5.3 and 5.4 give the results for the document-based model with regard to different
weighting parameters; the former table makes use of paragraphs as document size,
whereas the latter uses articles. Four different weighting options are considered. The
first model uses no weighting whatsoever (i.e. the identity function is applied as a
weighting function). The second model uses local logarithmic weighting, and no global
weighting. The third model uses global entropy weighting, and no local weighting.
And the fourth model uses a combination of a local logarithmic weighting and a global
entropy weighting. The four different models can be formalized as follows:

A f req(i, j) = fi j
Alog f req(i, j) = 1+ log( fi j)

Aent(i, j) = fi j(1+∑
n
k=1

pik log(pik)
log(n) ), pik = fik

∑
n
l=1 fil

Alogent(i, j) = fi j(1+∑
n
k=1

pik log(pik)
log(n) ), pik = 1+log( fik)

∑
n
l=1 1+log( fil)

(5.10)

For both document sizes, we see that logarithmic weighting improves the results a
little. The application of global entropy weighting does not improve the results – neither
with the bare frequency counts nor with the logarithmically weighted frequency counts.
This is probably due to the vast sparseness of the document-based feature vectors.
The entropy weighting is able to adapt the frequency value according to a word’s
importance in the document, but similar words simply do not co-occur sufficiently
frequently to be able to make proper similarity calculations.
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wu & palmer’s similarity lin’s similarity
model k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

1 A f req .331 .298 .280 .335 .310 .296
2 Alog f req .348 .302 .285 .350 .317 .304
3 Aent .331 .298 .280 .335 .310 .296
4 Alogent .348 .302 .285 .350 .317 .304

Table 5.4: Evaluation results for different weighting parameters in the document-based
model with article size

wu & palmer’s similarity lin’s similarity
A M d k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

Afreq Msvd 50 .283 .257 .243 .292 .270 .259
100 .302 .275 .261 .308 .285 .274
300 .327 .287 .274 .324 .292 .282

Alogfreq Msvd 50 .282 .260 .248 .291 .273 .263
100 .310 .282 .269 .312 .290 .279
300 .331 .295 .279 .327 .297 .284

Alogent Msvd 50 .303 .279 .263 .306 .283 .272
100 .325 .293 .276 .324 .297 .284
300 .337 .302 .284 .330 .302 .287

Table 5.5: Evaluation results for different dimensionality reduction parameters in the
document-based model with paragraph size

Dimensionality reduction

Table 5.5 gives the results for the document-based model with paragraph size (weight-
ed according to three different weighting functions) combined with singular value
decomposition. Table 5.6 gives the same result for the document-based model with
article size. Non-negative matrix factorization has not been applied, because the
computation of those factorizations was computationally too expensive.10

The results indicate that the models using singular value decomposition are able to
improve upon the original models (with d = 300), albeit only to a small extent. The
improvement is visible for all different weighting parameters and for both document

10Computationally too expensive in this case means that the factorization could not be carried out within
the memory limit of 4GB.
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wu & palmer’s similarity lin’s similarity
A M d k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

Afreq Msvd 50 .311 .278 .264 .307 .279 .269
100 .323 .288 .273 .318 .289 .277
300 .349 .304 .285 .338 .303 .288

Alogfreq Msvd 50 .322 .291 .274 .313 .288 .275
100 .341 .305 .286 .330 .301 .286
300 .357 .317 .298 .341 .311 .296

Alogent Msvd 50 .320 .289 .274 .312 .286 .275
100 .344 .308 .289 .333 .304 .290
300 .379 .331 .309 .354 .320 .304

Table 5.6: Evaluation results for different dimensionality reduction parameters in the
document-based model with article size

sizes, although some parameters bring about a larger improvement. In general, the
models using articles as a document size get a better improvement. Also, the model
using logarithmic weighting combined with entropy weighting is improving more than
the other models. This makes the model using log-entropy weighting combined with
SVD the best scoring model for the document-based approach.11

Summary

The performance of the document-based model for the extraction of semantic similarity
is rather low. The use of larger document sizes seems to make the model more robust
with respect to data sparseness. Dimensionality reduction (SVD) improves the results
a little, but the results remain rather low. Log-entropy weighting achieves the best
performance.

5.4.2 Window-based models

Introduction

In this section, we will investigate the performance of different window-based models
on the task of extracting semantic similarity.12 In the first part, we investigate the

11Note that these are the parameters that are commonly used in latent semantic analysis, though latent
semantic analysis takes all words into consideration. In the results above, we only consider nouns.

12Recall that in these models, we use the words that appear within a certain window size around the
target word. These models are also known as bag of words models.
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relation between the size of the model (in terms of features) and the model quality.
The second part will focus on the influence of the context window size. The third part
describes the influence of different weighting parameters, and the fourth part evaluates
the influence of different dimensionality reduction algorithms. In the last part, we
draw some conclusions with regard to the different parameter settings in window-based
distributional similarity models.

Model size/feature selection

The performance of word space models improves when more data is taken into account.
This holds a fortiori for the model’s feature space: when more features are added
to the model, the model’s grasp of semantic similarity improves. There is, however,
one big caveat, particularly when using window-based models. The models tend to
become very large quickly when more features are taken into account. Usually, the
most frequent words are used as the model’s feature set – applying a threshold or
cut-off to limit the feature size. When a large feature set is used, the computations
and memory requirements often become prohibitively expensive. This is certainly true
when high frequency function words are included in the feature set as well. In this
section, we therefore want to investigate the influence of the nature and size of the
feature set.

Table 5.7 shows the results for seven different bag of words models. The first three
models have been built with a window size of 1 (w1), respectively using a feature set
of 100K words (T100K), 2K words (T2K), and 2K words excluding a list of stop words13

(T2K, ¬stop). Model 4 and 5 have been built with a window size of 2 (w2), using
feature sets of 100K words (T100K) and 2K words (T2K). The last two models both use a
sentence window (wsent ) and a feature set of 2K words (T2K), but the latter’s feature set
does not include stop words. All models have been weighted with pointwise mutual
information.

The results indicate that the models with larger feature sets indeed perform better:
the best model is the first model (large feature set and a window size of 1), closely
followed by the fourth model (large feature set and context size of 2). Note, however,
that the same models with a smaller feature set (models 2 and 5) attain a relatively high
score as well; the difference between the respective models gets smaller as the window
size increases. At the same time, the models with smaller feature sets are about half the
size of their counterparts with large feature sets (in terms of non-zero matrix values).

The removal of function words again hurts performance, but the models are still
able to attain reasonable scores, while at the same time again significantly reducing the

13The stop list consists of ‘contentless’ function words.
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wu & palmer’s similarity lin’s similarity
description k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

1 w1, T100K .633 .561 .526 .541 .485 .456
2 w1, T2K .607 .540 .507 .514 .463 .436
3 w1, T2K, ¬stop .589 .521 .487 .510 .457 .428
4 w2, T100K .627 .551 .516 .541 .483 .455
5 w2, T2K .620 .546 .511 .535 .477 .450
6 wsent , T2K .547 .465 .428 .477 .420 .391
7 wsent , T2K, ¬stop .528 .447 .411 .465 .406 .378

Table 5.7: Evaluation results for different model size parameters in the bag of words
model

size of the model: the models that filter out stop words are again about half the size of
their non-filtered counterparts.

From the results in table 5.7, we conclude that it is best to use as many features
as possible; when the use of many features is computationally too expensive, models
with smaller feature sizes still perform well compared to their counterparts with larger
feature size. The same goes for the removal of high frequency function words: function
words should be included if possible, but if the model size grows too large, they may
be removed without severely hurting the model’s performance.

Window size

In the next paragraphs, we will look at the influence of window size on the model’s
performance. We will use window sizes of 1, 2, 5, and 10 (both left and right around
the target word, but not crossing sentence boundaries), as well as the sentence and
the paragraph in which the target word appears. All models use a feature set of size
2K without stop word removal, and all have been weighted with pointwise mutual
information. Table 5.8 gives the results for the varying window sizes.

The model that uses a window size of 2 (w2) scores best. In general, smaller
window sizes perform better for the induction of semantic similarity. The model with
a window size of 1 (w1) performs worse than w2, but this is probably due to data
sparseness: the small window combined with the small feature set does not allow the
model to be sufficiently informative. The results in table 5.7 indicate that a model with
a window size of 1 performs better when more features are taken into account.14

14A window size of 2K has been used to keep all parameters but the window size equal. Using a larger
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wu & palmer’s similarity lin’s similarity
window size k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

1 w1 .607 .540 .507 .514 .463 .436
2 w2 .620 .546 .511 .535 .477 .450
3 w5 .620 .541 .500 .532 .474 .442
4 w10 .578 .497 .457 .502 .445 .413
5 wsent .547 .465 .428 .477 .420 .391
6 wpar .442 .377 .349 .404 .357 .336

Table 5.8: Evaluation results for different window sizes in the bag of words model

Weighting

The results below show the influence of different weighting options. Four different
weighting options are considered. The first model uses no weighting whatsoever (i.e.
the identity function is applied as a weighting function). The second model uses local
logarithmic weighting, and no global weighting. The third model uses global pointwise
mutual information weighting, and no local weighting. And the fourth model uses a
combination of a logarithmic weighting and pointwise mutual information. The four
different models can be formalized as follows:

A f req(i, j) = fi j Alog f req(i, j) = 1+ log fi j

Apmi(i, j) = log p( fi j)
p( fi)p( f j)

Alogpmi(i, j) = log p(1+log fi j)
p(∑ j 1+log fi j)p(∑i 1+log fi j)

(5.11)

In order to examine the influence of different weighting options on different window
sizes, results are given for a small window size (w2, table 5.9) and a large window size
(wpar, table 5.10).

For a window size of 2, pointwise mutual information (Apmi) clearly achieves the
best result. Both logarithmic weighting (Alog f req) and the combination of logarithmic
weighting and PMI (Alogpmi) improve upon the bare frequency counts, but both methods
perform worse than Apmi.

For the models using a paragraph as context window, the results look different.
Apmi still achieves the best result, but the improvement on the bare frequency counts
is smaller. Furthermore, Alog f req and Alogpmi do not improve upon the bare frequency
counts.

feature set would have made the models with larger windows prohibitively expensive.
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wu & palmer’s similarity lin’s similarity
model k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

1 A f req .425 .372 .351 .360 .318 .300
2 Alog f req .555 .492 .462 .481 .427 .402
3 Apmi .620 .546 .511 .535 .477 .450
4 Alogpmi .542 .484 .454 .479 .430 .406

Table 5.9: Evaluation results for different weighting parameters in the bag of words
model with a window of 2

wu & palmer’s similarity lin’s similarity
model k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

1 A f req .374 .330 .310 .349 .315 .302
2 Alog f req .340 .302 .284 .337 .306 .292
3 Apmi .442 .377 .349 .404 .357 .336
4 Alogpmi .362 .314 .296 .353 .316 .302

Table 5.10: Evaluation results for different weighting parameters in the bag of words
model with a paragraph window

The results indicate that, for the computation of semantic similarity, a weighting
function applying pointwise mutual information to bare frequency counts (Apmi) is
overall the best weighting function for bag of words models.

Dimensionality reduction

In this section, we look at the influence of different dimensionality reduction algorithms
on the models’ performance. The two dimensionality reductions explained in chapter 3
– singular value decomposition and non-negative matrix factorization – are used. For
each of these, the models are reduced to 50, 100 and 300 dimensions. Furthermore,
this setup is combined with three different weighting functions – Afreq, Alogfreq, and
Apmi – in order to check whether a particular weighting is more apt to be used with a
particular dimensionality reduction. The whole evaluation is carried out for a small
window size (w2, table 5.11) and a large window size (wpar, table 5.12).

From table 5.11, we see that the best scoring model is the one using pointwise
mutual information as a weighting function, and a singular value decomposition to
300 dimensions as dimensionality reduction algorithm. However, the best performing
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wu & palmer’s similarity lin’s similarity
A M d k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

Afreq Msvd 50 .395 .350 .329 .333 .299 .282
100 .411 .361 .339 .347 .307 .291
300 .421 .369 .347 .355 .316 .297

Mnmf 50 .443 .404 .388 .372 .340 .327
100 .481 .435 .411 .406 .367 .347
300 .497 .435 .410 .421 .370 .350

Alogfreq Msvd 50 .481 .438 .421 .414 .375 .360
100 .506 .464 .439 .435 .397 .376
300 .533 .483 .455 .461 .417 .392

Mnmf 50 .434 .400 .385 .377 .346 .333
100 .451 .414 .397 .395 .361 .346
300 .442 .407 .391 .387 .355 .341

Apmi Msvd 50 .540 .489 .465 .461 .420 .401
100 .574 .513 .487 .490 .442 .420
300 .606 .539 .507 .518 .466 .440

Mnmf 50 .423 .398 .385 .369 .347 .336
100 .459 .417 .398 .397 .364 .349
300 .473 .426 .405 .418 .378 .360

Apmi – – .620 .546 .511 .535 .477 .450

Table 5.11: Evaluation results for different dimensionality reduction parameters in the
bag of words based model with a window of 2

factorized model does not improve on its non-factorized counterpart (shown in the last
line for reasons of comparison). For small windows, semantic similarity calculations
do not benefit from dimensionality reduction algorithms.

Table 5.11 shows a number of additional striking characteristics that require our
attention. With regard to SVD, the models that perform best are the ones that use
PMI as a weighting function. Using logarithmic weighting also improves on the bare
frequency data; the use of bare frequency data yields the worst performing models.
With regard to NMF, the situation is quite different. The best performing models are the
ones that do not apply weighting; using logarithmic weighting or PMI yields models
that perform worse. The use of the Kullback-Leibler divergence as the NMF’s objective
function makes weighted models perform worse than their non-weighted counterparts.
In general, though, models using SVD reach better results than models using NMF.
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wu & palmer’s similarity lin’s similarity
A M d k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

Afreq Msvd 50 .331 .288 .273 .317 .285 .273
100 .352 .311 .290 .333 .302 .286
300 .371 .328 .305 .345 .315 .297

Mnmf 50 .337 .304 .284 .315 .290 .277
100 .360 .316 .291 .338 .304 .285
300 .377 .324 .304 .350 .310 .295

Alogfreq Msvd 50 .323 .289 .272 .316 .289 .276
100 .336 .297 .281 .327 .298 .284
300 .337 .304 .285 .331 .304 .289

Mnmf 50 .313 .288 .271 .309 .288 .276
100 .333 .295 .277 .327 .295 .281
300 .332 .296 .281 .327 .299 .286

Apmi Msvd 50 .389 .333 .313 .354 .313 .298
100 .418 .357 .332 .379 .333 .314
300 .443 .376 .351 .402 .351 .331

Mnmf 50 .320 .284 .270 .303 .275 .263
100 .356 .314 .297 .328 .298 .285
300 .391 .335 .312 .360 .319 .301

Apmi – – .442 .377 .349 .404 .357 .336

Table 5.12: Evaluation results for different dimensionality reduction parameters in the
bag of words based model with a paragraph window

Table 5.12 shows results that are similar to the ones given in table 5.12. The best
scoring model is again the one using PMI as a weighting function, and an SVD to 300
dimensions. Again it does not improve on its non-factorized counterpart; in the best
case it is able to achieve a similar score. Bag of words models using a large context
window do not provide good models for semantic similarity calculations, and the
application of dimensionality reduction algorithms does not improve on those results.

The tendencies for SVD are again the same, the only difference being that logar-
ithmic weighting does not bring about an improvement. With regard to NMF, simple
frequencies again yield the best models.
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Summary

For the extraction of tight semantic similarity, smaller context windows provide the
most informative features. The more features that are taken into account, the better
performance the models reach. Still, the models are able to attain a reasonable per-
formance when a smaller number of features is taken into account. When the goal
is to extract tight semantic similarity, it is better not to exclude a stop list (though
it is a possibility that does not severely decrease performance when the models get
too large). With regard to dimensionality reduction algorithms, no model improves
upon its non-reduced counterpart, but the SVD models combined with Apmi are able
to approximate their non-reduced counterparts very closely within a highly reduced
vector space.

5.4.3 Syntax-based models

Introduction

In this section, we look at the performance of syntax-based models for the calculation of
semantic similarity. All syntax-based models have been constructed using dependency
relations extracted from the Twente Nieuws Corpus (parsed with the Dutch dependency
parser ALPINO).15 The dependency relations that are used to construct the models are
listed in table 1.2 on page 22.

In the next paragraphs, we extensively examine the influence of different weighting
functions models. In all subsequent evaluations, we use a syntax-based model with a
noun cutoff of 20 (a noun has to appear with 20 different features) and a triple cutoff of
2 (a particular noun-feature combination has to appear twice). This amounts to a model
that contains 30K nouns cross-classified by 170K features. In practice, this gives a
good balance between model size and model quality. As a similarity measure, cosine is
used.

Weighting

We have tested the syntactic model with the same weighting functions that have been
applied to the window-based model: no weighting (Afreq), local logarithmic weighting
(Alogfreq), pointwise mutual information (Apmi) and a combination of a logarithmic
function and pointwise mutual information (Alogpmi). A formal overview of the different
functions is given on page 74.

15An example feature for the noun apple might be ‘eatob j’.
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wu & palmer’s similarity lin’s similarity
model k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

1 Afreq .480 .415 .385 .414 .364 .339
2 Alogfreq .648 .578 .546 .555 .502 .474
3 Apmi .640 .584 .554 .546 .504 .480
4 Alogpmi .631 .576 .546 .540 .499 .474

Table 5.13: Evaluation results for different weighting parameters in the syntax-based
model

The results are presented in table 5.13; they indicate that the performance of the
different weighting models is mixed. For k = 1, simple logarithmic weighting scores
best (simwp = .648 and simlin = .555). For the other values of k, the model that uses
only pointwise mutual information is the most successful. All weighting models
perform better than the model using simple frequency counts, but a combination of
logarithmic weighting and PMI does not improve over the models that use either of
those.

Dimensionality reduction

To evaluate the influence of dimensionality reduction algorithms on the syntax-based
model, we use a setup that is similar to the one used with the window-based model.
Again, the two dimensionality reductions explained in chapter 3 – singular value
decomposition and non-negative matrix factorization – have been applied. For each of
these, the models are reduced to 50, 100 and 300 dimensions. This setup is combined
with three different weighting functions – Afreq, Alogfreq, and Apmi – to check whether a
particular weighting is more apt to be used with a particular dimensionality reduction.

No dimensionality reduction model is able to improve upon the score of its non-
reduced counterpart, so dimensionality reduction does not help in getting better sim-
ilarity models with regard to CORNETTO similarity. We do notice that some models
(notably the SVD models reduced to 300 dimensions using local logarithmic weighting
and global pointwise mutual information) are able to closely approach their non-
reduced counterparts (for k = 1, simwp = .610 (↔ .648), simlin = .520 (↔ .555) with
Alogfreq, and simwp = .604 (↔ .640), simlin = .510 (↔ .546) with Apmi). The last line
of the table shows the non-reduced PMI model for comparison.

With regard to the differences between both dimensionality reduction algorithms,
the tendencies are similar to the window-based model. For SVD, the best performing
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wu & palmer’s similarity lin’s similarity
A M d k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

Afreq Msvd 50 .373 .339 .325 .320 .294 .283
100 .416 .374 .355 .355 .322 .305
300 .466 .408 .384 .396 .351 .332

Mnmf 50 .409 .393 .385 .338 .322 .315
100 .454 .430 .417 .376 .356 .347
300 .502 .455 .433 .423 .388 .369

Alogfreq Msvd 50 .552 .503 .482 .468 .425 .408
100 .576 .527 .499 .487 .448 .426
300 .610 .553 .524 .520 .474 .449

Mnmf 50 .407 .392 .388 .342 .327 .322
100 .463 .441 .427 .389 .367 .355
300 .508 .468 .452 .432 .400 .385

Apmi Msvd 50 .548 .500 .482 .459 .422 .406
100 .572 .525 .505 .483 .446 .427
300 .604 .560 .535 .510 .476 .453

Mnmf 50 .368 .359 .353 .318 .304 .298
100 .413 .393 .383 .350 .331 .322
300 .443 .414 .405 .382 .356 .347

Apmi – – .640 .584 .554 .546 .504 .480

Table 5.14: Evaluation results for different dimensionality reduction parameters in the
syntax-based model

model is Apmi, together with Alogfreq. For NMF, the best scoring models are the Afreq
and Alogfreq models; the Apmi models scores considerably worse.

Summary

The class of syntax-based models gives the best performance for the extraction of
semantic similarity. Pointwise mutual information seems to provide the best weighting,
although simple logarithmic weighting yields quite good results as well. Dimensionality
reduction algorithms do not improve upon the results, but singular value decomposition
is able to approximate the original model.
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wu & palmer’s similarity lin’s similarity
model k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

document-based .379 .331 .309 .354 .320 .304
window-based .633 .561 .526 .541 .485 .456
syntax-based .648 .584 .554 .555 .504 .480

Table 5.15: Comparison of the best scoring models for each class

5.4.4 Conclusion

Table 5.15 compares the best results of the three different classes that have been
evaluated in this chapter.

The syntax-based models yield the best results (with Alogfreq for k = 1 and Apmi
for k = 3,5) closely followed by the window-based models (using a small window of
w = 1 and Apmi weighting). The best performing document-based model (using SVD
reduced to 300 dimensions with article size and Alogent weighting) scores worse than
the other two models.

Dimensionality reduction algorithms are - to a small extent - beneficial for document-
based models. Singular value decomposition (in combination with logentropy-weighting)
is able to improve upon the original data. The window-based and syntax-based models
do not benefit from dimensionality reduction algorithms; the window-based model
with dimensionality reduction achieves results similar to its non-factorized counter-
part, while the application of dimensionality reduction is detrimental when using a
syntax-based model. The results of the models using non-negative matrix factorization
are disappointing: in all cases, either SVD or the non-factorized models reach better
results.

For the extraction of tight, synonym-like similarity, we conclude that a syntax-based
model is the preferred model.





Chapter 6

Evaluation of Cluster Quality

6.1 Introduction

In this chapter, we evaluate the quality of a word space model by comparing the output
of a clustering algorithm (that calculates the similarity between words through the word
space model) to a gold standard categorization. For this purpose, we will make use
of the lexical categorization tasks that have been defined for the workshop ‘Bridging
the gap between semantic theory and computational simulations’, organized at ESSLLI
2008 in Hamburg.1

6.2 Methodology

6.2.1 Clustering tasks

The workshop provides two different noun categorization (clustering) tasks:

1. CONCRETE NOUN CATEGORIZATION – In the concrete noun categorization task,
the goal is to cluster 44 concrete nouns in a number of classes on various levels
of generality:

• 2-WAY CLUSTERING – cluster nouns in two top classes natural and arte-
fact;

• 3-WAY CLUSTERING – cluster nouns in three classes animal, vegetable and
artefact;

1http://wordspace.collocations.de/doku.php/esslli:start
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• 6-WAY CLUSTERING – cluster nouns in six classes bird, groundAnimal,
fruitTree, green, tool and vehicle.

2. ABSTRACT/CONCRETE NOUN DISCRIMINATION – The evaluation of algorithms
discriminating between abstract and concrete nouns consists of three parts:

• In the first part, 30 nouns (15 with high concreteness value and 15 with low
concreteness value) are clustered in two clusters, HI and LO;

• in the second part, 10 nouns with average concreteness value are added
to the two-way clustering, to see whether they end up in the HI or the LO
cluster;

• in the third part, a three-way clustering of the 40 nouns (15 HI, 10 ME, 15
LO) is performed.

We will investigate the performance of the different models with regard to these
tasks. With regard to the second task, we will only assess the first part (the ability of
the models to discriminate between concrete and abstract nouns). Part 2 and 3 will not
be considered here.2

The test sets provided by the workshop are in English. They have been translated
into Dutch by three translators, and – when multiple translations were found – the
majority translation has been taken as the final one. The frequencies of the Dutch
words are by and large comparable to the frequencies of their English counterparts.
The gold standard categorization for both tasks is given in appendix A (page 159).

6.2.2 Clustering algorithm

The clustering solutions have been computed with the clustering program CLUTO
(Karypis, 2003). The k-way solution is computed by performing a sequence of k−1
repeated bisections. This means that the matrix is first clustered into two groups, and
then one of the groups is selected and bisected further. This process continues until
the desired number of clusters is found. In each step, the cluster is bisected so that
the resulting 2-way clustering solution maximizes the clustering optimization function
given in equation 6.1.

I2 =
i=1

∑
k

√
∑

v,u∈Si

cos(v,u) (6.1)

2The interested reader is referred to Van de Cruys (2008a).
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where k is the number of clusters, Si is the set of nouns assigned to the ith cluster, v and
u are two nouns, and cos(v,u) is the cosine similarity of those nouns. After computing
the initial clustering, the overall solution is globally optimized. In practice, this ensures
the algorithm computes the same clustering solution for the same set of objects.3

6.3 Evaluation framework

For the evaluation of cluster quality, we use two different measures: ENTROPY and
PURITY (Zhao and Karypis, 2001). These are the standard measures of cluster quality
available in CLUTO. Entropy measures how the various semantic classes are distributed
within each cluster. Given a particular cluster Sr of size nr, the entropy of this cluster
is defined to be

E(Sr) =− 1
logq

q

∑
i=1

ni
r

nr
log

ni
r

nr
(6.2)

where q is the number of classes in the dataset, and ni
r is the number of documents of

the ith class that were assigned to the rth cluster. The entropy of the entire clustering is
then the sum of the individual cluster entropies weighted according to the cluster size:

entropy =
k

∑
r=1

nr

n
E(Sr) (6.3)

The clustering solution is perfect if clusters only contain words from one single
class; in that case the entropy of the clustering solution is zero. Smaller entropy values
indicate better clustering solutions.

Using the same mathematical definitions, the purity of a cluster is defined as:

Pu(Sr) =
1
nr

max
i

ni
r (6.4)

The purity gives the fraction of the overall cluster size that the largest class of words
assigned to that cluster represents. The purity of the clustering solution is then again
the weighted sum of the individual cluster purities:

purity =
k

∑
r=1

nr

n
Pu(Sr) (6.5)

Larger purity values indicate better clustering solutions.

3The algorithm is selected by choosing the ‘rbr’ clustering method option in CLUTO.
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6.4 Results

The models in this chapter are built in exactly the same way as the models presented in
chapter 5, in which the semantic similarity is evaluated. After building the models, the
feature vectors of the nouns involved in the categorization tasks have been extracted
from the models, and fed to the clustering algorithm.

6.4.1 Concrete noun categorization

Document based

Table 6.1 shows the clustering results for the document-based model with regard to
different weighting parameters. Results are given for smaller paragraph (wpar) and
larger article (wart ) document sizes.

2-way 3-way 6-way
method docsize entropy purity entropy purity entropy purity

Afreq wpar .970 .591 .739 .591 .548 .523
wart .505 .886 .587 .727 .318 .750

Alogfreq wpar .562 .864 .757 .614 .408 .659
wart .611 .841 .685 .614 .392 .659

Aent wpar .970 .591 .739 .591 .548 .523
wart .505 .886 .587 .727 .318 .750

Alogent wpar .562 .864 .757 .614 .408 .659
wart .611 .841 .685 .614 .392 .659

Table 6.1: Clustering results for concrete noun categorization: bag of words approach
with different weighting parameters

The best results are reached with simple frequency information (using articles as
document size); none of the weightings is able to improve upon the simple frequency
values. Still, the best scoring model does not yield a very good clustering solution.

Table 6.2 gives the results for the document-based model combined with dimen-
sionality reduction (SVD). Results are given for three different weighting functions
(Afreq, Alogfreq and Alogent), using both paragraphs and articles as document sizes.

The results for the document-based model in combination with dimensionality
reduction are mixed. On the one hand, the models are able to attain better results for the
3-way and 6-way clustering. The model using a combination of logarithmic smoothing
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2-way 3-way 6-way
A M w entropy purity entropy purity entropy purity

Afreq Msvd wpar .983 .545 .241 .886 .330 .682
wart .930 .614 .179 .932 .318 .682

Alogfreq Msvd wpar .991 .545 .241 .886 .343 .682
wart .954 .591 .213 .909 .310 .659

Alogent Msvd wpar .994 .545 .265 .864 .354 .659
wart .930 .614 .179 .932 .292 .682

Table 6.2: Clustering results for concrete noun categorization: document-based ap-
proach with dimensionality reduction

and entropy weighting generally gets the best results. The two-way clustering, however,
is consistently worse.

The general tendency of these results is similar to the document-based results
presented in the last chapter: log-entropy weighting combined with singular value
decomposition reaches the best results, but generally speaking document-based models
do not attain a very good performance.

Bag of words

Table 6.3 gives the clustering results for the bag of words model with regard to different
weighting parameters, for a small context window of two words (w2) as well as a large
paragraph window (wpar).

The model that uses a small context window together with pointwise mutual
information clearly performs best. These results are in line with the results that are
presented in the last chapter: small context windows tend to attain better results
for semantic similarity extraction, and the combination with PMI shows the best
performance.

It is interesting to compare the different clusters found by the models using a small
window and the models using a large window. Here we compare the models using PMI
for the 6-way clustering. For the model that uses the small window (w2), the confusion
mostly arises from the ANIMAL class that is wrongly split up:

• eend ‘duck’, hond ‘dog’, kat ‘cat’, kip ‘chicken’, koe ‘cow’, leeuw ‘lion’, olifant
‘elephant’, pauw ‘peacock’, varken ‘pig’, zwaan ‘swan’

• arend ‘eagle’, pinguı̈n ‘penguin’, schildpad ‘turtle’, slak ‘snail’, uil ‘owl’
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2-way 3-way 6-way
method window entropy purity entropy purity entropy purity

Afreq w2 .714 .715 .422 .727 .556 .477
wpar .966 .544 .638 .659 .380 .659

Alogfreq w2 .924 .659 .887 .477 .375 .659
wpar .922 .636 .866 .523 .729 .409

Apmi w2 .000 1.000 .213 .909 .206 .773
wpar .911 .659 .541 .705 .377 .591

Alogpmi w2 .924 .659 .648 .614 .277 .727
wpar .871 .705 .650 .659 .472 .568

Table 6.3: Clustering results for concrete noun categorization: bag of words approach
with different weighting parameters

The model using the large window (wpar), on the other hand, seems to find more
topically related clusters:

• koe ‘cow’, maı̈s ‘corn’, varken ‘pig’

• aardappel ‘potato’, ananas ‘pineapple’, banaan ‘banana’, champignon ‘mush-
room’, fles ‘bottle’, kers ‘cherry’, ketel ‘kettle’, kip ‘chicken’, kom ‘bowl’, lepel
‘spoon’, peer ‘pear’, sla ‘lettuce’, ui ‘onion’

The first cluster seems related to stock breeding, containing stock animals (koe ‘cow’
and varken ‘pig’) and a crop often used as feed (maı̈s ‘corn’). The second cluster looks
like a food-related cluster, containing fruit and vegetables, but also an animal often
consumed as meat (kip ‘chicken’) and a number of kitchen utensils (fles ‘bottle’, ketel
‘kettle’, kom ‘bowl’, lepel ‘spoon’).

Table 6.4 gives the results for the bag of words model combined with dimensionality
reduction algorithms (SVD and NMF). Results are given for three different weighting
functions (Afreq, Alogfreq and Apmi), both for a small context window (w2) and a large
context window (wpar).

Again, the model using a small context window and PMI (in combination with SVD)
generally seems to give the best performance. The result, however, does not exceed its
non-factorized counterpart.

Another remarkable result is that the NMF model – in combination with simple
frequency counts and a large window – is able to reach the best specific result for
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2-way 3-way 6-way
A M w entropy purity entropy purity entropy purity

Afreq Msvd w2 .714 .750 .422 .727 .549 .477
wpar .966 .545 .271 .886 .337 .682

Mnmf w2 .492 .864 .431 .773 .329 .750
wpar .930 .614 .179 .932 .310 .705

Alogfreq Msvd w2 .924 .659 .887 .477 .440 .614
wpar .922 .636 .719 .659 .607 .432

Mnmf w2 .944 .636 .679 .591 .492 .591
wpar .896 .682 .617 .659 .617 .432

Apmi Msvd w2 .000 1.000 .223 .909 .233 .818
wpar .972 .568 .541 .705 .334 .682

Mnmf w2 .881 .682 .550 .705 .414 .659
wpar .964 .591 .513 .727 .384 .614

Table 6.4: Clustering results for concrete noun categorization: bag of words approach
with dimensionality reduction

the three-way clustering. Clearly, NMF is able to induce general semantic traits from
the data, yielding a good clustering result. Upon inspection of the data, we see that
good ANIMAL and ARTEFACT clusters are formed. A third clustering contains mostly
VEGETABLEs, but again also food related ARTEFACT nouns such as kom ‘bowl’ and
lepel ‘spoon’, and the food related ANIMAL noun kip ‘chicken’.

Syntax-based

Table 6.5 gives the clustering results for the syntax-based model, again according to
four different weighting parameters.

The results indicate that the models using PMI and LOGPMI perform best – though
it should be noted that all syntax-based models attain quite good results. Remarkably,
the model that uses only logarithmic weighting performs not so well (particularly with
regard to the two-way clustering). This result is different compared to the semantic
similarity results presented in the last chapter. Overall, using PMI seems to provide the
most stable performance for the induction of semantic similarity using the syntax-based
model.

Figure 6.1 shows the confusion matrix of the 6-way clustering for the models using
PMI and LOGPMI; the matrix is the same for both models.
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2-way 3-way 6-way
method entropy purity entropy purity entropy purity

Afreq .000 1.000 .067 .977 .264 .750
Alogfreq .784 .659 .000 1.000 .245 .750
Apmi .000 1.000 .000 1.000 .153 .864
Alogpmi .000 1.000 .000 1.000 .153 .864

Table 6.5: Clustering results for concrete noun categorization: syntactic approach with
different weighting parameters

cluster bird grou frui gree tool vehi

1 0 0 4 5 0 0
2 0 0 0 0 7 0
3 6 0 0 0 0 0
4 0 0 0 0 0 7
5 0 0 0 0 6 0
6 1 8 0 0 0 0

Figure 6.1: Confusion matrix of the 6-way clustering for the syntax-based model (PMI
and LOGPMI).

Upon examining the results, the decisions made by the algorithm look quite reason-
able:

• One bird (‘chicken’) is classified as groundAnimal;

• fruits and vegetables are assigned to one single cluster;

• the tools class is split up into two different clusters, so that a division is made
between ‘active’ and ‘passive’ tools:

– beitel ‘chisel’, hamer ‘hammer’, mes ‘knife’, pen ‘pen’, potlood ‘pencil’,
schaar ‘scissors’, schroevendraaier ‘screwdriver’;

– beker ‘cup’, fles ‘bottle’, ketel ‘kettle’, kom, ‘bowl’, lepel ‘spoon’, telefoon
‘telephone’.
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The only noun that may be considered wrongly classified is slak ‘snail’, which is
classified as a bird.

It is interesting to note that the difference between fruit and vegetables nonetheless
is present in the data. When clustering the words from the subsets fruitTree and green
into two classes, they are properly split up:

• kers ‘cherry’, banaan ‘banana’, peer ‘pear’, ananas ‘pineapple’;

• champignon ‘mushroom’, maı̈s ‘corn’, sla ‘lettuce’, aardappel ‘potatoe’, ui
‘oignon’.

In table 6.6, the results for the syntax-based model combined with dimensionality
reduction algorithms (SVD and NMF) are shown. Again, three different weighting
functions (Afreq, Alogfreq and Apmi) are evaluated.

2-way 3-way 6-way
A M entropy purity entropy purity entropy purity

Afreq Msvd .902 .682 .457 .795 .430 .636
Mnmf .917 .659 .260 .864 .244 .750

Alogfreq Msvd .784 .659 .000 1.000 .238 .773
Mnmf .589 .795 .000 1.000 .235 .750

Apmi Msvd .000 1.000 .000 1.000 .206 .773
Mnmf .589 .795 .067 .977 .266 .727

Table 6.6: Clustering results for concrete noun categorization: syntactic approach with
dimensionality reduction

Again, we see the same tendencies that became apparent in the former chapter:
SVD in combination with PMI gives the best performance, but the results are not as
good as the PMI model that does not use any dimensionality reduction (notably, the
6-way clustering performs worse).

6.4.2 Abstract/concrete noun discrimination

In the abstract/concrete noun discrimination task, we try to separate 15 abstract nouns
and 15 concrete nouns into two different clusters.
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Document-based model

Table 6.7 presents the clustering results for the document-based model. Four different
weighting functions have been applied, each with two different document sizes.

method docsize entropy purity

Afreq wpar .362 .931
wart .296 .933

Alogfreq wpar .579 .862
wart .463 .900

Aent wpar .362 .931
wart .296 .933

Alogent wpar .579 .862
wart .463 .900

Table 6.7: Clustering results for abstract/concrete noun discrimination: document-based
approach with different weighting parameters

The document-based model is not able to make a good division between abstract
and concrete nouns. Using a large document size (wart) yields slightly better results.
No particular weighting function gets better results than the simple frequency data.

Table 6.8 presents the results for the document-based model in combination with
singular value decomposition. Using a singular value decomposition yields worse
results than the use of the original models.

A M w entropy purity

Afreq Msvd wpar .739 .724
wart .470 .867

Alogfreq Msvd wpar .739 .724
wart .662 .767

Alogent Msvd wpar .625 .793
wart .604 .800

Table 6.8: Clustering results for abstract/concrete noun discrimination: document-based
approach with dimensionality reduction
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Window-based model

Table 6.9 shows the clustering results for the window-based approach, with regard to
four different weighting parameters. Again, we see that PMI (and LOGPMI) – combined
with a small context window – is able to reach the best performance. Also notice that
PMI combined with a larger window is able to attain a reasonable result, with only one
concrete noun (leeuw ‘lion’) being misclassified as an abstract noun.

method window entropy purity

Afreq w2 .914 .633
wpar .715 .733

Alogfreq w2 1.000 .500
wpar .930 .567

Apmi w2 .000 1.000
wpar .180 .967

Alogpmi w2 .000 1.000
wpar .470 .867

Table 6.9: Clustering results for abstract/concrete noun discrimination: bag of words
approach with different weighting parameters

In table 6.10, three different weighting parameters are again combined with two
different dimensionality reduction algorithms – both for small and large context win-
dows.

A model with small context size, weighted with PMI and combined with SVD is
able to attain a perfect result. Remarkable in these results is also the performance of
the models factorized with non-negative matrix factorization. The NMF model with
simple frequency data attains good results, with a perfect division for the model using
a large context window; the NMF models with small context window using logarithmic
weighting and pointwise mutual information are able to make a perfect divsion between
abstract and concrete nouns as well.

Syntax-based model

In table 6.11, the clustering results for the syntax-based model are presented with regard
to four different weighting parameters. The results indicate that the syntax-based model
is able to make a good division between abstract and concrete nouns. Only the model
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A M w entropy purity

Afreq Msvd w2 .914 .633
wpar .604 .800

Mnmf w2 .180 .967
wpar .000 1.000

Alogfreq Msvd w2 1.000 .500
wpar .930 .567

Mnmf w2 .000 1.000
wpar .715 .733

Apmi Msvd w2 .000 1.000
wpar .180 .967

Mnmf w2 .000 1.000
wpar .296 .933

Table 6.10: Clustering results for abstract/concrete noun discrimination: bag of words
approach with dimensionality reduction

based on simple frequencies is not able to make a decent division; the other models are
able to induce a perfect clustering.

method entropy purity

Afreq .985 .567
Alogfreq .000 1.000
Apmi .000 1.000
Alogpmi .000 1.000

Table 6.11: Clustering results for abstract/concrete noun discrimination: syntax-based
approach with different weighting parameters

In table 6.12, the syntax-based model (weighted with three different weighting
functions) is again combined with two different dimensionality reduction algorithms.
The results of the factorized models reflect the performance of their non-factorized
counterparts. The models that make a perfect cut without dimensionality reductions
also make a perfect cut with the use of dimensionality reduction. Notice again, however,
that NMF is able to strongly improve the results of the model using simple frequency
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data.

A M entropy purity

Afreq Msvd 1.000 .500
Mnmf .180 .967

Alogfreq Msvd .000 1.000
Mnmf .000 1.000

Apmi Msvd .000 1.000
Mnmf .000 1.000

Table 6.12: Clustering results for abstract/concrete noun discrimination: syntax-based
approach with dimensionality reduction

6.5 Comparison of the different models

Examining the differences in cluster quality between the different models, we can draw
some conclusions with regard to their ability to extract semantic similarity. Clearly, the
document-based models are do not perform well. The models are not able to correctly
categorize concrete nouns, nor are they able to make a proper division between abstract
and concrete nouns. The window-based model performs better than the document-
based model. The window size plays a significant role: models using a small window
tend to perform better than the ones using a large window (using PMI as weighting
function).4 But the model that performs best is the syntax-based model. Different
weighting functions perform well, but PMI consistently seems to yield good results.
In general, the application of dimensionality reduction models does not yield better
cluster quality.

4Notice however that the models with a large window size seem to grasp a kind of ‘topical’ similarity.





Chapter 7

Evaluation of Domain Coherence

7.1 Introduction

In this chapter, we will evaluate the ability of the various models to induce more
loosely related, topically similar words. This will be done by evaluating the ability of
the models to extract similar words that belong to the same semantic domains. The
CORNETTO database has been augmented with semantic domain tags. By evaluating
the models’ ability to extract similar words that belong to the same semantic domain as
the target word, we are able to evaluate a model’s ability to induce topical similarity.

7.2 Evaluation framework

7.2.1 Semantic domains

Semantic domains are particular areas of human knowledge (such as POLITICS, MEDI-
CINE or SPORTS) according to which words and senses can be classified. Words that
belong to the same semantic domain (e.g. doctor and hospital are both in the MEDI-
CINE domain) are topically related. This makes semantic domains perfectly suitable to
investigate topical similarity or domain coherence.

Semantic domains are a part of the original English WordNet: it has been augmented
with Wordnet Domain labels – a collection of 200 domain labels (tags) organized in
a hierarchical structure (Magnini and Cavagli, 2000; Bentivogli et al., 2004). Each
synset in WordNet is labeled with one or more labels. When there are no suitable labels
for a particular synset, the label ‘factotum’ is assigned.

97
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The CORNETTO database, used in our evaluation framework, has been augmented
with domain labels as well. Domain labels from the English WordNet have auto-
matically been added.1 Moreover, domain labels from the VLIS database2 have been
automatically converted to WordNet domain labels. The CORNETTO domain labels are
consulted with the PYCORNETTO interface.

7.2.2 Similarity measure

For each target word in the test set, the 10 most similar words according to a particular
model are extracted. All possible domain labels for the target word are extracted from
the CORNETTO database, and compared to all possible domain tags for the extracted
similar words. The most frequent domain tag – that is also present in the tagset of
the target word – is taken as the correct domain tag. The number of words that is
topically coherent to the target word is then the number of words that have the correct
tag, divided by all words for which a domain tag has been extracted. Formally,

simtopic =
maxt∈tags(s0) ∑i

{ 1 if t in tags(si)
0 otherwise

i
(7.1)

where s0 is the target word, s1...i is the list of similar words present in CORNETTO with
at least one domain tag, and tags(si) is the set of domain tags for word si. We ignore
words that are not found in the CORNETTO database.

Let us illustrate the topical similarity measure with an example. In table 7.1, 10
words are given that are topically related to the target word zebrapad ‘pedestrian
crossing’, together with the domain tags extracted from CORNETTO. The target word
zebrapad has one possible tag: TRANSPORT. We look up which of the similar words
also has this tag as one of its domain tags, and divide the number of correctly tagged
words by the total number of similar words. This gives us a topic similarity simtopic of
8

10 = .80.
Note that, among the similar words of zebrapad, there are many words that are

only loosely, topically related (e.g. voetganger ‘pedestrian’ and fietser ‘cyclist’). Still,
those words belong to the same TRANSPORT domain, so that a high simtopic value is
attributed to the set of words.

Another important fact to note is that words that are tightly similar are usually also
topically related. In table 7.2, 10 words are given that are tightly similar (synonymous

1CORNETTO’s synsets are aligned with the English WordNet synsets, which makes the mapping
straightforward.

2Van Dale Lexical Information System; a database developed by Van Dale lexicographers.
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word translation domain tags

0 zebrapad ‘pedestrian crossing’ TRANSPORT
1 voetganger ‘pedestrian’ TRANSPORT
2 fietser ‘cyclist’ CYCLING, TRANSPORT
3 stoplicht ‘traffic light’ TOWN PLANNING, TRANSPORT
4 trottoir ‘pavement’ TRANSPORT
5 stoep ‘pavement’ BUILDING INDUSTRY, TRANSPORT
6 kruispunt ‘crossing’ TRANSPORT
7 fietspad ‘cycle track’ TRANSPORT
8 rotonde ‘roundabout’ BUILDING INDUSTRY, TRANSPORT
9 lantaarnpaal ‘lamppost’ BUILDING INDUSTRY, TOWN PLANNING
10 berm ‘verge’ TOWN PLANNING

Table 7.1: Domain tags for the similar words of zebrapad, ‘pedestrian crossing’

word translation domain tags

0 huis ‘house’ BUILDING INDUSTRY
1 woning ‘house’ BUILDING INDUSTRY
2 pand ‘building’ BUILDING INDUSTRY, TOWN PLANNING, . . .
3 gebouw ‘building’ BUILDING INDUSTRY, TOWN PLANNING
4 villa ‘villa’ BUILDING INDUSTRY
5 kamer ‘room’ ADMINISTRATION, BUILDING INDUSTRY, . . .
6 huisje ‘small house’ –
7 boerderij ‘farm’ AGRICULTURE
8 appartement ‘appartment’ BUILDING INDUSTRY, TOWN PLANNING
9 flat ‘flat FASHION, BUILDING INDUSTRY
10 schuur ‘shed’ BUILDING INDUSTRY

Table 7.2: Domain tags for the similar words of huis, ‘house’

or hyponymous) to the target word huis ‘house’. Most of those words also belong to
the same semantic domain BUILDING INDUSTRY, yielding a high simtopic score of
8
9 = .89.3

One last important fact to be considered is that – due to the automatic procedure – a
significant number of words in CORNETTO is erroneously tagged, or has an incomplete

3huisje ‘small house’ is not present in the CORNETTO database, so only 9 words are taken into account.
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word translation domain tags

0 film ‘movie’ CINEMA, PHOTOGRAPHY, TV, . . .
1 regisseur ‘director’ MUSIC
2 speelfilm ‘movie’ PAINTING
3 filmmaker ‘filmmaker’ PERSON
4 hoofdrolspeler ‘main actor’ THEATRE
5 acteur ‘actor’ PERSON
6 hoofdrol main part THEATRE
7 script script THEATRE
8 hoofdrolspeelster main actress –
9 cinema cinema BUILDING INDUSTRY, THEATRE, . . .
10 scenarioschrijver scriptwriter LITERATURE

Table 7.3: Domain tags for the words topically related to film, ‘movie’

tagset. Take, for example, the topically related words to the target word film ‘movie’,
presented in table 7.3. All words clearly seem topically related to the CINEMA domain.
Yet, none of the similar words is tagged with the actual CINEMA tag, so that a topical
similarity score simtopic of .00 is attributed. As a result, many sets may in reality be
more topically related than the evaluation score suggests.

7.3 Results

The models in this chapter are built in exactly the same way as the models presented in
chapters 5 and 6, in which the wordnet-based similarity and cluster quality are evaluated.
The baseline topical similarity score (using the same random models that were used for
the creation of the CORNETTO baseline in chapter 5) amounts to .0482±1.09×10−3

(mean and standard deviation).

7.3.1 Document-based models

Weighting

In table 7.4 the topical similarity scores for the document-based model are given,
according to different weighting functions. The results indicate that the model using a
large document size performs better. Also, using logarithmic weighting improves the
results. Entropy weighting does not improve the results. The different weighting scores
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simtopic
model wpar wart

1 A f req .315 .349
2 Alog f req .329 .359
3 Aent .315 .349
4 Alogent .329 .359

Table 7.4: Topical similarity results for different weighting parameters in the document-
based model with two different document sizes

presented here show the same tendencies as the weighting scores for the document-
based model presented in chapter 5.

Dimensionality reduction

Table 7.5 gives the results for the document-based model in combination with singular
value decomposition. The results show that SVD as a dimensionality reduction is
able to improve the results. All models tend to improve with SVD (reduced to 300
dimensions); in combination with log-entropy weighting, the similarity scores improve
most. These results are again similar to the results for dimensionality reduction
presented in chapter 5: SVD improves the results, and the improvement is the largest
with log-entropy weighting.

7.3.2 Bag of words models

Window size

In table 7.6, the topical similarity scores for different window sizes are given. If we
compare the results to those in table 5.8 on page 74, we notice some striking differences.
Whereas the CORNETTO similarity is clearly best with smaller context windows – and
heavily deteriorates with larger context windows – this is not the case for the topical
similarity score. The models with a smaller context window (w2, w5) still get a good
score, but the results for the models with large context window (w10, wsent and to a
lesser extent wpar) are clearly within the same range. The results indicate that the
window-based models are able to extract topical similarity with small windows as well
as with large windows.
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simtopic
A M d wpar wart

Afreq Msvd 50 .262 .320
100 .300 .347
300 .340 .370

Alogfreq Msvd 50 .263 .335
100 .306 .359
300 .343 .379

Alogent Msvd 50 .302 .346
100 .329 .372
300 .357 .394

Alogent – – .329 .359

Table 7.5: Evaluation results for different dimensionality reduction parameters in the
document-based model with two different document sizes

window size simtopic

1 w1 .380
2 w2 .414
3 w5 .423
4 w10 .422
5 wsent .418
6 wpar .399

Table 7.6: Evaluation results for different window sizes in the bag of words model

Weighting

In table 7.7, the topical similarity scores for the four different weighting functions are
presented, both for a context window of 2 and a paragraph window. One striking fact
to notice is that a simple frequency model in combination with a paragraph window
performs quite well. The other scores are in line with the semantic similarity scores
presented in chapter 5: weighting with pointwise mutual information scores best for
both window sizes, and the other weighting parameters Alog f req and Alogpmi perform
worse than Apmi with a small window (w2) and even perform worse with a large
paragraph window (wpar).
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simtopic
model w2 wpar

1 A f req .209 .349
2 Alog f req .350 .309
3 Apmi .414 .399
4 Alogpmi .370 .325

Table 7.7: Evaluation results for different weighting parameters in the bag of words
model with two different context windows

Dimensionality reduction

In table 7.8, the topical similarity score for different dimensionality reduction al-
gorithms is given, with regard to two different context window sizes (w2 and wpar).
The tendencies with regard to dimensionality reduction for bag of words models again
do not differ tremendously from the tendencies we have seen in chapter 5. The best
scoring models are the ones using pointwise mutual information with a singular value
decomposition. For small windows (w2), the best scoring model does not improve
upon its non-reduced counterpart. This is different, however, for large windows (wpar):
pointwise mutual information combined with singular value decomposition to 100 and
300 dimensions brings about an improvement compared to its non-reduced counterpart.
Note that this improvement is larger for the topical similarity presented here, compared
to the wordnet-based similarity (table 5.12 on page 77).

Note that, for non-negative matrix factorization, the best scoring models are also the
ones using pointwise mutual information. In chapter 5, the best scoring NMF models
were the ones using simple frequency information.

7.3.3 Syntax-based models

Weighting

Table 7.9 gives the topical similarity scores for different weighting functions for syntax-
based models. The model using only pointwise mutual information again performs
best, followed by the model using a combination of logarithmic weighting and PMI,
and the model using only logarithmic weighting. Simple frequency information again
performs worst.

Compared to the wordnet-based similarity results, the topical similarity scores
are a little bit different. Whereas with the wordnet-based similarity, both PMI and
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simtopic
A M d w2 wpar

Afreq Msvd 50 .190 .302
100 .200 .328
300 .207 .349

Mnmf 50 .260 .341
100 .284 .367
300 .285 .371

Alogfreq Msvd 50 .301 .295
100 .320 .305
300 .339 .311

Mnmf 50 .283 .293
100 .300 .305
300 .296 .308

Apmi Msvd 50 .380 .384
100 .404 .400
300 .416 .409

Mnmf 50 .306 .339
100 .316 .373
300 .329 .388

Apmi – – .442 .399

Table 7.8: Evaluation results for different dimensionality reduction parameters in the
bag of words based model with two different context windows

logarithmic weighting perform quite well, PMI is clearly the winner with regard to
topical similarity.

Dimensionality reduction

Table 7.10 gives the results for different dimensionality reduction algorithms in the
syntax-based models. Singular value decomposition combined with PMI again performs
best, but dimensionality reduction algorithms do not bring about any improvement,
compared to the models without dimensionality reduction.
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model simtopic

1 A f req .259
2 Alog f req .404
3 Apmi .441
4 Alogpmi .432

Table 7.9: Evaluation results for different weighting parameters in the syntax-based
model

A M d simtopic

Afreq Msvd 50 .185
100 .214
300 .253

Mnmf 50 .266
100 .310
300 .342

Alogfreq Msvd 50 .345
100 .370
300 .391

Mnmf 50 .270
100 .340
300 .379

Apmi Msvd 50 .377
100 .405
300 .434

Mnmf 50 .256
100 .303
300 .337

Apmi – – .441

Table 7.10: Topical similarity for different dimensionality reduction parameters in the
syntax-based model
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7.4 Discussion & comparison

The results presented in this chapter provide mixed results. On the one hand, models
that score well in the two former tasks (semantic similarity in chapter 5 and cluster
quality in chapter 6) also perform well on the task of extracting topically similar words.
This is in particular the case for the syntax-based approach, and to a lesser extent for
the window-based approach with small window size.

On the other hand, we notice that models that do not perform well on the two former
evaluation tasks (the document-based model and the window-based model with large
window) still perform reasonably well with regard to the extraction of topical similarity.
We may therefore conclude that those models are not extracting tight, synonym-like
semantic similarity, but are still extracting semantically related, topically similar words.

Let us illustrate this fact with a number of examples. In the examples below, we
compare the 10 most similar words according to:

a. the syntax-based model, using PMI weighting: this model performs best both with
regard to wordnet-based similarity/cluster quality and topical similarity;

b. the window-based model, using PMI weighting and paragraph window: this model
performs worse with regard to wordnet-based similarity/cluster quality, but performs
reasonably well in the topical similarity evaluation.

(1) a. krant ‘newspaper’: dagblad ‘newspaper’, zakenkrant ‘business paper’,
kwaliteitskrant ‘quality newspaper’, blad ‘paper’, tabloid ‘tabloid’, zon-
dagskrant ‘sunday newspaper’, weekblad ‘magazine’, ochtendblad ‘morn-
ing paper’, boulevardblad ‘tabloid, sportkrant ‘sports paper’

b. krant ‘newspaper’: dagblad ‘newspaper’, voorpagina ‘front page’, hoofd-
redacteur ‘chief editor’, redactie ‘editors’, weekblad ‘magazine’, kwali-
teitskrant ‘quality newspaper’, redacteur ‘editor’, berichtgeving ‘cover-
age’, hoofdredactie ‘chief editors’, journalist ‘journalist’

(2) a. film ‘movie’: speelfilm ‘movie’, thriller ‘thriller’, komedie ‘comedy’,
documentaire ‘documentary’, musical ‘musical’, drama ‘tragedy’, boek
‘book’, roman ‘novel’, muziek ‘music’, video ‘video’

b. film ‘movie’: regisseur ‘director’, speelfilm ‘movie’, filmmaker ‘film-
maker’, hoofdrolspeler ‘main actor’, acteur ‘actor’, hoofdrol ‘main part’,
script ‘script’, hoofdrolspeelster ‘main actress’, cinema ‘cinema’, scenari-
oschrijver ‘script writer’

(3) a. politie ‘police’: brandweer ‘fire brigade’, justitie ‘justice’, douane ‘cus-
toms’, leger ‘army’, politiekorps ‘police force’, Politie ‘Police’, agent
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‘officer’, autoriteit ‘authority’, recherche ‘criminal investigation depart-
ment’, marechaussee ‘military police’

b. politie ‘police’: politiewoordvoerder ‘police spokesman’, agent ‘officer’,
politiebureau ‘police station’, politiemens ‘police person’, aanhouding ‘ar-
rest’, politieagente ‘police woman’, vuurwapen ‘firearm’, arrestant ‘arrest
person’, arrestatieteam ‘special squad’, recherche ‘criminal investigation
department

Clearly, both approaches capture a different kind of semantic similarity. The first
approach captures a tight, synonym-like similarity, whereas the second approach cap-
tures a broader, topical relatedness. In example (1), the syntax-based model (a) yields
synonyms (dagblad ‘newspaper’) and hyponyms (tabloid ‘tabloid’) as semantically
similar words for krant ‘newspaper’. The window-based model (b), on the other hand,
also yields more loosely related words, such as meronyms (voorpagina ‘front page’)
and associations (redacteur ‘editor’, journalist ‘journalist’). The same tendency is
present in the two other examples. In example (2), the syntax-based model yields
synonyms and hyponyms, and a number of co-hyponyms (boek ‘book’, muziek ‘music’)
as different kinds of media/art expressions. The window-based model again also yields
more loosely, topically related words such as acteur ‘actor’ and script ‘script’. And
in example (3), the similar words in (a) consists mostly of co-hyponyms designating
authoritative organizations similar to politie ‘police’, whereas in (b), more topically
related words such as aanhouding ‘arrest’ and vuurwapen ‘firearm’ show up again.

Changing the context also changes the semantic characteristics captured by the
models. Syntax-based models and window-based models with small window size
are particularly apt for the extraction of tight, synonym-like similarity, as has been
shown in chapter 5, in which the wordnet-based similarity was evaluated by comparing
them to the semantic hierarchical database CORNETTO, and in chapter 6, in which
the models’ cluster quality was compared to a gold standard. In this chapter, we have
shown that those models also perform well with regard to the extraction of topical
similarity: words that are tightly similar (such as synonyms and hyponyms) are usually
also topically related.

Document-based models and window-based models with large window size, on
the other hand, are not suitable for the extraction of tight, synonym-like similarity.
As we have shown in chapters 5 and 6, these models perform far worse with regard
to wordnet-based similarity evaluation and the evaluation of cluster quality. Still, the
models perform reasonably well in the extraction of topical similarity, as we have
shown in this chapter. The examples shown above are also exemplary for the different
semantics extracted by the different models. Clearly, a tight context (syntax-based or
small window-based) leads to tight, synonym-like similarity, whereas a broad context
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(document-based or large window-based captures topically similar words that are often
more loosely related to the target word.
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Chapter 8

Lexico-Semantic Multiword
Expression Extraction1

8.1 Introduction

In the previous chapters, we have shown that it is possible to automatically extract a
database of semantically similar words. More specifically, we have shown that we are
able to extract a high quality semantic clustering of nouns, using a syntax-based word
space model. In this chapter, we will explain how the extracted semantic similarity
database can in turn be used to automatically extract multi-word expressions (MWEs)
from text.

MWEs are expressions whose linguistic behaviour is not predictable from the
linguistic behaviour of their component words. Baldwin (2006) characterizes the
idiosyncratic behavior of MWEs as ‘a lack of compositionality manifest at different
levels of analysis, namely, lexical, morphological, syntactic, semantic, pragmatic and
statistical’. One property that seems to affect MWEs the most is semantic non-composi-
tionality. MWEs are typically non-compositional. As a consequence, it is not possible to
replace the content words of a MWE by semantically similar words. Take for example
the expressions in (1) and (2):

(1) a. break the vase
b. break the cup
c. break the dish

1This chapter presents joint work with Begoña Villada Moirón. The research presented in this chapter has
been published as Van de Cruys and Villada Moirón (2007a) and Van de Cruys and Villada Moirón (2007b).
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(2) a. break the ice
b. *break the snow
c. *break the hail

Expression (1) is fully compositional. Therefore, vase can easily be replaced with
semantically similar nouns such as cup and dish. Expression (2), on the contrary, is
non-compositional; it is impossible to replace ice with semantically related words,
such as snow and hail. Note that we assume a dual classification of expressions
into compositional and non-compositional instances; we ignore the possibility that
expressions fall in a continuum between compositionality and non-compositionality
with many fuzzy cases in between. By ‘fuzzy cases’ we refer to expressions that are
neither fully compositional nor fully non-compositional; such expressions may involve
metaphoricity or figurative language.

Due to their non-compositionality, current proposals argue that MWEs need to
be described in the lexicon (Sag et al., 2002). In most languages, electronic lexical
resources (such as dictionaries, thesauri, ontologies) suffer from a limited coverage
of MWEs. To facilitate the update and expansion of language resources, the NLP
community would clearly benefit from automated methods that extract MWEs from
large text collections. This is the main motivation to pursue an automated and fully
unsupervised MWE extraction method.

8.2 Previous work

Recent proposals that attempt to capture semantic compositionality (or lack thereof)
employ various strategies. Approaches evaluated so far make use of dictionaries
with semantic annotation (Piao et al., 2006), WordNet (Pearce, 2001), automatically
generated thesauri (Lin, 1999; Fazly and Stevenson, 2006; McCarthy, Keller, and
Carroll, 2003), vector-based methods that measure semantic distance (Baldwin et
al., 2003; Katz and Giesbrecht, 2006), translations extracted from parallel corpora
(Villada Moirón and Tiedemann, 2006) or hybrid methods that use machine learning
techniques informed by features coded using some of the above methods (Venkatapathy
and Joshi, 2005).

Pearce (2001) describes a method to extract collocations from corpora by measur-
ing semantic compositionality. The underlying assumption is that a fully compositional
expression allows synonym replacement of its component words, whereas a collocation
does not. Pearce measures to what degree a collocation candidate allows synonym
replacement. The measurement is used to rank candidates relative to their composition-
ality.
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Building on Lin (1998a), McCarthy, Keller, and Carroll (2003) measure the se-
mantic similarity between expressions (phrasal verbs) as a whole and their component
words. They exploit contextual features and frequency information in order to assess
meaning overlap. They established that human compositionality judgements correlate
well with those measures that take into account the semantics of the particle. Contrary
to these measures, multiword extraction statistics (log-likelihood, mutual information)
correlate poorly with human judgements.

A different approach proposed by Villada Moirón and Tiedemann (2006) measures
translational entropy as a sign of meaning predictability, and therefore non-composition-
ality. The entropy observed among word alignments of a potential MWE varies: highly
predictable alignments show less entropy and probably correspond to compositional
expressions. Data sparseness and polysemy pose problems because the translational
entropy cannot be accurately calculated.

Fazly and Stevenson (2006) use lexical and syntactic fixedness as partial indicators
of non-compositionality. Their method uses Lin’s (1998) automatically generated
thesaurus to compute a metric of lexical fixedness. Lexical fixedness measures the
deviation between the pointwise mutual information of a verb-object phrase and the
average pointwise mutual information of the expressions resulting from substituting
the noun by its synonyms in the original phrase. This measure is similar to Lin’s (1999)
proposal for finding non-compositional phrases. Separately, a syntactic flexibility score
measures the probability of seeing a candidate in a set of pre-selected syntactic patterns.
The assumption is that non-compositional expressions score high in idiomaticity, that
is, a score resulting from the combination of lexical fixedness and syntactic flexibility.
The authors report an 80% accuracy in distinguishing literal from idiomatic expressions
in a test set of 200 expressions. The performance of both metrics is stable across all
frequency ranges.

In this study, we are interested in establishing whether a fully unsupervised method
can capture the (partial or) non-compositionality of MWEs. The method should not
depend on the existence of large (open domain) parallel corpora or sense tagged
corpora. Also, the method should not require numerous adjustments when applied
to new subclasses of MWEs, for instance, when coding empirical attributes of the
candidates. Similar to Lin (1999), McCarthy, Keller, and Carroll (2003) and Fazly
and Stevenson (2006), our method makes use of automatically generated thesauri; the
technique used to compile the thesauri differs from previous work. Aiming at finding a
method of general applicability, the measures to capture non-compositionality differ
from those employed in earlier work.
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8.3 Methodology

In the description and evaluation of our algorithm, we focus on the extraction of verbal
MWEs that contain prepositional complements, although the method could easily be
generalized to other kinds of MWEs.

In our semantics-based approach, we want to formalize the intuition of non-compo-
sitionality, so that MWE extraction can be done in a fully automated way. A number
of statistical measures are developed that try to capture the MWE’s non-compositional
bond between a verb-preposition combination and its noun by comparing the particular
noun of an MWE candidate to other semantically related nouns.

8.3.1 Data extraction

The MWE candidates (verb + prepositional phrase) are automatically extracted from
the Twente Nieuws Corpus (Ordelman, 2002), a large corpus of Dutch newspaper texts
(500 million words), which has been automatically parsed by the Dutch dependency
parser Alpino (van Noord, 2006). Next, a matrix is created of the 5,000 most frequent
verb-preposition combinations by the 10,000 most frequent nouns, containing the
frequency of each MWE candidate.2 To this matrix, a number of statistical measures are
applied to determine the non-compositionality of the candidate MWEs. These statistical
measures are explained in §8.3.3.

8.3.2 Clustering

In order to compare a noun to its semantically related nouns, a noun clustering is
created. These clusters are automatically extracted using standard distributional sim-
ilarity techniques.3 First, dependency triples are extracted from the Twente Nieuws
Corpus. Next, feature vectors are created for each noun, containing the frequency of
the dependency relations in which the noun occurs. A frequency matrix of 10K nouns
by 100K dependency relations is constructed. The cell frequencies are weighted with
pointwise mutual information. clusters using a K-means clustering algorithm (Mac-
Queen, 1967) using cosine similarity. During development, several other clustering
algorithms and parameters have been tested, but the settings described above gave us
the best EuroWordNet similarity score (using Wu and Palmer (1994)).

Note that our clustering algorithm is a hard clustering algorithm, which means
that a certain noun can only be assigned to one cluster. This may pose a problem for

2The lowest frequency verb-preposition combination (with regard to the 10,000 nouns) appears 3 times
3A detailed description of distributional similarity techniques is given in chapter 2.
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polysemous nouns. On the other hand, this makes the computation of our metrics
straightforward, since we do not have to decide among various senses of a word.

8.3.3 Measures

The measures used to find MWEs are inspired by Resnik’s method to find selectional
preferences (Resnik, 1993; Resnik, 1996). Resnik uses a number of measures based
on the Kullback-Leibler divergence, to measure the difference between the prior
probability of a noun class p(c) and the probability of the class given a verb p(c|v).
We adopt the method for particular nouns, and add a measure for determining the
‘unique preference’ of a noun given other nouns in the cluster, which, we claim, yields
a measure of non-compositionality. In total, four measures are used, the latter two
being the symmetric counterpart of the former two.

Verb preference

The first two measures, Av→n (equation 8.2) and Rv→n (equation 8.3), formalize the
unique preference of the verb4 for the noun. Equation 8.1 gives the Kullback-Leibler
divergence between the overall probability distribution of the nouns and the probab-
ility distribution of the nouns given a verb; it is used as a normalization constant in
equation 8.2. Equation 8.2 models the actual preference of the verb for the noun.

Sv = ∑
n

p(n | v) log
p(n | v)

p(n)
(8.1)

Av→n =
p(n | v) log p(n|v)

p(n)

Sv
(8.2)

When p(n|v) is 0, Av→n is undefined. In this case, we assign a score of 0.
Equation 8.3 gives the ratio of the verb preference for a particular noun, compared

to the other nouns that are present in the cluster.

Rv→n =
Av→n

∑n′εC Av→n′
(8.3)

where C is the cluster in which the noun n appears. When Rv→n is more or less equally
divided among the different nouns in the cluster, there is no preference of the verb for a
particular noun in the cluster, whereas scores close to 1 indicate a ‘unique’ preference of
the verb for a particular noun in the cluster. Candidates whose Rv→n value approaches 1

4We will use ‘verb’ to designate a prepositional verb, i.e. a combination of a verb and a preposition.
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are likely to be non-compositional expressions, since the noun of the expression cannot
be substituted with a semantically similar noun.

Noun preference

In the latter two measures, An→v and Rn→v, the direction of preference is changed:
they model the unique preference of the noun for the verb. Equation 8.4 models the
Kullback-Leibler divergence between the overall probability distribution of verbs, and
the distribution of the verbs given a certain noun. It is used again as a normalization
constant in equation 8.5, which models the preference of the noun for the verb.

Sn = ∑
v

p(v | n) log
p(v | n)

p(v)
(8.4)

An→v =
p(v | n) log p(v|n)

p(v)

Sn
(8.5)

When p(v|n) is 0, An→v is undefined. In this case, we again assign a score of 0.
Equation 8.6 gives the ratio of noun preference for a particular verb, compared to

the other nouns that are present in the cluster.

Rn→v =
An→v

∑n′εC An′→v
(8.6)

Both measures have the same characteristics as the ones that model verb preference.
If a noun shows a much higher preference for a verb than the other nouns in the cluster,
we expect that the candidate expression tends towards non-compositionality.

Note that the measures for verb preference and the measures for noun preference
are different in nature. It is possible that a certain verb only selects a restricted set of
nouns, while the nouns themselves can co-occur with many different verbs. This brings
about different probability distributions. In our evaluation, we want to investigate the
impact of both preferences.

Lexical fixedness measure

For reasons of comparison, we also evaluated the lexical fixedness measure – based on
pointwise mutual information – proposed by Fazly and Stevenson (2006).5 The lexical
fixedness is computed following equation 8.7

5Fazly and Stevenson (2006) combine the lexical fixedness measure with a measure of syntactic
flexibility. Here, we only compare our method to the former measure, concentrating on non-compositionality
rather than syntactic rigidity.
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Fixednesslex(v,n) =
PMI(v,n)−PMI

s
(8.7)

where PMI stands for the mean given the cluster, and s for the standard deviation. Note
that Fazly and Stevenson (2006) use the m most similar nouns given a certain noun,
while we use all nouns in a cluster. This means that our value for m varies.

8.3.4 Example

In this section, an elaborated example is presented, to show how our method works.
Take for example the two MWE candidates in (3):

(3) a. in
in

de
the

smaak
taste

vallen
fall

to be appreciated
b. in

in
de
the

put
well

vallen
fall

to fall down the well

In the first expression, smaak cannot be replaced with other semantically similar nouns,
such as geur ‘smell’ and zicht ‘sight’, whereas in the second expression, put can
easily be replaced with other semantically similar words, such as kuil ‘hole’ and krater
‘crater’.

The first step in the formalization of this intuition, is the extraction of the clusters
in which the words smaak and put appear from our clustering database. This gives us
the clusters in (4).

(4) a. smaak: aroma ‘aroma’, gehoor ‘hearing’, geur ‘smell’, gezichtsvermogen
‘sight’, reuk ‘smell’, spraak ‘speech’, zicht ‘sight’

b. put: afgrond ‘abyss’, bouwput ‘building excavation’, gaatje ‘hole’, gat
‘hole’, hiaat ‘gap’, hol ‘cave’, kloof ‘gap’, krater ‘crater’, kuil ‘hole’,
lacune ‘lacuna’, leemte ‘gap’, valkuil ‘pitfall’

Next, the various measures described in §8.3.3 are applied. Resulting scores are given
in tables 8.1 and 8.2.

Table 8.1 gives the scores for the MWE in de smaak vallen, together with some other
nouns that are present in the same cluster. Av→n shows that there is a clear preference
(.12) of the verb val in for the noun smaak. Rv→n shows that there is a unique preference
of the verb for the particular noun smaak. For the other nouns (geur, zicht, . . . ), the
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MWE candidate Av→n Rv→n An→v Rn→v

val#in smaak .12 1.00 .04 1.00
val#in geur .00 .00 .00 .00
val#in zicht .00 .00 .00 .00

Table 8.1: Scores for MWE candidate in de smaak vallen and other nouns in the same
cluster

verb has no preference whatsoever. Therefore, the ratio of verb preference for smaak
compared to the other nouns in the cluster is 1.00.

An→v and Rn→v show similar behaviour. There is a preference (.04) of the noun
smaak for the verb val in, and this preference is unique (1.00).

MWE candidate Av→n Rv→n An→v Rn→v

val#in put .00 .05 .00 .05
val#in kuil .01 .11 .02 .37
val#in kloof .00 .02 .00 .03
val#in gat .04 .71 .01 .24

Table 8.2: Scores for MWE candidate in de put vallen and other nouns in the same
cluster

Table 8.2 gives the scores for the instance in de put vallen – which is not a MWE –
together with other nouns from the same cluster. The results are quite different from the
ones in table 8.1. Av→n – the preference of the verb for the noun – is quite low in most
cases, the highest score being a score of .04 for gat. Furthermore, Rv→n does not show
a unique preference of val in for put (a low ratio score of .05). Instead, the preference
mass is divided among the various nouns in the cluster, the highest preference of val in
being assigned to the noun gat (.71).6

The other two scores show again a similar tendency; An→v – the preference of the
noun for the verb – is low in all cases, and when all nouns in the cluster are considered
(Rn→v), there is no ‘unique’ preference of one noun for the verb val in. Instead, the
preference mass is divided among all nouns in the cluster.

6Note that this expression is ambiguous: it can be used in a literal sense (in een gat vallen, ‘to fall down
a hole’) and in a metaphorical sense (in een zwart gat vallen, ‘to get depressed after a joyful or busy period’).
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After assessing the values of the four different measures, our method would propose
in de smaak vallen as a non-compositional expression and therefore, MWE; on the other
hand, the method would consider in de put vallen as compositional, thus a non-MWE.

8.4 Results and evaluation

In this section, our automatic method is extensively evaluated. In the first part, we
present the results of our quantitative evaluation – including both an automatic evalu-
ation (using Dutch lexical resources) and a manual evaluation (carried out by human
judges). The second part is a qualitative evaluation, indicating the advantages and the
drawbacks of our method.

8.4.1 Quantitative evaluation

Automatic evaluation

The MWEs that are extracted with the fully unsupervised method described above are
automatically evaluated by comparing them to handcrafted lexical databases. Since
we have extracted Dutch MWEs, we are using the two Dutch resources available:
the Referentie Bestand Nederlands (RBN, (Martin and Maks, 2005)) and the Van
Dale Lexicographical Information System (VLIS) database. Precision and recall are
calculated with regard to the MWEs that are present in our evaluation resources. Among
the MWEs in our reference data, we consider only those expressions that are present
in our frequency matrix: if the verb is not among the 5,000 most frequent verbs, or
the noun is not among the 10,000 most frequent nouns, the frequency information is
not present in our input data. Consequently, our algorithm would never be able to find
those MWEs.

The first six rows of table 8.3 show precision, recall and f-measure for various
parameter thresholds with regard to the measures Av→n, Rv→n, An→v and Rn→v, together
with the number of candidates found (n). The last line shows the highest values we
were able to reach by using the lexical fixedness score.

Using only two parameters – Av→n and Rv→n – gives the highest f-measure (±
14%), with a precision and recall of about 17% and about 12% respectively. Adding
parameter Rn→v increases precision but degrades recall, and this tendency continues
when adding both parameters An→v and Rn→v. In all cases, a higher threshold increases
precision but degrades recall. When using a high threshold for all parameters, the
algorithm is able to reach a precision of ± 38%, but recall is low (± 4%).
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parameters precision recall f-measure
Av→n Rv→n An→v Rn→v n (%) (%) (%)

.10 .80 – – 3175 16.09 13.11 14.45

.10 .90 – – 2655 17.59 11.98 14.25

.10 .80 – .80 2225 19.19 10.95 13.95

.10 .90 – .90 1870 20.70 9.93 13.42

.10 .80 .01 .80 1859 20.33 9.69 13.13

.20 .99 .05 .99 404 38.12 3.95 7.16

Fixednesslex(v,n) 3.00 3899 15.14 9.92 11.99

Table 8.3: Evaluation results compared to RBN & VLIS

The lexical fixedness score is able to reach an f-measure of ± 12% (using a
threshold of 3.00). These scores show the best performance that we have reached using
lexical fixedness.

Human evaluation

The evaluation procedure described above was applied fully automatically by compar-
ing the output of our method to two existing Dutch lexical databases. We are aware
of the fact that the automated annotation process may introduce some errors. There
may be extracted expressions wrongly labeled as true MWEs, as well as extracted
expressions erroneously labeled as false MWEs. Furthermore, it is known that the
lexical databases used are static resources that are likely to miss actual MWEs found in
large corpora. This is either because the lexical resources are incomplete, or because
the MWEs were not included due to a different understanding of the concept of MWE.
With this motivation, we set up a human evaluation experiment. From the dataset
that produced the best f-measure (Av→n = .10 and Rv→n = .80), 200 expressions were
randomly selected. To assess the performance of our method across different frequency
ranges, we selected 100 highly frequent MWE candidates (frequency ≥ 100) and 100
less frequent ones (frequency < 100).

Three human judges were asked to label the expressions as MWE or as non-MWE.
The judges were asked to always provide an answer. To investigate if the rankings from
the 3 judges agreed, we employed the Kappa statistic (Cohen, 1960). We obtained an
average pairwise interannotator agreement of κ = .60, showing a reasonable correlation
between the judges.
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The scores assigned by the judges differed severely with regard to frequency range.
In the high frequency range, our method was given an average precision of 33.00%. In
the low frequency range, precision dropped down to 6.67%. Below, the results of our
human evaluation are evaluated more extensively.

8.4.2 Qualitative evaluation

In this section, we elaborate upon advantages and disadvantages of our semantics-based
MWE extraction algorithm by examining the output of the procedure, and looking at
the characteristics of the correct MWEs found and the errors made by the algorithm.

Advantages of the method

First of all, our algorithm is able to filter out grammatical collocations that cause
problems in traditional MWE extraction paradigms. Two examples are given in (5)
and (6).

(5) benoemen
appoint

tot
to

minister,
minister,

secretaris-generaal
secretary-general

appoint s.o. {minister, secretary-general}
(6) voldoen

meet
aan
to

eisen,
demands,

voorwaarden
conditions

meet the {demands, conditions}

In traditional MWE extraction algorithms, based on collocations, highly frequent ex-
pressions like the ones in (5) and (6) often get classified as a MWE, even though they
are fully compositional. Such algorithms correctly identify a strong lexical affinity
between two component words (voldoen, aan), which make up a grammatical colloca-
tion; however, they fail to capture the fact that the noun may be filled in by a semantic
class of nouns. Our algorithm filters out those expressions, because semantic similarity
is taken into account.

Our quantitative evaluation shows that the algorithm reaches the best results (i.e.
the highest f-measures) when only two parameters (Av→n and Rv→n) are taken into
account. But upon closer inspection of the output, we have noticed that An→v and Rn→v
are often able to filter out non-MWEs like the expressions b in (7) and (8).

(7) a. op
on

toneel
stage

verschijnen
appear

to appear
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b. op
on

toneel
stage

zingen
sing

to sing on the stage

(8) a. in
in

geheugen
memory

liggen
lie

be in memory
b. in

in
ziekenhuis
hospital

liggen
lie

lie in the hospital

When only taking into account the first two measures (a unique preference of the verb
for the noun), the expressions in b do not get filtered out. It is only when the two other
measures (a unique preference of the noun for the verb) are taken into account that they
are filtered out – either because the preference of the noun for the verb is very low, or
the noun preference for the verb is more evenly distributed among the cluster. The b
expressions, which are non-MWEs, result from the combination of a verb with a highly
frequent PP. These PPs are typically locative, directional or predicative PPs, that may
combine with numerous verbs.

Also, expressions like the ones in (9), where the fixedness of the expression lies
not so much in the verb-noun combination, but more in the PP part (naar school, naar
huis) are filtered out by the latter two measures. These preposition-noun combinations
seem to be institutionalized PPs, so-called determinerless PPs (Baldwin et al., 2006).

(9) a. naar
to

school
school

willen
want

want to go to school
b. naar

to
huis
home

willen
want

want to go home

Errors of the method

In this section, we give an exhaustive list of the errors made by our algorithm, and
quantitatively evaluate the importance of each error category.

1. First of all, our algorithm highly depends on the quality of the noun clustering.
If a noun appears in a cluster with unrelated words, the measures will overrate
the semantic uniqueness of the expressions in which the noun appears.

2. Syntax might play an important role. Sometimes, there are syntactic restrictions
between the preposition and the noun. A noun like pagina ‘page’ can only
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appear with the preposition op ‘on’, as in lees op pagina ‘read on page’. Other,
semantically related nouns, such as hoofdstuk ‘chapter’, prefer in ‘in’. Due to
these restrictions, the measures will again overrate the semantic uniqueness of
the expression.

3. We found many expressions in which the fixedness of the expression lies not
so much in the combination of the verb and the prepositional phrase, but rather
in the prepositional phrase itself (naar school, naar huis). Note, however, that
our two latter measures were able to filter out many of those expressions (as
explained above). But in our error evaluation, we used the result that yields the
highest f-measure (and does not take the latter measures into account).

4. Our hard clustering method does not take polysemous nouns into account. A
noun can only occur in one cluster, ignoring other possible meanings. Schaal,
for example, means ‘dish’ as well as ‘scale’. In our clustering, it only appears
in a cluster of dish-related nouns. Therefore, expressions like maak gebruik op
[grote] schaal ‘make use of [sth.] on a [large] scale’, receive again overrated
measures of semantic uniqueness, because the ‘scale’ sense of the noun is
compared to nouns related to the ‘dish’ sense.

5. Related to the previous error category is the fact that certain nouns – although
occurring in a perfectly sound cluster – possess a semantic feature or charac-
teristic that distinguishes them from the other nouns in the cluster, and causes
the verb to uniquely prefer that particular noun. An example of this kind of
error is the expression eet in restaurant ‘eat in a restaurant’, which is perfectly
compositional. But due to the fact that the noun restaurant ends up in a cluster
with nouns such as bar ‘bar’, café ‘bar’, kroeg ‘pub’, winkel ‘shop’, hotel ‘hotel’
– which are places where one is less likely to eat – the fixedness of the expression
is overestimated.

6. The effectiveness of our method is highly dependent on the corpus distribution.
Sometimes, expressions that would be effective counterweights for the erroneous
classification of compositional expressions as MWE just are not found in the
corpus. This might be either due to sparseness of the data, or due to the specific
nature of the corpus itself. Examples are sluit wegens verbouwing ‘close due to
alteration’, with cluster members such as restauratie ‘restoration’ and renovatie
‘renovation’, and uit van emotie ‘express emotion’, with cluster members such as
agressie ‘agression’, irritatie ‘irritation’, ongeduld ‘impatience’. Expressions
such as sluit wegens renovatie or uit van irritatie are perfectly possible, but are
not (sufficiently) attested in the corpus. Therefore, the compositional forms
which are attested in the corpus are overestimated as MWE.
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7. Finally, misclassifications may be caused by parsing errors or other technical
issues.

In order to get a better view of the errors of the method, we manually classified
the expressions that were evaluated as non-MWE by our judges. Each expression was
assigned to one of the error categories described above. Overall results, and results for
high and low frequency expressions are given.

overall (%) high freq. (%) low freq. (%)

1 erroneous clustering 3.6 3.8 3.4
2 specific preposition 6.4 15.4 1.1
3 PP fixedness 26.4 21.2 29.5
4 polysemous word 15.7 13.5 17.0
5 specific semantic feature 22.9 30.8 18.2
6 corpus distribution 21.4 13.5 26.1
7 parsing/other 3.6 1.9 4.5

Table 8.4: Quantitative error evaluation

Misclassifications due to erroneous clustering or parsing errors only constitute a
small part of the errors. Also, misclassifications due to syntactic restrictions (specific
prepositions) are responsible for only a small part of the errors. More important are
misclassifications due to fixedness in the PP, or due to polysemy or specific semantic
features of the nouns. The former might be remedied by a more effective use of our
measures An→v and Rn→v, the latter by taking on a soft clustering approach. Finally,
there are quite some errors due to the specific distribution of MWEs in the corpus. These
errors are more common in the low frequency range. Clearly, our method is highly
dependent on the corpus that is used, and it should be sufficiently large in order to
adequately classify less frequent MWEs.

MWE fuzziness

A last observation to mention is that the status of certain expressions extracted with
our method is unclear. Expressions such as vraag met klem ‘ask with emphasis’ or ga
over tot orde [van de dag] ‘pass to the order [of the day]’ seem to be on the border
of compositionality vs. non-compositionality, and therefore cannot be adequately
qualified as MWE or non-MWE. This observation is confirmed by the conflicting views
the three judges showed when assessing these kind of expressions.
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8.5 Conclusions and further work

Our algorithm based on non-compositionality explores a new approach aimed at large-
scale MWE extraction. Using only two parameters, Av→n and Rv→n, yields the highest
f-measure. Using the two other parameters, An→v and Rn→v, increases precision but
degrades recall. Due to the formalization of the intuition of non-compositionality (using
an automatic noun clustering), our algorithm is able to rule out various expressions that
are coined MWEs by traditional algorithms.

Note that our algorithm has taken on a purely semantics-based approach. ‘Syntactic
fixedness’ of the expressions is not taken into account. Combining our semantics-based
approach with other MWE extraction methods that take into account different features
might improve the results significantly.

We believe that our method provides a genuine and successful approach to get a
grasp of the non-compositionality of MWEs in a fully automated way. We also believe
that it is one of the first methods able to extract MWEs based on non-compositionality
on a large scale, and that traditional MWE extraction algorithms will benefit from taking
this non-compositionality into account.





Chapter 9

Noun Sense Discrimination1

9.1 Introduction

The computation of semantic similarity relies on the distributional hypothesis (Har-
ris, 1985), which states that words that occur in similar contexts tend to be similar. In
chapter 1, we have seen that there are three different definitions of the notion context: a
document-based context, a window-based context, and a syntax-based context. The first
approach takes the documents in which the word appears as features. The document
context might be the sentence, paragraph or actual document that a word appears in.
One of the dominant methods using this method is LATENT SEMANTIC ANALYSIS
(LSA). The second approach makes use of the bag of words co-occurrence data; in
this approach, a certain window around a word is used for gathering co-occurrence
information. The window may either be a fixed number of words, or the paragraph or
document that a word appears in. Thus, words are considered similar if they appear
in similar windows. The document-based approach is very much related to the bag
of words approach. The third approach uses a more fine grained distributional model,
focusing on the syntactic relations in which words appear. Typically, a large text corpus
is parsed, and dependency triples are extracted.2 Words are considered similar if they
appear in similar syntactic relations. Note that the former approach does not need any
kind of linguistic annotation, whereas for the latter, some form of syntactic annotation
is needed.

1The research presented in this chapter has been published as Van de Cruys (2007) and Van de
Cruys (2008c).

2e.g. dependency relations that qualify apple might be ‘object of eat’ and ‘adjective red’. This gives us
dependency triples like < apple,ob j,eat >.
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In this chapter, we will combine the window-based approach with the syntax-
based approach. The results yielded by these two approaches are typically quite
different in nature: the first approach typically puts its finger on a broad, thematic
kind of similarity,3 while the latter typically grasps a tighter, synonym-like similarity.
Example (1) shows the difference between the two kinds of similarity; for each kind,
the top ten most similar nouns to the Dutch noun muziek ‘music’ are given. In (a), the
window-based approach is used, while (b) uses the syntax-based approach. (a) shows
indeed more thematic similarity, whereas (b) shows tighter similarity.

(1) a. muziek ‘music’: gitaar ‘guitar’, jazz ‘jazz’, cd ‘cd’, rock ‘rock’, bas
‘bass’, song ‘song’, muzikant ‘musician’, musicus ‘musician’, drum
‘drum’, slagwerker ‘drummer’

b. muziek ‘music’: dans ‘dance’, kunst ‘art’, klank ‘sound’, liedje ‘song’,
geluid ‘sound’, poëzie ‘poetry’, literatuur ‘literature’, popmuziek ‘pop
music’, lied ‘song’, melodie ‘melody’

Especially the syntax-based method has been adopted by many researchers in order
to find semantically similar words. There is, however, one important problem with
this kind of approach: the method is not able to cope with ambiguous words. Take the
examples:

(2) een
a

oneven
odd

nummer
number

an odd number

(3) een
a

steengoed
great

nummer
number

‘a great song’

The word nummer does not have the same meaning in these examples. In ex-
ample (2), nummer is used in the sense of ‘designator of quantity’. In example (3), it
is used in the sense of ‘musical performance’. Accordingly, we would like the word
nummer to be disambiguated into two senses, the first sense being similar to words like
getal ‘number’, cijfer ‘digit’ and the second to words like liedje ‘song’, song ‘song’.

While it is relatively easy for a human language user to distinguish between the
two senses, this is a difficult task for a computer. Even worse: the results get blurred
because the attributes of both senses (in this example oneven and steengoed) are
grouped together into one sense. This is the main drawback of the syntax-based
method. On the other hand, methods that capture semantic dimensions are known to

3This is true in particular when using a large context window, cfr. chapter 7.
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be useful in disambiguating different senses of a word. Particularly, PROBABILISTIC
LATENT SEMANTIC ANALYSIS (PLSA) is known to simultaneously encode various
senses of words according to latent semantic dimensions (Hofmann, 1999). In this
paper, we want to explore an approach that tries to remedy the shortcomings of the
former, syntax-based approach with the benefits of the latter. The intuition in this is
that the syntactic features of the syntax-based approach can be disambiguated by the
‘latent semantic dimensions’ found with the window-based approach.

9.2 Previous Work

9.2.1 Distributional Similarity

There have been numerous approaches for computing the similarity between words
from distributional data. Here, we mention some of the most important ones. An
extensive overview of distributional similarity is given in chapter 2.

With regard to the first approach – using a context window – we already mentioned
LSA (Landauer and Dumais, 1997). In LSA, a term-document matrix is created,
containing the frequency of each word in a specific document. This matrix is then
decomposed into three other matrices with a mathematical technique called SINGULAR
VALUE DECOMPOSITION. The most important dimensions that come out of the SVD
are interpreted to represent ‘latent semantic dimensions’, according to which nouns
and documents can be presented more efficiently.

LSA has been criticized for not being the most appropriate data reduction method
for textual applications. The SVD underlying the method assumes normally-distributed
data, whereas textual count data (such as the term-document matrix) can be more
appropriately modeled by other distributional models such as Poisson (Manning and
Schütze, 2000, §15.4.3). Successive methods such as PROBABILISTIC LATENT SE-
MANTIC ANALYSIS (PLSA) (Hofmann, 1999), try to remedy this shortcoming by im-
posing a proper latent variable model, according to which the values can be estimated.
The method we adopt in our research – NON-NEGATIVE MATRIX FACTORIZATION – is
similar to PLSA, and adequately remedies this problem as well.

The second approach – using syntactic relations – has been adopted by many
researchers, in order to acquire semantically similar words. One of the most important
is Lin’s (1998a). For Dutch, the approach has been applied by Van der Plas & Bouma
(2005).
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9.2.2 Discriminating senses

Schütze (1998) uses a disambiguation algorithm – called context-group discrimination
– based on the clustering of the context of ambiguous words. The clustering is based
on second-order co-occurrence: the contexts of the ambiguous word are similar if the
words they in turn co-occur with are similar.

Pantel and Lin (2002) present a clustering algorithm – coined CLUSTERING BY
COMMITTEE (CBC) – that automatically discovers word senses from text. The key idea
is to first discover a set of tight, unambiguous clusters, to which possibly ambiguous
words can be assigned. Once a word has been assigned to a cluster, the features
associated with that particular cluster are stripped off the word’s vector. This way, less
frequent senses of the word can be discovered.

The former approach uses a window-based method; the latter uses syntactic data.
But none of the algorithms developed so far have combined both sources in order to
discriminate among different senses of a word.

9.3 Methodology

9.3.1 Non-negative Matrix Factorization

In this framework, we will adopt non-negative matrix factorization (NMF) (Lee and
Seung, 2000) as a dimensionality reduction algorithm. In NMF, a matrix V is factorized
into two other matrices, W and H, with r� n,m.

Vn×m ≈Wn×rHr×m (9.1)

An extensive overview of NMF and its computational details is given in section 3.3 on
page 42.

In this framework, we will adopt the NMF algorithm that minimizes the Kullback-
Leibler divergence as objective function. In our experience, entropy-based measures
tend to work well for natural language. Thus, we want to find the matrices W and H
for which the Kullback-Leibler divergence between V and WH (the matrix product of
W and H) is the smallest.

We can now straightforwardly apply NMF to create semantic word models. NMF
is applied to a frequency matrix, containing bags of words co-occurrence data. The
additive property of NMF ensures that semantic dimensions emerge according to which
the various words can be classified. Two sample dimensions are shown in example (4).
For each dimension, the words with the largest value on that dimension are given.
Dimension (a) can be qualified as a ‘transport’ dimension, and dimension (b) as a
‘cooking’ dimension.
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(4) a. bus ‘bus’, taxi ‘taxi’, trein ‘train’, halte ‘stop’, reiziger ‘traveler’, perron
‘platform’, tram ‘tram’, station ‘station’, chauffeur ‘driver’, passagier
‘passenger’

b. bouillon ‘broth’, slagroom ‘cream’, ui ‘onion’, eierdooier ‘egg yolk’,
laurierblad ‘bay leaf’, zout ‘salt’, deciliter ‘decilitre’, boter ‘butter’, bleek-
selderij ‘celery’, saus ‘sauce’

9.3.2 Extending Non-negative Matrix Factorization

We now propose an extension of NMF that combines both the bag of words approach
and the syntactic approach. The algorithm finds again latent semantic dimensions,
according to which nouns, bag of words contexts and syntactic relations are classified.

Since we are interested in the classification of nouns according to both ‘bag-of-
words’ context and syntactic context, we first construct three matrices that capture
the co-occurrence frequency information for each mode. The first matrix contains co-
occurrence frequencies of nouns cross-classified by dependency relations, the second
matrix contains co-occurrence frequencies of nouns cross-classified by words that
appear in the noun’s context window, and the third matrix contains co-occurrence
frequencies of dependency relations cross-classified by co-occurring context words.

We then apply NMF to the three matrices, but we interleave the separate factoriza-
tions: the result of the preceding factorization is used to initialize the factorization of
the next matrix. This implies that we need to initialize only three matrices at random;
the other three are initialized by calculations of the previous step. The process is
represented graphically in figure 9.1.

In the example in figure 9.1, matrix H is initialized at random, and the update of
matrix W is calculated. The result of update W is then used to initialize matrix V , and
the update of matrix G is calculated. This matrix is used again to initialize matrix U ,
and the update of matrix F is calculated. This matrix can be used to initialize matrix
H, and the process is repeated until convergence.

In (5), an example is given of the kind of semantic dimensions found. This
dimension may be coined the ‘transport’ dimension, as is shown by the top 10 nouns
(a), context words (b) and syntactic relations (c).

(5) a. auto ‘car’, wagen ‘car’, tram ‘tram’, motor ‘motorbike’, bus ‘bus’, metro ‘subway’, auto-
mobilist ‘driver’, trein ‘trein’, stuur ‘steering wheel’, chauffeur ‘driver’

b. auto ‘car’, trein ‘train’, motor ‘motorbike’, bus ‘bus’, rij ‘drive’, chauffeur ‘driver’, fiets
‘bike’, reiziger ‘reiziger’, passagier ‘passenger’, vervoer ‘transport’

c. viertrapsad j ‘four-stage’, verplaats metob j ‘move with’, toeterad j ‘honk’, tank in houdob j
[parsing error], tanksub j ‘refuel’, tankob j ‘refuel’, rij voorbijsub j ‘pass by’, rij voorbijad j ‘pass
by’, rij afsub j ‘drive off’, peperduurad j ‘very expensive’
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Figure 9.1: A graphical representation of the extended NMF

9.3.3 Sense Subtraction

Next, we want to use the factorization that has been created in the former step for
word sense discrimination. The intuition is that we ‘switch off’ one dimension of an
ambiguous word, to reveal possible other senses of the word. From matrix H, we know
the importance of each syntactic relation given a dimension. With this knowledge, we
can ‘subtract’ the syntactic relations that are responsible for a certain dimension from
the original noun vector:

−→v new =−→v orig(−→v1 −
−→
h dim) (9.2)

Equation 9.2 is an element-wise multiplication that multiplies each feature (syn-
tactic relation) of the original noun vector (−→v orig) with a scaling factor, according to
the load of the feature on the subtracted dimension (

−→
h dim – the vector of matrix H

containing the dimension we want to subtract). −→v1 is a vector of ones, the size of
−→
h dim.

9.3.4 A Clustering Framework

The last step is to determine which dimension(s) are responsible for a certain sense of
the word. In order to do so, we embed our method in a clustering approach. First, a
specific word is assigned to its predominant sense (i.e. the most similar cluster). Next,
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the dominant semantic dimension(s) for this cluster are subtracted from the word vector
(equation 9.2), and the resulting vector is fed to the clustering algorithm again, to see
if other word senses emerge. The dominant semantic dimension(s) can be identified
by ‘folding in’ the cluster centroid into our factorization (so we get a vector −→w of
dimension size r), and applying a threshold to the result (in our experiments a threshold
of δ = .05 — so dimensions responsible for > 5% of the centroid are subtracted).

We used two kinds of clustering algorithms to determine our initial centroids. The
first algorithm is a standard K-means algorithm. The second one is the CBC algorithm
by Pantel and Lin (2002). The initial vectors to be clustered are weighted using
pointwise mutual information (Church and Hanks, 1990).

K-means

First, a standard K-means algorithm is applied to the nouns we want to cluster. This
yields a hard clustering, in which each noun is assigned to exactly one (dominant)
cluster. In the second step, we try to determine for each noun whether it can be
assigned to other, less dominant clusters. First, the salient dimension(s) of the centroid
to which the noun is assigned are determined. We compute the centroid of the cluster
by averaging the frequencies of all cluster elements except for the target element we
want to reassign, and adapt the centroid with pointwise mutual information. After
subtracting the salient dimensions from the noun vector, we check whether the vector
is reassigned to another cluster centroid (i.e. whether it is more similar to a different
centroid). If this is the case, (another instance of) the noun is assigned to the cluster,
and we repeat the second step. If there is no reassignment, we continue with the next
word. The target element is removed from the centroid to make sure that we only
subtract the dimensions associated with the sense of the cluster.

Note that K-means requires setting the number of clusters beforehand, so k is a
parameter to be set.

CBC

The second clustering algorithm operates in a similar vein, but instead of using simple
K-means, we use Pantel and Lin’s CBC algorithm to find the initial centroids (coined
COMMITTEES).

In order to find committees, the top k nouns for each noun in the database are
clustered with average-link clustering. The clusters are scored and sorted in such a way
that preference is given to tight, representative clusters. If the committees do not cover
all elements sufficiently, the algorithm recursively tries to find more committees. An
elaborate description of the algorithm can be found in Pantel and Lin (2002).
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In the second step, we start assigning elements to committees. Once an element
is assigned, the salient dimensions are subtracted from the noun vector in the same
way as in 9.3.4 (only do we not have to remove any target word from the centroid;
committees are supposed to represent tight, unambiguous clusters).

CBC attempts to find the number of committees automatically from the data, so k
does not have to be set.

9.4 Examples

9.4.1 Sense Subtraction

In what follows, we will talk about semantic dimensions as, e.g., the ‘music’ dimension
or the ‘city’ dimension. In the vast majority of the cases, the dimensions are indeed
as clear-cut as the transport dimension shown above, so that the dimensions can be
rightfully labeled this way.

Two examples are given of how the semantic dimensions that have been found can
be used for word sense discrimination. We will consider two ambiguous nouns: pop,
which can mean ‘pop music’ as well as ‘doll’, and Barcelona, which can designate
either the Spanish city or the Spanish football club.

First, we look up the top dimensions for each noun. Next, we successively subtract
the dimensions dealing with a particular sense of the noun, as described in 9.3.3. This
gives us three vectors for each noun: the original vector, and two vectors with one of
the dimensions eliminated. For each of these vectors, the top ten similar nouns are
given, in order to compare the changes brought about.

(6) a. pop, rock, jazz, meubilair ‘furniture’, popmuziek ‘pop music’, heks ‘witch’, speelgoed ‘toy’,
kast ‘cupboard’, servies ‘[tea] service’, vraagteken ‘question mark’

b. pop, meubilair ‘furniture’, speelgoed ‘toy’, kast ‘cupboard’, servies ‘[tea] service’, heks
‘witch’, vraagteken ‘question mark’ sieraad ‘jewel’, sculptuur ‘sculpture’, schoen ‘shoe’

c. pop, rock, jazz, popmuziek ‘pop music’, heks ‘witch’, danseres ‘dancer’, servies ‘[tea] service’,
kopje ‘cup’, house ‘house music’, aap ‘monkey’

Example (6) shows the top similar words for the three vectors of pop. In (a),
the most similar words to the original vector are shown. In (b), the top dimension
(the ‘music dimension’) has been subtracted from (a), and in (c), the second highest
dimension (a ‘domestic items’ dimension) has been subtracted from (a).

The differences between the three vectors are clear: in vector (a), both senses are
mixed together, with ‘pop music’ and ‘doll’ items interleaved. In (b), no more music
items are present. Only items related to the doll sense are among the top similar words.
In (c), the music sense emerges much more clearly, with rock, jazz and popmuziek
being the most similar, and a new music term (house) showing up among the top ten.
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Admittedly, in vector (c), not all items related to the ‘doll’ sense are filtered out.
We believe this is due to the fact that this sense cannot be adequately filtered out by one
dimension (in this case, a dimension of ‘domestic items’ alone), whereas it is much
easier to filter out the ‘music’ sense with only one ‘music’ dimension. We will try to
remedy this in our clustering framework, in which it is possible to subtract multiple
dimensions related to one sense.

A second example, the ambiguous proper name Barcelona, is given in (7).

(7) a. Barcelona, Arsenal, Inter, Juventus, Vitesse, Milaan ‘Milan’, Madrid, Parijs ‘Paris’, Wenen
‘Vienna’, München ‘Munich’

b. Barcelona, Milaan ‘Milan’, München ‘Munich’, Wenen ‘Vienna’, Madrid, Parijs ‘Paris’,
Bonn, Praag ‘Prague’, Berlijn ‘Berlin’, Londen ‘London’

c. Barcelona, Arsenal, Inter, Juventus, Vitesse, Parma, Anderlecht, PSV, Feyenoord, Ajax

In (a), the two senses of Barcelona are clearly mixed up, showing cities as well as
football clubs among the most similar nouns. In (b), where the ‘football dimension’
has been subtracted, only cities show up. In (c), where the ‘city dimension’ has been
subtracted, only football clubs remain.

9.4.2 Clustering Output

In (8), an example of our clustering algorithm with initial K-means clusters is given.

(8) a. werk ‘work’ beeld ‘image’ foto ‘photo’ schilderij ‘painting’ tekening ‘drawing’ doek ‘canvas’
installatie ‘installation’ afbeelding ‘picture’ sculptuur ‘sculpture’ prent ‘picture’ illustratie
‘illustration’ handschrift ‘manuscript’ grafiek ‘print’ aquarel ‘aquarelle’ maquette ‘scale-
model’ collage ‘collage’ ets ‘etching’

b. werk ‘work’ boek ‘book’ titel ‘title’ roman ‘novel’ boekje ‘booklet’ debuut ‘debut’ biografie
‘biography’ bundel ‘collection’ toneelstuk ‘play’ bestseller ‘bestseller’ kinderboek ‘child
book’ autobiografie ‘autobiography’ novelle ‘short story’

c. werk ‘work’ voorziening ‘service’ arbeid ‘labour’ opvoeding ‘education’ kinderopvang ‘child
care’ scholing ‘education’ huisvesting ‘housing’ faciliteit ‘facility’ accommodatie ‘acommod-
ation’ arbeidsomstandigheid ‘working condition’

The example shows three different clusters to which the noun werk ‘work’ is
assigned. In (a), werk refers to a work of art. In (b), it refers to a written work. In (c),
the ‘labour’ sense of werk emerges.
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9.5 Evaluation

9.5.1 Methodology

The clustering results have been evaluated according to Dutch EuroWordNet (Vossen, 1998).
Precision and recall are calculated by comparing the results to EuroWordNet synsets.
The precision is the number of clusters found that correspond to an actual sense of
the word. Recall is the number of word senses in EuroWordNet that are found by the
algorithm. Our evaluation method is largely the same as the one used by Pantel and
Lin (2002).

Both precision and recall are based on wordnet similarity. A number of similarity
measures have been developed to calculate semantic similarity in a hierarchical wordnet.
Two of those measures – Wu & Palmer’s and Lin’s – have been presented earlier
in chapter 5. In this evaluation, Wu & Palmer’s (1994) measure will be adopted.
A detailed description of this Wu & Palmer’s similarity measure can be found in
section 5.3.2 on page 61.

To calculate precision, we apply the same methodology as Pantel and Lin (2002).4

Let S(w) be the set of EuroWordNet senses. simW (s,u), the similarity between a synset
s and a word u is then defined as the maximum similarity between s and a sense of u:

simW (s,u) = max
tεS(u)

sim(s, t) (9.3)

Let ck be the top k-members of a cluster c, where these are the k most similar members
to the centroid of c. simC(c,s), the similarity between s and c, is then defined as the
average similarity between s and the top-k members of c:

simC(s,c) =
∑

uεck

simW (s,u)

k
(9.4)

An assigment of a word w to a cluster c can now be classified as correct if

max
sεS(w)

simC(s,c) > θ (9.5)

and the EuroWordNet sense of w that corresponds to c is

argmax
sεS(w)

simC(s,c) (9.6)

4Note, however, that our similarity measure is different. Where Pantel and Lin use Lin’s (1998a)
measure, we use Wu and Palmer’s (1994) measure.
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When multiple clusters correspond to the same EuroWordNet sense, only one of them
is counted as correct.

Precision of a word w is the percentage of correct clusters to which it is assigned.
Recall of a word w is the percentage of senses from EuroWordnet that have a corres-
ponding cluster.5 Precision and recall of a clustering algorithm is the average precision
and recall of all test words.

9.5.2 Experimental Design

We have applied the interleaved NMF presented in section 9.3.2 to Dutch, using the
TWENTE NIEUWS CORPUS (Ordelman, 2002), containing > 500M words of Dutch
newspaper text. The corpus is consistently divided into paragraphs, which have been
used as the context window for the bag-of-words mode. The corpus has been parsed by
the Dutch dependency parser Alpino (van Noord, 2006), and dependency triples have
been extracted. Next, the three matrices needed for our method have been constructed:
one containing nouns by dependency relations (5K × 80K), one containing nouns by
context words (5K × 2K) and one containing dependency relations by context words
(80K × 2K). We did 200 iterations of the algorithm, factorizing the matrices into 50
dimensions. The NMF algorithm has been implemented in Matlab.

For the evaluation, we use all the words that appear in our original clustering input
as well as in EuroWordNet. This yields a test set of 3683 words.

9.5.3 Results

Table 9.1 shows precision and recall figures for four different algorithms, according
to two similarity thresholds θ (equation 9.5). kmeansnm f describes the results of
our algorithm with K-means clusters, as described in section 9.3.4. CBC describes
the results of our algorithm with the CBC committees, as described in section 9.3.4.
For comparison, we have also included the results of a standard K-means clustering
(kmeansorig, k = 600), and the original CBC algorithm (CBCorig) as described by Pantel
and Lin (2002).

The results show the same tendency across all similarity thresholds: kmeansnm f
has a high precision, but lower recall compared to CBCorig. Still the recall is higher
compared to standard K-means, which indicates that the algorithm is able to find
multiple senses of nouns, with high precision. The results of CBCnm f are similar to

5Our notion of recall is slightly different from the one used by Pantel and Lin, as they use ‘the number
of senses in which w was used in the corpus’ as gold standard. This information, as they acknowledge, is
difficult to get at, so we prefer to use the sense information in EuroWordNet.
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threshold θ

.40 (%) .60 (%)

kmeansnm f prec. 78.97 55.16
rec. 63.90 44.77

CBCnm f prec. 82.70 54.87
rec. 60.27 40.51

kmeansorig prec. 86.13 58.97
rec. 60.23 41.80

CBCorig prec. 44.94 29.74
rec. 69.61 48.00

Table 9.1: Precision and recall percentages for four different algorithms according to
two similarity thresholds

the results of kmeansorig, indicating that few words are reassigned to multiple clusters
when using CBC committees with our method.

Obviously, kmeansorig scores best with regard to precision, but worst with regard to
recall. CBCorig finds most senses (highest recall), but precision is considerably worse.

The fact that recall is already quite high with standard K-means clustering indicates
that the evaluation is skewed towards nouns with only one sense, possibly due to a
lack of coverage in EuroWordNet. In future work, we specifically want to evaluate
the discrimination of ambiguous words. Also, we want to make use of the new
Cornetto Database6, a successor of EuroWordNet for Dutch which is currently under
development.

Still, the evaluation shows that our method provides a genuine way of finding
multiple senses of words, while retaining high precision. Especially the method using
a simple K-means clustering performs particularly well. The three way data allows the
algorithm to put its finger on the particular sense of a centroid, and adapt the feature
vector of a possibly ambiguous noun accordingly.

6http://www.let.vu.nl/onderzoek/projectsites/cornetto/index.html

http://www.let.vu.nl/onderzoek/projectsites/cornetto/index.html
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9.6 Conclusion & Future Work

In this paper, an extension of NMF has been presented that combines both bag of words
data and syntactic data in order to find latent semantic dimensions according to which
both words and syntactic relations can be classified. The use of three-way data allows
one to determine which dimension(s) are responsible for a certain sense of a word, and
adapt the corresponding feature vector accordingly, ‘subtracting’ one sense to discover
another one. When embedded in a clustering framework, the method provides a fully
automatic way to discriminate the various senses of words. The evaluation against
EuroWordNet shows that the algorithm is genuinely able to disambiguate the features
of a given word, and accordingly its word senses.

We conclude with some issues for future work. First of all, we would like to test
the method that has been explored in this paper with other evaluation frameworks. We
already mentioned the focus on ambiguous nouns, and the use of the new Cornetto
database for Dutch. Next, we would like to work out a proper probabilistic framework
for the ‘subtraction’ of dimensions. At this moment, the subtraction (using a cut-
off) is somewhat ad hoc. A probabilistic modeling of this intuition might lead to an
improvement.

And finally, we would like to use the results of our method to learn selectional
preferences. Our method is able to discriminate the syntactic features that are linked to
a particular word sense. If we can use the results to improve a parser’s performance,
this will also provide an external evaluation of the algorithm.





Chapter 10

Selectional Preferences1

10.1 Introduction

Distributional similarity methods have proven to be a valuable tool for the induction
of semantic similarity. The aggregate of a word’s contexts generally provides enough
information to compute its meaning, viz. its semantic similarity or relatedness to other
words.

Up till now, most algorithms use two-way co-occurrence data to compute the
meaning of words. A word’s meaning might for example be computed by looking at:

• the various documents that the word appears in (words × documents);

• a bag of words context window around the word (words × context words);

• the dependency relations that the word appears with (words × dependency
relations).

The extracted data – representing the co-occurrence frequencies of two different
entities – is encoded in a matrix. Co-occurrence frequencies, however, need not be
pairwise. One can easily imagine situations where it is desirable to investigate co-
occurrence frequencies of three modes and beyond. In an information retrieval context,
one such situation might be the investigation of words × documents × authors. In an
NLP context, one might want to investigate words × dependency relations × bag of
word context words, or verbs × subjects × direct objects.

1The research presented in this chapter has been published as Van de Cruys (2009).
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Note that it is not possible to investigate the three-way co-occurrences in a matrix
representation form. It is possible to capture the co-occurrence frequencies of a
verb with its subjects and its direct objects, but one cannot capture the co-occurrence
frequencies of the verb appearing with the subject and the direct object at the same time.
When the actual three-way co-occurrence data is ‘matricized’, valuable information is
thrown-away. To be able to capture the mutual dependencies among the three modes,
we will make use of a generalized tensor representation.

Two-way co-occurrence models (such as latent semantic analysis) have often been
augmented with some form of dimensionality reduction in order to counter noise
and overcome data sparseness. We will also make use of a dimensionality reduction
algorithm appropriate for tensor representations.

10.2 Previous Work

10.2.1 Selectional Preferences & Verb Clustering

Selectional preferences have been a popular research subject in the NLP community.
One of the first to automatically induce selectional preferences from corpora was
Resnik Resnik (1996). Resnik generalizes among nouns by using WordNet noun
synsets as clusters. He then calculates the selectional preference strength of a specific
verb in a particular relation by computing the Kullback-Leibler divergence between the
cluster distribution of the verb and the aggregate cluster distribution:

Sv = ∑
c

p(c | v) log
p(c | v)

p(c)
(10.1)

The selectional association is then the contribution of a particular cluster to the verb’s
preference strength:

Av,c =
p(c | v) log p(c|v)

p(c)

Sv
(10.2)

The model’s generalization relies entirely on WordNet; there is no generalization
among the verbs.2

The research in this paper is related to previous work on clustering. Pereira et
al. (1993) use an information-theoretic based clustering approach, clustering nouns
according to their distribution as direct objects among verbs, conditioned on a set of
latent semantic classes.

2Other notable approaches using WordNet for selectional preference induction are Abe and Li’s (1996)
and Clark and Weir’s (2001).
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p(v,n) = ∑
c

p(c,v,n) = ∑
c

p(c)p(v | c)p(n | c) (10.3)

Their model is an asymmetric, one-sided clustering model: only the direct objects
are clustered, there is no clustering among the verbs.

Rooth et al. (1999) use an EM-based technique to induce a clustering based on
the co-occurrence frequencies of verbs with their subjects and direct objects. Their
clustering model is the same as the one used by Pereira et al. (1993), but they embed
the model in a formal EM-clustering framework. Rooth et al.’s (1999) clustering is
two-sided: the verbs as well as the subjects/direct objects are clustered. We will use a
similar model for evaluation purposes.

Recent approaches using distributional similarity methods for the induction of
selectional preferences are the ones by Erk (2007), Bhagat et al. (2007) and Basili
et al. (2007). Erk (2007) uses corpus-based similarity measures for the induction of
selectional preferences. The selectional preference Srp for an argument slot r of a
particular predicate p and a possible headword w0 is computed as the weighted sum of
similarities between w0 and the headwords seen as argument fillers for the predicate
(Seen(rp)); wtrp is an appropriate weighting function.

Srp(w0) = ∑
w∈Seen(rp)

sim(w0,w) ·wtrp(w) (10.4)

Both Bhagat et al. (2007) and Basili et al. (2007) investigate the induction of
selectional preferences in the context of textual entailment tasks.

This research differs from the approaches mentioned above by its use of multi-way
data: where the approaches above limit themselves to two-way co-occurrences, this
research will focus on co-occurrences for multi-way data.

10.2.2 Factorization Algorithms

Two-way Factorizations

One of the best known factorization algorithms is principal component analysis (PCA,
Pearson (1901)). PCA transforms the data into a new coordinate system, yielding the
best possible fit in a least square sense given a limited number of dimensions. Singular
value decomposition (SVD) is the generalization of the eigenvalue decomposition used
in PCA (Wall, Rechtsteiner, and Rocha, 2003). In information retrieval, singular value
decomposition has been applied in latent semantic analysis (LSA, Landauer and Dumais
(1997), Landauer et al. (1998)). In LSA, a term-document matrix is created, containing
the frequency of each word in a specific document. This matrix is then decomposed
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into three other matrices with SVD. The most important dimensions that come out of
the SVD allegedly represent ‘latent semantic dimensions’, according to which nouns
and documents can be represented more efficiently.

LSA has been criticized for a number of reasons, one of them being the fact that the
factorization contains negative numbers. It is not clear what negativity on a semantic
scale should designate. Subsequent methods such as probabilistic latent semantic
analysis (PLSA, Hofmann (1999)) and non-negative matrix factorization (NMF, Lee and
Seung (2000)) remedy these problems, and indeed get much more clear-cut semantic
dimensions.

Three-way Factorizations

To be able to cope with three-way data, several algorithms have been developed as mul-
tilinear generalizations of the SVD. In statistics, three-way component analysis has been
extensively investigated (for an overview, see Kiers and van Mechelen (2001)). The two
most popular methods are parallel factor analysis (PARAFAC, Harshman (1970), Carroll
and Chang (1970)) and three-mode principal component analysis (3MPCA, Tucker
(1966)), also called higher order singular value decomposition (HOSVD, De Lathauwer
et al. (2000)). Three-way factorizations have been applied in various domains, such as
psychometry and image recognition (Vasilescu and Terzopoulos, 2002). In information
retrieval, three-way factorizations have been applied to the problem of link analysis
(Kolda and Bader, 2006).

One last important method dealing with multi-way data is non-negative tensor
factorization (NTF, Shashua and Hazan (2005)). NTF is a generalization of non-negative
matrix factorization, and can be considered an extension of the PARAFAC model with
the constraint of non-negativity (cfr. infra).

One of the few papers that has investigated the application of tensor factorization
for NLP is Turney (2007), in which a three-mode tensor is used to compute the semantic
similarity of words. The method achieves 83.75% accuracy on the TOEFL synonym
questions.

10.3 Methodology

10.3.1 Tensors

Distributional similarity methods usually represent co-occurrence data in the form of a
matrix. This form is perfectly suited to represent two-way co-occurrence data, but for
co-occurrence data beyond two modes, we need a more general representation. The
generalization of a matrix is called a tensor. A tensor is able to encode co-occurrence
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data of any n modes. Figure 10.1 shows a graphical comparison of a matrix and a
tensor with three modes – although a tensor can easily be generalized to more than
three modes.

Figure 10.1: Matrix representation vs. tensor representation

10.3.2 Non-negative Tensor Factorization

In order to create a succinct and general model of the extracted data, a statistical
dimensionality reduction technique called non-negative tensor factorization (NTF) is
applied to the data. The NTF model is similar to the PARAFAC analysis – popular in
areas such as psychology and bio-chemistry – with the constraint that all data needs to
be non-negative (i.e. ≥ 0).

Parallel factor analysis (PARAFAC) is a multilinear analogue of the singular value
decomposition (SVD) used in latent semantic analysis. The key idea is to minimize the
sum of squares between the original tensor and the factorized model of the tensor. For
the three mode case of a tensor T ∈ RD1×D2×D3 this gives equation 10.5, where k is
the number of dimensions in the factorized model and ◦ denotes the outer product.

min
xi∈RD1,yi∈RD2,zi∈RD3

‖ T −
k

∑
i=1

xi ◦ yi ◦ zi ‖2
F (10.5)

With non-negative tensor factorization, the non-negativity constraint is enforced,
yielding a model like the one in equation 10.6:

min
xi∈RD1

≥0,yi∈RD2
≥0,zi∈RD3

≥0

‖ T −
k

∑
i=1

xi ◦ yi ◦ zi ‖2
F (10.6)

The algorithm results in three matrices, indicating the loadings of each mode on the
factorized dimensions. The model is represented graphically in figure 10.2, visualizing
the fact that the PARAFAC decomposition consists of the summation over the outer
products of n (in this case three) vectors.
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Figure 10.2: Graphical representation of the NTF as the sum of outer products

Computationally, the non-negative tensor factorization model is fitted by applying
an alternating least-squares algorithm. In each iteration, two of the modes are fixed
and the third one is fitted in a least squares sense. This process is repeated until
convergence.3

10.3.3 Applied to Language Data

The model can straightforwardly be applied to language data. In this part, we describe
the factorization of verbs × subjects × direct objects co-occurrences, but the example
can easily be substituted with other co-occurrence information. Moreover, the model
need not be restricted to 3 modes; it is very well possible to go to 4 modes and beyond
— as long as the computations remain feasible.

The NTF decomposition for the verbs × subjects × direct objects co-occurrences
into the three loadings matrices is represented graphically in figure 10.3.4 By applying
the NTF model to three-way (s,v,o) co-occurrences, we want to extract a generalized
selectional preference model, and eventually even induce some kind of frame semantics
(in the broad sense of the word).

In the resulting factorization, each verb, subject and direct object gets a loading
value for each factor dimension in the corresponding loadings matrix. The original
value for a particular (s,v,o) triple xsvo can then be reconstructed with equation 10.7.

xsvo =
k

∑
i=1

ssivviooi (10.7)

To reconstruct the selectional preference value for the triple (man,bite,dog), for
example, we look up the subject vector for man, the verb vector for bite and the direct

3The algorithm has been implemented in MATLAB, using the Tensor Toolbox for sparse tensor calcula-
tions (Bader and Kolda, 2009).

4Note that the representation of NTF as three loadings matrices (presented in this figure) is equivalent to
the representation as the sum of outer products (presented in figure 10.2).
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Figure 10.3: Graphical representation of the NTF for language data

object vector for dog. Then, for each dimension i in the model, we multiply the ith
value of the three vectors. The sum of these values is the final preference value.

10.4 Results

10.4.1 Setup

The approach described in the previous section has been applied to Dutch, using the
Twente Nieuws Corpus (Ordelman, 2002), a 500M word corpus of Dutch newspaper
texts. The corpus has been parsed with the Dutch dependency parser Alpino (van
Noord, 2006), and three-way co-occurrences of verbs with their respective subject and
direct object relations have been extracted. As dimension sizes, the 1K most frequent
verbs were used, together with the 10K most frequent subjects and 10K most frequent
direct objects, yielding a tensor of 1K × 10K × 10K. The resulting tensor is very
sparse, with only 0.0002% ( 1

5000 th) of the values being non-zero.
The tensor has been adapted with a straightforward extension of pointwise mu-

tual information (Church and Hanks, 1990) for three-way co-occurrences, following
equation 10.8. Negative values are set to zero.5

MI3(x,y,z) = log
p(x,y,z)

p(x)p(y)p(z)
(10.8)

The resulting matrix has been factorized into k dimensions (varying between 50
and 300) with the NTF algorithm described in section 10.3.2.

5This is not just an ad hoc conversion to enforce non-negativity. Negative values indicate a smaller
co-occurrence probability than the expected number of co-occurrences. Setting those values to zero proves
beneficial for similarity calculations (see e.g. Bullinaria and Levy (2007)).
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10.4.2 Examples

Tables 10.1 to 10.5 show example dimensions that have been found by the algorithm
with k = 100. Each example gives the top 10 subjects, verbs and direct objects for a
particular dimension, together with the score for that particular dimension.

Table 10.1 shows the induction of a ‘police action’ frame, with police authorities
as subjects, police actions as verbs and patients of the police actions as direct objects.

subjects sus verbs vs objects ob js

politie ‘police’ .99 houd aan ‘arrest’ .64 verdachte ‘suspect’ .16
agent ‘policeman’ .07 arresteer ‘arrest’ .63 man ‘man’ .16
autoriteit ‘authority’ .05 pak op ‘run in’ .41 betoger ‘demonstrator’ .14
Justitie ’Justice’ .05 schiet dood ‘shoot’ .08 relschopper ‘rioter’ .13
recherche ‘detective force’ .04 verdenk ‘suspect’ .07 raddraaiers ‘instigator’ .13
marechaussee ‘military
police’

.04 tref aan ‘find’ .06 overvaller ‘raider’ .13

justitie ‘justice’ .04 achterhaal ‘overtake’ .05 Roemeen ‘Romanian’ .13
arrestatieteam ‘special
squad’

.03 verwijder ‘remove’ .05 actievoerder ‘campaigner’ .13

leger ‘army’ .03 zoek ‘search’ .04 hooligan ‘hooligan’ .13
douane ‘customs’ .02 spoor op ‘track’ .03 Algerijn ‘Algerian’ .13

Table 10.1: Top 10 subjects, verbs and direct objects for the ‘police action’ dimension

In table 10.2, a legislation dimension is induced, with legislative bodies as subjects,6

legislative actions as verbs, and mostly law (proposals) as direct objects. Note that
some direct objects (e.g. ‘minister’) also designate persons that can be the object of a
legislative act.

Table 10.3 depicts a dimension of ‘war deployment’. The dimension contains
military powers (countries, military organizations and leaders) that deploy (or remove)
particular military forces.

Table 10.4 shows a ‘publishing’ dimension. The subjects contain writers (persons
and bodies), which publish (in a broad sense) textual works.

Table 10.5, finally, is clearly an exhibition dimension, with verbs describing actions
of display and trade that art institutions (subjects) can perform on works of art (objects).

These are not the only sensible dimensions that have been found by the algorithm.
A quick qualitative evaluation indicates that about 44 dimensions contain similar,
framelike semantics. In another 43 dimensions, the semantics are less clear-cut (single
verbs or expressions account for one dimension, or different senses of a verb get mixed

6Note that VVD, D66, PvdA and CDA are Dutch political parties.
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subjects sus verbs vs objects ob js

meerderheid ‘majority’ .33 steun ‘support’ .83 motie ‘motion’ .63
VVD .28 dien in ‘submit’ .44 voorstel ‘proposal’ .53
D66 .25 neem aan ‘pass’ .23 plan ‘plan’ .28
Kamermeerderheid
‘Chamber majority’

.25 wijs af ‘reject’ .17 wetsvoorstel ‘bill’ .19

fractie ‘party’ .24 verwerp ‘reject’ .14 hem ‘him’ .18
PvdA .23 vind ‘think’ .08 kabinet ‘cabinet’ .16
CDA .23 aanvaard ‘accepts’ .05 minister ‘minister’ .16
Tweede Kamer ‘Second
Chamber’

.21 behandel ‘treat’ .05 beleid ‘policy’ .13

partij ‘party’ .20 doe ‘do’ .04 kandidatuur ‘candidature’ .11
Kamer ‘Chamber’ .20 keur goed ‘pass’ .03 amendement ‘amendment’ .09

Table 10.2: Top 10 subjects, verbs and direct objects for the ‘legislation’ dimension

subjects sus verbs vs objects ob js

regering ‘government’ .26 stuur ‘send’ .72 troep ‘troop’ .82
VS ‘US’ .26 trek terug ‘withdraw’ .67 militair ‘soldier’ .42
Nederland ‘Netherlands’ .25 zet in ‘deploy’ .14 soldaat ‘soldier’ .21
president ‘president’ .23 lever ‘supply’ .07 delegatie ‘delegation’ .12
leger ‘army’ .22 heb ‘have’ .06 leger ‘army’ .12
land ‘country’ .20 haal weg ‘remove’ .03 waarnemer ‘observer’ .08
NAVO ‘NATO’ .20 beschikbaar stel ‘make

available’
.03 marinier ‘marine’ .08

Indonesië ‘Indonesia’ .19 zeg toe ‘promise’ .03 grondtroepen ‘ground
forces’

.08

Verenigde Staten ‘United
States’

.19 ruim op ‘clear’ .02 gezant ‘envoy’ .07

Groot-Brittannië ‘Great
Britain’

.18 bied aan ‘offer’ .02 versterking
‘reinforcement’

.07

Table 10.3: Top 10 subjects, verbs and direct objects for the ‘war movement’ dimension

up). 13 dimensions are not so much based on semantic characteristics, but rather on
syntax (e.g. fixed expressions and pronomina).

The qualitative evaluation indicates that quite some dimensions indeed do not
contain framelike semantics, but those dimensions do contain information that may be
useful for selectional preference induction. Such a dimension is shown in table 10.6.
It shows an example dimension in which practically all of the dimension’s mass is
attributed to one particular expression: een rol spelen ‘to play a role’. The subject slot
is more spread out: different kind of things might play a role – each with a fairly low
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subjects sus verbs vs objects ob js

hij ‘he’ .62 schrijf ‘write’ .87 boek ‘book’ .30
die ‘who’ .41 publiceer ‘publish’ .33 roman ‘novel’ .21
ze ‘she’ .32 zing ‘sing’ .14 brief ‘letter’ .20
ik ‘I’ .30 lees voor ‘read aloud’ .09 gedicht ‘poem’ .18
zij ‘she’ .19 wijd ‘devote’ .09 tekst ‘text’ .17
auteur ‘author’ .16 vertaal ‘translate’ .09 essay ‘essay’ .17
je ‘you’ .14 bewerk ‘adapt’ .08 stuk ‘piece’ .16
journalist ‘journalist’ .13 voltooi ‘finish’ .07 artikel ‘article’ .16
schrijver ‘writer’ .13 componeer ‘compose’ .06 biografie ‘biography’ .15
krant ‘newspaper’ .09 presenteer ‘present’ .06 verhaal ‘story’ .14

Table 10.4: Top 10 subjects, verbs and direct objects for the ‘publishing’ dimension

subjects sus verbs vs objects ob js

tentoonstelling ‘exhibition’ .50 toon ‘display’ .72 schilderij ‘painting’ .47
expositie ‘exposition’ .49 omvat ‘cover’ .63 werk ‘work’ .46
galerie ‘gallery’ .36 bevat ‘contain’ .18 tekening ‘drawing’ .36
collectie ‘collection’ .29 presenteer ‘present’ .17 foto ‘picture’ .33
museum ‘museum’ .27 laat ‘let’ .07 sculptuur ‘sculpture’ .25
oeuvre ‘oeuvre’ .22 koop ‘buy’ .07 aquarel ‘aquarelle’ .20
Kunsthal .19 bezit ‘own’ .06 object ‘object’ .19
kunstenaar ‘artist’ .15 zie ‘see’ .05 beeld ‘statue’ .12
dat ‘that’ .12 koop aan ‘acquire’ .05 overzicht ‘overview’ .12
hij ‘he’ .10 in huis heb ‘own’ .04 portret ‘portrait’ .11

Table 10.5: Top 10 subjects, verbs and direct objects for the ‘exhibition’ dimension

probability.

10.4.3 Evaluation

The results of the NTF model have been quantitatively evaluated in a pseudo-disambiguation
task, similar to the one used by Rooth et al. (1999). It is used to evaluate the generaliza-
tion capabilities of the algorithm. The task is to judge which subject (s or s′) and direct
object (o or o′) are more likely for a particular verb v, where (s,v,o) is a combination
drawn from the corpus, and s′ and o′ are a subject and direct object randomly drawn
from the corpus. A triple is considered correct if the algorithm prefers both s and o
over their counterparts s′ and o′ (so the (s,v,o) triple – that appears in the test corpus
– is preferred over the triples (s′,v,o′), (s′,v,o) and (s,v,o′)). Table 10.7 shows three
examples from the pseudo-disambiguation task.
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subjects sus verbs vs objects ob js

naamsbekendheid ‘fame’ .04 speel ‘play’ 1.00 rol ‘role’ 1.00
aard ‘nature’ .04 lever op ‘yield’ .00 hoofdrol ‘leading part’ .03
nut ‘use’ .04 onderzoek ‘research’ .00 die ‘who’ .00
hygiëne ‘hygiene’ .04 zie ‘see’ .00 stroming ‘movement’ .00
eer wraak ‘revenge’ .04 neem ‘take’ .00 hoofd ‘head’ .00
schaamte ‘shame’ .04 vertolk ‘express’ .00 religie ‘religion’ .00
institutie ‘institution’ .04 dring terug ‘push back’ .00 werk ‘work’ .00
Cultuur ‘Culture’ .04 hekel ‘aversion’ .00 traditie ‘tradition’ .00
verdeling ‘division’ .04 krijg ‘get’ .00 overheid ‘government’ .00
verbinding ‘connection’ .04 onderstreep ‘underline’ .00 iedereen ‘everyone’ .00

Table 10.6: Top 10 subjects, verbs and direct objects for the ‘play a role’ dimension

s v o s′ o′

jongere drink bier coalitie aandeel
‘youngster’ ‘drink’ ‘beer’ ‘coalition’ ‘share’
werkgever riskeer boete doel kopzorg
‘employer’ ‘risk’ ‘fine’ ‘goal’ ‘worry’
directeur zwaai scepter informateur vodka
‘manager’ ‘sway’ ‘sceptre’ ‘informer’ ‘wodka’

Table 10.7: Three examples from the pseudo-disambiguation evaluation task’s test set

Four different models have been evaluated. The first two models are tensor factor-
ization models. The first model is the NTF model, as described in section 10.3.2. The
second model is the original PARAFAC model, without the non-negativity constraints.

The other two models are matrix factorization models. The third model is the
non-negative matrix factorization (NMF) model, and the fourth model is the singular
value decomposition (SVD). For these models, a matrix has been constructed that
contains the pairwise co-occurrence frequencies of verbs by subjects as well as direct
objects. This gives a matrix of 1K verbs by 10K subjects + 10K direct objects (1K ×
20K). The matrix has been transformed using pointwise mutual information.

The models have been evaluated with 10-fold cross-validation. The corpus contains
298,540 different (s,v,o) co-occurrences. Those have been randomly divided into 10
equal parts. So in each fold, 268,686 co-occurrences have been used for training, and
29,854 have been used for testing. The accuracy results of the evaluation are given in
table 10.8.

The results clearly indicate that the NTF model outperforms all the other models.
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dimensions
50 (%) 100 (%) 300 (%)

NTF 89.52 ± 0.18 90.43 ± 0.14 90.89 ± 0.16
PARAFAC 85.57 ± 0.25 83.58 ± 0.59 80.12 ± 0.76
NMF 81.79 ± 0.15 78.83 ± 0.40 75.74 ± 0.63
SVD 69.60 ± 0.41 62.84 ± 1.30 45.22 ± 1.01

Table 10.8: Results of the 10-fold cross-validation for the NTF, PARAFAC, NMF and
SVD model for 50, 100 and 300 dimensions (averages and standard deviation)

The model achieves the best result with 300 dimensions, but the differences between
the different NTF models are not very large – all attaining scores around 90%.

The PARAFAC results indicate the fitness of tensor factorization for the induction
of three-way selectional preferences. Even without the constraint of non-negativity,
the model outperforms the matrix factorization models, reaching a score of about 85%.
The model deteriorates when more dimensions are used.

Both matrix factorization models perform worse than their tensor factorization
counterparts. The NMF still scores reasonably well, indicating the positive effect of the
non-negativity constraint. The simple SVD model performs worst, reaching a score of
about 70% with 50 dimensions.

10.5 Conclusion and Future Work

This paper has presented a novel method that is able to investigate three-way co-
occurrences. Other distributional methods deal almost exclusively with pairwise
co-occurrences. The ability to keep track of multi-way co-occurrences opens up new
possibilities and brings about interesting results. The method uses a factorization model
– non-negative tensor factorization – that is suitable for three way data. The model is
able to generalize among the data and overcome data sparseness.

The method has been applied to the problem of selectional preference induction.
The results indicate that the algorithm is able to induce selectional preferences, leading
to a broad kind of frame semantics. The quantitative evaluation shows that use of three-
way data is clearly beneficial for the induction of three-way selectional preferences.
The tensor models outperform the simple matrix models in the pseudo-disambiguation
task. The results also indicate the positive effect of the non-negativity constraint: both
models with non-negative constraints outperform their non-constrained counterparts.
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The results as well as the evaluation indicate that the method presented here is a
promising tool for the investigation of NLP topics, although more research and a more
thorough evaluation would be desirable.

There is quite some room for future work. First of all, we want to further investigate
the usefulness of the method for selectional preference induction. One of the most
important extensions is the inclusion of other dependency relations in our model, apart
from subjects and direct objects (thus making use of tensors with more than 3 modes).

Secondly, there is room for improvement and further research with regard to the
tensor factorization model. The model presented here minimizes the sum of squared
distance. This is, however, not the only objective function possible. Another possibility
is the minimization of the Kullback-Leibler divergence. Minimizing the sum of
squared distance assumes normally distributed data, and language phenomena are
rarely normally distributed. Other objective functions – such as the minimization of the
Kullback-Leibler divergence – might be able to capture the language structures much
more adequately. We specifically want to stress this second line of future research as
one of the most promising and exciting ones.

Finally, the model presented here is not only suitable for selectional preference
induction. There are many problems in NLP that involve three-way co-occurrences. In
future work, we want to apply the NTF model presented here to other problems in NLP,
the most important one being word sense discrimination.





Conclusion

In this dissertation, we have investigated the extraction of semantic similarity using
distributional similarity techniques. In the first part, we investigated what kind of
information might be able to provide cues about the semantics of words, and we
determined that the context of a word is able to inform us about its semantics. We
established three different kinds of context – a document-based context, a window-
based context, and a syntax-based context – and we provided a formalization of the
notion of context, so that the semantics of a word can be formally computed. Next,
we gave an overview of two dimensionality reduction algorithms – singular value
decomposition and non-negative matrix factorization – two algorithms that reduce the
vast number of overlapping feature dimensions to a limited number of generalized
dimensions that might be able to capture inherent semantics characteristics present
in the data. We also provided an overview of tensor algebra and the multilinear
generalization of non-negative matrix factorization in tensor space – non-negative
tensor factorization. Using tensor algebra, we are not limited to using co-occurrences
in two modes; three-way methods allow us to analyze multi-way co-occurrences, which
allow us to capture the semantic information present in the data in a more informed
and thorough way.

In the second part of this dissertation, we provided a quantitative overview of
three different groups of models of semantic similarity, constructed according to the
three different notions of context. We experimented with different parameters, and
determined what models and parameters yield the best results according to three
different evaluation schemes. In the first two evaluation schemes – the evaluation
of wordnet-based similarity and the evaluation of cluster quality – we evaluated the
models’ ability to extract tight, synonym-like similarity. In the third evaluation scheme
– the evaluation of domain coherence – we evaluated the models’ ability to extract more
loosely related, topical similarity. In all evaluations, we paid special attention to the
effects of dimensionality reduction algorithms.

In the third part, we developed a number of applications that make use of the
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techniques (and the resulting semantic resources) presented in the first part. In the first
application, we used an automatically induced lexico-semantic clustering to extract
multi-word expressions based on their non-compositionality. In the second application,
we described a technique that combines a syntactic context and a large window-based
context in a factorization framework, in order to discriminate among the different
senses of nouns. And in the third application, we explored three-way methods in com-
bination with non-negative tensor factorization in order to induce three-way selectional
preferences.

We are now able to answer the three research questions that were formulated in
the introduction of this dissertation. In the evaluation part of this dissertation, we
have shown that different notions of context lead to different kinds of similarity. We
concluded that syntax-based models and window-based models with a small window
are best suited for the extraction of tight, synonym-like similarity. This was indicated
by their performance on the wordnet-based similarity evaluation and the evaluation of
cluster quality. By nature, words that are tightly similar are also topically coherent,
which was indicated by the good performance of these models on the third evaluation
task. On the other hand, the document-based models and window-based models
with large windows size – the models that did not perform well on the extraction of
tight similarity – still performed reasonably well on the third evaluation task. We
concluded that a tight context (syntax-based or small window-based) leads to tight,
synonym-like similarity, whereas a broad context (document-based or large window-
based) captures more loosely related topically similar words. We also showed that
an automatically induced clustering based on syntactic context allows us to extract
multi-word expressions based on their non-compositionality, and that a tight, syntactic
context and a broad window-based context can be combined in a non-negative matrix
factorization framework in order to discriminate the different senses of a noun.

The answer to our second research question is mixed. On the one hand, our
quantitative evaluation indicated that dimensionality reduction algorithms do not bring
about a large improvement in the extraction of semantic similarity. Dimensionality
reduction was only beneficial for the document-based model. In the other models,
dimensionality reduction did not improve or even hurt the performance of the models.
The performance of the non-negative matrix factorization models in the quantitative
evaluation was particularly disappointing.

On the other hand, dimensionality reduction algorithms did prove beneficial in a
number of applications. Non-negative matrix factorization allowed us to induce a num-
ber of semantic dimensions according to which context words and syntactic relations
could be classified. These dimensions in turn allowed us to subtract dimensions related
to a specific sense of a noun, so that other senses of the word become apparent. The
multilinear generalization of non-negative matrix factorization – non-negative tensor
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factorization – was also beneficial for the induction of selectional preferences.
Which brings us to our third research question: we have demonstrated the useful-

ness of three-way methods for the induction of selectional preferences. The quantitative
evaluation shows that the use of three-way data is beneficial for the induction of three-
way selectional preferences. The tensor models outperform the simple matrix models
in the pseudo-disambiguation task. The results also indicate the positive effect of
the non-negativity constraint: both models with non-negative constraints outperform
their non-constrained counterparts. The results indicate that three-way methods are a
promising tool for the investigation of NLP topics.





Appendix A

Clustering Tasks

A.1 Concrete noun categorization

noun translation class6 class3 class2

kip chicken bird animal natural
arend eagle bird animal natural
eend duck bird animal natural
zwaan swan bird animal natural
uil owl bird animal natural
pinguı̈n penguin bird animal natural
pauw peacock bird animal natural

hond dog groundAnimal animal natural
olifant elephant groundAnimal animal natural
koe cow groundAnimal animal natural
kat cat groundAnimal animal natural
leeuw lion groundAnimal animal natural
varken pig groundAnimal animal natural
slak snail groundAnimal animal natural
schildpad turtle groundAnimal animal natural

kers cherry fruitTree vegetable natural
banaan banana fruitTree vegetable natural
peer pear fruitTree vegetable natural
ananas pineapple fruitTree vegetable natural

champignon mushroom green vegetable natural
maı̈s corn green vegetable natural
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sla lettuce green vegetable natural
aardappel potato green vegetable natural
ui onion green vegetable natural

fles bottle tool artifact artifact
potlood pencil tool artifact artifact
pen pen tool artifact artifact
beker cup tool artifact artifact
kom bowl tool artifact artifact
schaar scissors tool artifact artifact
ketel kettle tool artifact artifact
mes knife tool artifact artifact
schroevendraaier screwdriver tool artifact artifact
hamer hammer tool artifact artifact
lepel spoon tool artifact artifact
beitel chisel tool artifact artifact
telefoon telephone tool artifact artifact

boot boat vehicle artifact artifact
auto car vehicle artifact artifact
schip ship vehicle artifact artifact
vrachtwagen truck vehicle artifact artifact
raket rocket vehicle artifact artifact
motor motorcycle vehicle artifact artifact
helikopter helicopter vehicle artifact artifact
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A.2 Abstract/concrete noun discrimination

noun translation class2

kip chicken HI
arend eagle HI
leeuw lion HI
schildpad turtle HI
banaan banana HI
ui onion HI
aardappel potato HI
kom bowl HI
potlood pencil HI
telefoon telephone HI
vrachtwagen truck HI
schip ship HI
auto car HI
fles bottle HI
hamer hammer HI

jaloezie jealousy LO
waarheid truth LO
hypothese hypothesis LO
hoop hope LO
genade mercy LO
mysterie mystery LO
dankbaarheid gratitude LO
concept concept LO
verleiding temptation LO
trots pride LO
geloof belief LO
inzicht insight LO
wijsheid wisdom LO
geluk luck LO
afleiding distraction LO





List of Abbreviations

CBC clustering by committee

CGN Corpus Gesproken Nederlands

JS Jensen-Shannon

KL Kullback-Leibler

LSA latent semantic analysis

MWE multi-word expression

NMF non-negative matrix factorization

NTF non-negative tensor factorization

PARAFAC parallel factor analysis

PCA principal component analysis

PLSA probabilistic latent semantic analysis

PMI pointwise mutual information

SVD singular value decomposition

TWNC Twente Nieuws Corpus
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