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Abstract

We measure varietal di�erences in general, and di�erences with respect
to standard languages in particular (�dialectality�, in Herrgen/Schmidt's sense)
in order to systematize observations about dialect di�erences, to make sense of
exceptions, and to enable measurements based on randomly selected material,
thus obviating issues of potential bias. Finally, measurements allow the charac-
terization of abstract relations among language varieties.

We illustrate some issues with simple techniques for categorical data intro-
duced by Séguy and re�ned by Goebl, viz., issues concerning frequency, irrelevant
variation, and competing forms. We proceed to measuring pronunciation di�er-
ences, focusing on di�erences in the pronunciation of the same words in di�erent
varieties. Caution is needed to isolate pronunciation di�erences from di�erences
in in�ectional morphology, sandhi, and intonation. We characterize the di�er-
ence between sound segments and develop a measure of the di�erence between
the sequences of those segments in words, including insertions, deletions, and
swaps (epenthesis, elision and metathesis).

Automating measurement techniques exposes the issue of validation, which
lay largely unexamined in earlier dialectology. We propose to validate measure-
ments based on the degree to which they correlate with dialect speakers' judg-
ments of di�erence, justi�ed by the presumed function of linguistic variation,
that of signaling provenance.

1 Why Measure?

Dialectology blessedly inherits large data reserves from earlier practitioners,
especially the compilers of dialect atlases designed to display variation in com-
parable linguistic items. These compilers collected linguistic variants such as the
lexical realization of the word for `house �y', the common order of pronominal
objects, or the pronunciation of (the �rst vowel in) the word `marry' throughout
a large selection of sites in a language area. We refer to such items of variation
as features or variables. Large collections may include several hundred sites at
which hundreds of features are documented. One of the primary tasks of di-
alectology is to characterize this variety of speech forms. Naturally there are
many others tasks, e.g. determining the extralinguistic correlates of variation,
modeling the cognitive processes needed to deal with variation in form, and
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understanding the tension between variation and e�ective comprehension, but
many of these require good primary characterizations of the linguistic variation.

The data reserves are so large and complex that simple attempts to char-
acterize the di�erences always encounter problems of di�erent sorts, many of
which are well documented. Bloom�eld (1933, Chap.19) discusses how linguistic
variants often do not map neatly to geography, noting exceptions of two types,
linguistic exceptions, in which linguistically similar material does not project to
geography in the same way (the same etymological vowel is realized di�erently in
two di�erent words) and geographic exceptions, where linguistic variants project
fairly simply but where pockets of exception remain. A larger problem is that
even very thorough studies (Kurath and McDavid 1961, König 1994) inevitably
examine only a very small fraction of the features documented in substantial
atlases. This leaves dialectology open to the charge statisticians have dubbed
�cherry picking�, i.e. picking variables that con�rm the analysis one wishes to
settle on. Given the tens of thousands of features which may di�er between lan-
guages (in lexical items alone!), we would do well to take measures to avoid the
danger of fortuitous selection.

Finally, we are motivated to develop measurement techniques in order de-
velop hypotheses about variation that require abstract characterizations. These
indeed seem within reach given the right level of abstraction.

We preview brie�y how the use of measurement schemes attacks these is-
sues. By measuring di�erences we map them to numbers. This numerical char-
acterization enables us to integrate information from large samples of linguistic
variables � just by adding the di�erences. We postulate that the pronunciation
di�erence between `night' as pronounced diphthongally in standard American,
[naIt], and the same word pronounced monophthongally in the American south,
[nat], is a number that may be added to other measures of di�erence from a large
sample. Given this, we may collect many measurements involving many pairs of
pronunciations, enabling an aggregate and therefore more abstract characteriza-
tion of the data. Once we have an aggregate, then we need not be distracted by
linguistic exceptions, which simply contribute di�erently � perhaps more and
perhaps less � to the sample. Geographic exceptions may of course remain,
but only if the weight of a great deal of linguistic evidence bears this out. The
single exceptional feature no longer spoils a characterization, which is based on
the tendencies of many features. We avoid the dangers of relying on fortuitously
chosen data by including a great deal of data, and abstract characterizations
inherit the reliability of the mass of data on which they are based.

2 Categorical Data

The strategy of characterizing dialects on the basis of large aggregates of data
samples was pioneered in dialectometry by Jean Séguy and Hans Goebl (Séguy
1973, Goebl 1984), who analyze large samples at a nominal, or categorical

2



level. Categorical data analysis views data as belonging either to the same or
to di�erent categories. One may then measure the similarity between the lex-
icalizations for the concept dragonfly, i.e., variants such as `darning needle'
vs. `dragon�y' as zero (0) in case the variants are not the same, and one (1) if
they are. Alternatively, one may measure the dissimilarity or distance between
the two variants, in which case the values switch. Henceforth we focus on dis-
tances rather than similarities, but we maintain that the two perspectives are
interchangeable.

It is also possible to weight some items as more important than other.
Goebl (1984), for example, advocates the use of a similarity measure weighted
to favor infrequent coincidence, which Nerbonne and Kleiweg (2007:160�163)
evaluate positively. We shall ignore such weightings in the remainder of this
article, but we note that it is straightforward to apply weightings such as Goebl's
to the all the aggregating procedures below.

We also need to deal with competing forms. In the simple case where a
single form at one site is compared with two at another, the mean of the two
distances is used. Nerbonne and Kleiweg (2003) generalize this idea.

Both Séguy and Goebl include pronunciation di�erences among the vari-
ables they quantify. If the (�rst vowel of the) word `marry' is among the pronun-
ciation variables, then one may review the variants to determine whether the
pronunciation is [æ], [E], [e], or even [æw], [æ

¯
], [effl] or [�e]. We then check straight-

forwardly whether two pronunciations are the same or not. A large number of
such comparisons provides a reliable basis on which to measure varietal similar-
ity. Exact identity may be too demanding a criterion, in which case one needs
a procedure testing whether two sounds belong to the same class or not, ef-
fectively dealing with the problem of individual or irrelevant variation. In the
running example, one might distinguish [æ] and its variants (including [æw] and
[æ
¯
]) from raised variants such as [E] and [e] (including [effl] and [�e]). Naturally, it is

important to defend the classi�cation chosen. But if the classi�cation is sound,
then it is good methodology to include this 0/1 measurement as one of a large
number on which an aggregate relation is assayed.

Even though their methodology is sound, we sought to go beyond the
Séguy/Goebl categorical level of analysis for pronunciation di�erences, �rst,
because it requires manual intervention in isolating speci�c aspects of pronunci-
ation, where an automated process is possible. Second, we wished to make fuller
use of the rich dialect atlas transcripts, rather than be limited to just selected
variables.

3 String Distance Measure

Fortunately, there are e�ective algorithms available for comparing strings, i.e.
sequences of symbols. Gus�eld (1999: Ch.11) is an excellent summary of the
current state of the art. Rather than try to summarize all the techniques,
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we present edit distance here, also known as Levenshtein distance and
string (edit) distance. We can approach edit distance from two perspectives,
and it will be instructive to use both in this overview.

One the one hand, one may ask how many operations of a simple sort are
required to transform one string into another. We illustrate how one dialectal
pronunciation of German Durst `thirst', namely [tU@S] (Aachen) is transformed
into another, [tOSt] (Vielbrunn). By writing each derivation step, we can see the
operations at work:

t U @ S
t O @ S substitute [O] for [U]
t O S delete [@]
t O S t insert [t]

If each operation is associated with a cost, e.g. one, then the Levenshtein
distance is the sum of the least costly set of operations mapping one string to an-
other. Since the three operations above are indeed minimal, the distance between
the two strings is the sum of the cost of the operations, three. This is naturally
rough; we examine more sensitive costs in Sec. 3.3 below. Gus�eld (1999:11.1�
11.3) presents a dynamic programming algorithm for calculating Levenshtein
distance e�ciently.

The alternative perspective is that of alignment. Proceeding from the least
costly derivation, we align identical segments that remain constant during the
derivation and all pairs of segments where one was substituted for the other.
Finally we align symbols with an empty segment in case they are involved in
deletions or insertions. The result in this case is as follows.

t U @ S
t O S t

Costs 1 1 1
Given a derivation, the alignment may be recovered. Alignments are an

important check on the quality of measurements (see Sec. 5), and we may search
the aligned segment pairs (above [U/O],[ @/] and [/t]), for regular correspondences
(see Kondrak 2002, Prokic 2007).

The procedure is normally applied to the entire dialect material avail-
able. We measure the di�erences not only between all pairs of transcriptions for
Durst `thirst', but also those of dozens to hundreds more. It is sensible to use
material which represents true pronunciation di�erences as purely as possible,
and which therefore contains as few di�erences as possible due to in�ectional
morphology, sandhi, and intonation. After determining all of the pronunciation
distances for all of the words, the pronunciation distance between sites is simply
the mean pronunciation distance of all the words in the atlas's sample. These
site × site di�erences may be further analyzed using hierarchical clustering or
multidimensional scaling (see Nerbonne, Heeringa and Kleiweg 1999, Heeringa
2004, or below for examples). Peter Kleiweg maintains an interactive demo at
www.let.rug.nl/kleiweg/lev/ which includes various operation weights as well as
the opportunity to use segment distances derived from features.
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We turn now to the linguistic interpretation of this sort of measurement.
We note �rst that the measurement may be automated so as to require no
manual intervention (see RuG/L04, www.let.rug.nl/kleiweg/L04/), and second
that it is sensitive to a large number of pronunciation di�erences, not merely to
a limited set chosen by the investigator.

Third, however tempting it might be to interpret the insertions, deletions
and substitutions as historical sound changes, we warn that the operations work
strictly on the surface. Alignments provide documentation of sound correspon-
dences, but the procedure is not designed to discover or simulate historical
changes.

Fourth, even though there is a unique least cost of operations mapping
from one string to another, there may be di�erent sets of operations that corre-
sponds to di�erent alignments. This is one reason we are motivated to explore
more sensitive measures of phonetic overlap (see Sec. 3.3 below).

Fifth and �nally, there are many potential re�nements of the procedure
which might be expected to yield more precise measurements. In 3.2 we discuss
how one might discount the e�ects of fast speech rules, and in 3.3 how to build
more phonetic sensitivity into the measure, e.g., by weighting the substitutions
phonetically. In 3.5 we consider enforcing a syllabicity constraint, making the
calculation sensitive to context, and including metathesis as a basic operation.

3.1 Formal properties

We note some formal properties of edit distance, reviewing material in Kruskal
(1999) and Gus�eld (1999). First, edit distance is a generalization of Hamming
distance, which makes no provision for insertions and deletions. We illustrate
Hamming distance below:

t U @ S
t O S t

Costs 1 1 1
Even though the distance happens to be the same in this case, it is clear

that the Hamming procedure misses the coincidence of [S] in the two strings,
so that it is less suitable for dialectological application. The psycholinguistics
of spoken word recognition is extremely sophisticated in some aspects, but it
uses Hamming distance � on carefully controlled material in which insertions
and deletions do not occur � as a measure of word similarity (Luce and Pisoni
1998). See also Sec. 6.

There are even less sophisticated measures, such as Jaccard distance and
Dice, which ignore the order of segments (Manning, Prabhakar and Schütze,
2008).

Second, we note that Levenshtein measures are distances in the mathemat-
ical sense, i.e. numbers greater than or equal to zero; zero just in case two strings
are the same; symmetric, so that the distance from string s1 to s2 is always the
same as the distance from s2 to s1; and in conformance with the so-called trian-
gle inequality: the distance from s1 to s2 is less than or equal to the sum of the
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distances from s1 to s3 and s3 to s2, for any string s3. The fact that the distances
are symmetric makes them unsuitable for modeling some problems, for example,
the confusability matrices phoneticians compile from how frequently one
segment may be mistaken for another (Johnson, 2004, Chap.4). If one modeled
confusability by similarity, implemented by edit distance on samples of the seg-
ments' spectrograms, the attempt would be limited by the inherent symmetry
of edit distances.

3.2 Herrgen-Schmidt Dialecticality Measures

Independent of the work on Levenshtein distance, Herrgen and Schmidt (1989)
sketched a procedure for comparing pronunciations of entire words which has
been applied in several projects and publications. Our presentation follows
Lameli (2004: Chap.5).

The Herrgen-Schmitt procedure shares the motivation to evaluate a large
sample of comparable pronunciations, and to include all the material in each
word transcription rather than only selected di�erences. The procedure assumes
feature-based descriptions of each segment, which are interpreted numerically.
For example if there are four vowel heights, corresponding to [i], [e], [E] and [a],
then the height di�erence between [i] and [e] is one, and that between [i] and [a]
three. It is challenging to specify a segment distance table exhaustively (see Sec.
3.3 below), but Lameli completes the table successfully. The segment distance
table, thus derived, is then used as the basis for calculating word di�erences,
which are simply the sum of di�erences in aligned segments.

There are several unique aspects of this research line. First, the work
focuses less on measuring dialect di�erences, more on measuring di�erences be-
tween a dialect on one hand and the standard language on the other. This
re�ects the interests of the researchers, but it also allows them to incorporate
a second unique feature, a normalization with respect to fast-speech rules. The
Herrgen-Schmidt procedure does not regard di�erences as genuine if they might
have arisen through the application of a fast speech rule. For example German
Lippen `lips' may have a canonical standard pronunciation as ["lIp.@n], but it
is pronounced in fast speech as ["lIp.m

"
]. Dialect pronunciations which elide the

schwa and assimilate the �nal [n] should not be measured as di�ering from stan-
dard German. In unpublished work at Groningen we have experimented with
implementing several fast-speech rules in standard German, measuring the dis-
tance of a dialectal form to each �allegro� variant, and then using the least value
as the distance.

Third, Herrgen-Schmidt's rules are sensitive to small di�erences, but they
also set maximal segment di�erence values so that word measurements are not
overwhelmed by single-segment di�erences. Fourth, there is still no automatic
procedure for applying Herrgen-Schmidt's di�erence metric. This probably de-
rives from detailed and complex rules for handling some special cases such as
the German /a/ and foreign borrowings. This overview is too brief to review all
of the details.
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3.3 Segment Distances

It is linguistically natural to wish to incorporate more phonetic sensitivity into
the string distance measure. After all, an English dialect with `path] as [paT]
is closer to one with [pæT] than to a third with [pET]. There is also a technical
reason for preferring more sensitive measures of segment di�erence, namely the
wish to avoid multiple alignments. The more sensitive the phonetic measure,
the less likely these are.

Accordingly, not only Herrgen-Schmidt (above), but also Kessler (1995),
Nerbonne and Heeringa (1997), Kondrak (2002, Chap. 4.5) Heeringa (2004,
Chap.3�4), McMahon, Heggarty, McMahon and Maguire (2007) and others have
proceeded from segment distance tables, and, for the most part, have used the
Levenshtein procedure sketched above. Heeringa (2004) devotes ninety pages
to comparing segment distances derived from the feature system in The Sound

Pattern of English (Chomsky and Halle, 1968), two di�erent systems developed
to score transcription quality, and, a fourth system Heeringa develops based on
curve distance in canonical spectrograms. All of the systems allow for the repre-
sentation of diphthongs, a�ricates, stress, length, syllabicity, and a wide range
of secondary articulations. In the same spirit as the Herrgen-Schmidt maximal
values for segment distances, Heeringa uses a logarithmic correction to limit the
impact of di�ering segments, following Stevens's (1975) idea that psychophysical
reactions scale logarithmically.

Heeringa found modestly superior analyses using spectrogram-based seg-
ment distance tables. See Sec. 5 and 6 below on comparing putative improve-
ments, and see the appendix for one comparison of analyses based on phonetic
features vs. the binary same/di�erent distinction.

We note further that, given a table of segment distances, however derived
(called alphabetic weights in Gus�eld, 1999), the dynamic programming
algorithm computing Levenshtein distance always returns the optimal align-
ment with respect to that table (Kruskal 1999: Sec. 5, Gus�eld 1999: 11.5), i.e.
the alignment that minimizes the sum of the aligned segments' di�erences. We
therefore say that the Levenshtein procedures �lifts� the segment distance ta-
ble to a sequence distance measure. Heggarty et al. (2007) aim to align words
with respect to etymological frames, which would seem to require moving from
two-string alignments to the simultaneous alignment of three strings, but their
procedure is not explained in detail (see Gus�eld, 1999, Ch.14 on (di�cult!)
multiple string alignment).

3.4 Other Related Work

Kessler (1995) �rst applied edit distance to dialect material. Like Herrgen-
Schmidt he proceeded from a segment distance table, which he also compared
to a binary scheme in which segments were either alike or di�erent, conclud-
ing that the latter was superior. Kessler applied clustering to check whether
the edit distances could delineate dialect areas. Nerbonne, Heeringa and Klei-
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weg (1999) followed with an analysis of Dutch and introduce multi-dimensional
scaling (MDS) as a means of further analyzing the average pronunciation dif-
ferences. Both clustering and MDS are illustrated in Sec. 4 below. Heeringa
(2004) analyzed Norwegian and Dutch, comparing many options for phonetic
representation (see Sec. 3.3 above), clustering and MDS. It is the most thorough
treatment of the subject to-date. There are also analyses of German, Bulgarian,
American English, Italian, Sardinian, Bantu, and some Indo-Iranian and Turkic
varieties.

Kondrak (2002) modi�ed edit distance to discount mismatches near the
beginnings and ends of words and applied his algorithm to diachronic phonology,
experimenting on Indo-European and Algonquian languages. By keeping track
of frequent operations, he could detect regular sound correspondences and cog-
nates. McMahon, Heggarty, McMahon and Maguire (2007) apply an alignment
algorithm to English dialects and analyze results using phylogenetic algorithms
designed to infer genealogical trees (or networks).

3.5 Other re�nements

The success of the techniques raises questions about its linguistic underpinnings,
some of which we explore here. Early on, inspection of the alignments induced by
the dynamic programming algorithm revealed alignments such as the following
two:

t U @ S t U @ S
t O S t t O S t

Each of these requires three operations, yielding distances of three, but
intuitively the �rst violates a syllabicity constraint by allowing the conso-
nant [S] to replace the vowel [@]. It is straightforward to enforce this constraint,
and Heeringa, Kleiweg, Gooskens and Nerbonne (2006) claim that this yields
superior analyses.

While almost all applications have ignored the context of sound correspon-
dences, Heeringa et al. (2006) operationalize context by applying the algorithm
not to single segments, but rather to bigrams, a standard technique for incorpo-
rating context in computational systems. Results were slightly, but consistently
better.

There are also extensions of the Levenshtein procedure allowing metathe-
ses (also known as `swaps' or `transpositions'). See Sanko� & Kruskal (1999:9�,212).
Metatheses are rare in languages analyzed to-date, with Bulgarian a notable ex-
ception. Adding swaps to the dynamic programming algorithm can be quite
di�cult when segment distance tables are used (Wagner, 1999).

It has been straightforward to interpret stress as a vowel feature. Under
this scheme the verb `contract' [k@n."trækt] and the noun ["kOn.trækt] di�er at
two positions, the vowels. Without special treatment, the words would have
di�ered in the �rst vowel, but not in the second. Because tone is at times
not realized on single segments, but rather in complicated ways that depend on
the sequence of syllables, it is less straightforward to incorporate tone into the
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distance measure in a general way. Gooskens and Heeringa (2006) contrast the
three tone patterns of Norwegian and compare the degree to which perceptual
distances can be predicted by prosodic di�erences as opposed to by segmental
phonological di�erences measured using edit distance.

Finally, we should like to add that, although it is good scienti�c practice
to prepare one's data carefully to eliminate potential confounds and �noise�, it
is not always practical. Fortunately, the procedures we sketch are robust enough
to function well even on noisy data. The Dutch dialect source used by Heeringa
(2004) was analyzed in two ways, once restricted to cognate words (allowing
morphological di�erences, cf. `dog' and `doggy'), and once comparing all seman-
tically similar words, including unrelated words (cf. `friend' and `buddy'). Given
a 125 word sample, results correlate nearly perfectly (r = 0.98). The replication
on a Norwegian sample was slightly lower (r = 0.95, n = 58).

We consider other potential re�nements in Section 6 below, �Emerging
Issues�.

4 Example

The Linguistic Atlas of the Middle and South Atlantic States (LAMSAS) com-
prises material collected on the Eastern seaboard of the U.S. from 1933 through
1974. The area extends from Northern Florida through New York state and in-
cludes all the intermediate states on the Atlantic, plus West Virginia. Our focus
here is on the data collected by Guy Lowman in 1933�1936, roughly 70% of the
total (see Fig.1 for a map). We focus only on Lowman's work to avoid confounds
in �eld workers' techniques and/or transcriptions (Nerbonne and Kleiweg, 2003).

The data were obtained using a questionnaire in which respondents were
asked how they expressed everyday things and events, e.g., �If the sun comes
out after a rain, you say the weather is doing what?� (used to elicit `clearing
up', `fairing o�' and forty other dialectal variants. The LAMSAS material is
publicly accessible for reanalysis (see http://us.english.uga.edu/lamsas/; Kret-
zschmar, 1994) and contains the responses of 1162 informants interviewed in 483
communities. The responses to 151 items are included in the web distribution,
the basis for the work here. We analyze Lowman's data in what follows.

In Lowman's section of the database there are 92,537 transcriptions in-
volving 1.3 million phonetic tokens collected from 363 locations, and 797 in-
formants. There are, on average, 14.0 characters per string, which are parsed
into 7.9 sound tokens (IPA segments, often with diacritic) per string. There are
1,677 unique sounds (combinations of base segments and various diacritics) and
1,132 unique vowel sounds alone. LAMSAS usefully contains both phonetic and
orthographic transcriptions, allowing us to focus measurements on comparable
material, ignoring lexical and morphological di�erences.

We implemented the LAMSAS feature system as a segmental basis (but
see the Appendix for a comparison of the results based on a binary same/di�erent
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distinction). We present the features for vowel system in the table below, and
suppress discussion of the consonantal features in the interest of saving space.
If one chooses to adopt an existing feature system, as we did, there arises the
question of how to interpret the feature values numerically. Thus Kurath and
Lowman distinguished ten di�erent vowel advancement positions, and �fteen
vowel heights, but we need to assign numbers to the positions if we are to use
them to measure segment di�erences. The table below shows how we did this,
allowing six as a maximum advancement di�erence and only three and a half
as a maximum height di�erence. Wherever the values of one feature may di�er
more than those of another, the scheme in the table e�ectively weights the �rst
feature more heavily. As just noted, advancement may di�er by as much as 6,
while rounding can not di�er by more than one, so di�erences in advancement
can count much more. Diacritics representing stress, rhotism, pharyngealization
and devoicing were each capable of adding maximally one unit of di�erence,
and intermediate di�erences, including those indicated by diacritics, were inter-
polated. The di�erential weightings of the features are given implicitly by the
di�erence in feature's extreme values. The decision to make advancement count
more heavily than height is based on the idea that a change in vowel advance-
ment marks a dialect speaker more saliently than a di�erence in vowel height,
but we concede that this decision is moot.

One vowel feature, `direction' was not instantiated anywhere in the LAM-
SAS database, so it is omitted from the table below, and Lowman and Kurath
allow for six degrees of rounding, which we simpli�ed to �ve when we found only
�ve levels distinguished in the data.

Vowel Feature Possible Values

v-advanced -3, -2, -1, 0, 0.4, 1, 1.4, 2, 2.4, 3

v-high -1.75, -1.5, -1.25, -1, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75,
1, 1.25, 1.5, 1.75

v-rounded -1, -0.5, 0, 0.5, 1

v-long -0.5, 0, 0.5, 1

v-stress 0, 0.35, 0.7

v-nasal 0, 1

v-rhotic 0, 1

v-pharyng. 0, 1

v-voice 0, 1
The feature names re�ect their normal phonetic (articulatory) interpre-

tation. The stress which is marked on a syllable is interpreted as a property
of the vowel, which is why it appears in the Table above. Vowels receive either
stress, secondary stress, or no stress. Vowels were interpreted as voiced except
when explicitly marked as voiceless, in which case they bore the feature [-voice].
Lowman rarely added a diacritic indicating the pharyngealization of a vowel,
which is interpreted by [v-pharyng.] feature where it occurs. Vowels written as
superscripts (e.g., the second parts of laxing diphthongs) are not interpreted by
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a feature [±super] � but rather through a weighting. Comparisons involving su-
perscripted vowels count only 50% of what they would cost if the segments were
not superscripted. The idea is naturally that such minor articulations contribute
less to pronunciation di�erence.

We calculate the distance between two vowels �rst by simply summing
the di�erences of all the feature values,

∑
f |fv − fv′ |. In order to emphasize

the importance of slight di�erences as opposed to larger ones, we work with the
logarithm of that sum, as introduced above. Finally, we wish to work with a
scale with a genuine zero:

d(v, v′) = log(1 +
∑
f

|fv − fv′ |)

We applied the unigram Levenshtein model using the segment distances
just sketched, without any word-length normalization. We compared the pronun-
ciations of each pair of sites in Lowman's data, using all of the words common
to each pair. The result is a large pronunciation distance table, or matrix, pro-
viding a mean pronunciation distance for each pair of sites. As distances are
symmetric, we ignore half of the cells in the table.

We turn now to the results, beginning with the dialect areas which emerge
from the pronunciation comparison. They are detected via hierarchical clustering
(Nerbonne, Kleiweg, Heeringa and Manni, 2008), a technique for recognizing
groups in data, and are shown in Fig. 1.

Fig. 1 shows a map of the entire LAMSAS area, where the areas covered
by �eld workers other than Lowman are shaded gray. Even though the cluster-
ing procedure worked only on a matrix of pronunciation distances, note that
it detects geographically coherent areas, a �rst indication that the analysis is
working. The dendrogram on the right shows that the major division in the data
is between the two most southern subareas and the four northern ones, where
the split runs to the south of the (northern) Virginia border; in the northern
cluster, there is a second north-south split running through the north of Penn-
sylvania. This is a defensible subdivision of the LAMSAS speech area, even if it
di�ers from Kurath and Lowman's opinion in failing to con�rm their �midland�
area, extending from western Pennsylvania southward along the Appalachian
mountains.

Because the pronunciation distance is numerical, we can also apply multi-
dimensional scaling (MDS) to our results to attempt to view it in a more simpli-
�ed form. The result is found in Fig. 2. Heeringa (2004: Ch.6.2) explains MDS
in more detail. We note only that MDS tries to place each site in a coordinate
space of few dimensions. We use a three-dimensional solution which accounts
for over 90% of the variation in the original distance table. If we map each of
the dimensions in the three-dimensional solution to intensities of red, green and
respectively blue, we obtain the map in Fig. 2.

The MDS analysis is striking for the prominently distinguished position
of southeast Pennsylvania. The explanation for the area's unusual status is sug-
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Figure 1: Left, the dialect areas emerging from the aggregated pronunciation
di�erence measurements and right, the dendrogram, providing a key. See text
for discussion.
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Figure 2: The three-dimensional MDS analysis of the pronunciation distances,
rather better suited for portraying dialect continua. See text for discussion.
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gested in pronunciations such as ["tSOr.tS@] `Georgia', where the devoiced syllable
onsets (expected [Ã]) betray the German in�uence on the speakers interviewed
(speaker PA7C in Lancaster in fact spoke German as his �rst language).

Nerbonne (2006) traces which linguistic features contribute the most to
the aggregate dialectal di�erences shown in the map, but focused on the four
southernmost areas shown in Fig. 1. We focus on the most important distinctions
here. Using factor analysis it could be shown that the di�erent reductions of
unstressed vowels, [@] vs. [I] (the latter including [1]) in the unstressed closed
syllables of words such as `closet', `kitchen', and `Baltimore' (second syllable)
are most strongly coherent among the collection sites. Closely aligned with this
shift we noted that the same varieties which used the higher version of the
reduced vowel ([I]) also fronted the [u] to [0] in words such as `St. Louis' and
`Tuesday', likewise fronting the onset of the diphthong in the second syllable in
`Missouri'. Finally the [O/A] distinction in `hog[pen]' and `Florida' aligned well
with [@/I] distinction. Note that only the [O/A] distinction is phonemic in some
varieties of American English, while the other two are subphonemic. The paper
also examines several less prominent alternations, include (i) rhotic vs. non-
rhotic pronunciations, where the latter varieties likewise demonstrate a lowering
of [O] in words such as `forty' or `storm'; (ii) a contrast between raised and
unraised [1] as the last syllable in `Tuseday', `foggy' and `thirty'; (iii) another
[@/I] distinction, but this time in open syllables such as the �nal syllable in
`sofa', `Georgia' and `Russia'; (iv) the raising of [E], most extremely to [I], e.g. in
the �rst syllable in `Tennessee' (in general before [n]); and (v) fronted vs. non-
fronted versions of the lax [U] in words such as `wood' and `good'. It is striking
that the [aI/a] shibboleth was not among the most prominent distinctions.

Kurath & McDavid (1961) also discuss each of the features. The aggregate,
dialectometric perspective adds the opportunity to quantify the importance of
features, which Kurath and McDavid viewed cartographically.

5 Evaluation

Above we criticized the traditional method for having little to say about which
features and which features' distributions are important. This arises in tradi-
tional methodology because there are simply too many features, and thus too
many distributions and isoglosses to choose from, leaving the method quite un-
derdetermined. This problem arises in the evaluation of older methodology.

But it would be naïve to think that we make ourselves immune to method-
ological cares simply by aggregating. The problem of which features to choose
we indeed avoid by obtaining a large, representative sample, preferably via the
(standard) random selection (Bolognesi and Heeringa, 2005). But there remain
many options in measuring pronunciation di�erences (see 3.3 and 3.5 above).
De�ning segment distances alone involves distinguishing about twenty features
and �ve or so values per feature. In addition we may process unigrams or bi-
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grams, to treat diphthongs and/or a�ricates as one segment or two, to normal-
ize based on word length or based on segment or word frequency, to aggregate
feature di�erences via addition or via a Euclidean distance, . . . The list is sub-
stantial, leading to the question: If we experiment extensively, and �nally hit
upon a pleasing analysis, have we attained substantial insights or have we been
lucky due to the plethora of analytical options? This is our evaluation problem.

As we suggest by introducing the issue this way, we believe that the eval-
uation problem has always been present in dialectology, but it is more obviously
present in complex systems involving measurements where many options are
available to analysts. In the present discussion we consider only the problem of
evaluating the pronunciation measurements, and ignore issues concerning fur-
ther analysis, in particular those involving clustering.

Psychometrics divides these issues are into two sub-issues, consistency
and validity. Consistent measurements tend to provide the same information.
We are encouraged when measurements continue to function well when used
on new data, a simple sort of consistency check. Cronbach's alpha is a more
formal check on consistency (Nunnally, 1978). We �rst measure the inter-item
correlation, e.g., between the word `dog' and the word `cat' by �rst obtaining
two site × site tables of pronunciation distances, one for `dog' and another
for `cat'. We then calculate the correlation between the two tables, measuring,
informally, the degree to which the two words provide the same indication of
linguistic distance. We repeat this process for every pair of words in the sample
(a time-consuming task), thereby obtaining the mean inter-item correlation.
Fig. 3 below graphs Cronbach's alpha as a function of r, the mean inter-item
correlation coe�cient, and n, the number of items. Given a mean inter-item
correlation, Cronbach's alpha indicates whether enough material is present in
the sample. Nunnally (1978) suggests that 0.7 or 0.8 is a satisfactory level, and
Cronbach's alpha = 0.97 for the LAMSAS sample, indicating that the signal is
very consistent, given the amount of material.

We emphasize that Cronbach's alpha depends on the data set being ana-
lyzed. In our experience 30-word sets normally show levels above 0.8, but new
data, especially with low inter-item correlation, could di�er.

We say that a measure is valid if it measures what it purports to, and this
leads immediately to more re�ective questions about the goals of dialectology.
We can claim to measure similarity in pronunciation, but similarity with respect
to what? Our thinking has evolved on this. Assuming that expert opinion is
well-founded, we once calculated the degree to which our analyses coincided
(Heeringa, Nerbonne and Kleiweg, 2002). While this is worthwhile, still, if we
are ambitious, we should like to improve on earlier expert opinion if possible.
We now prefer to begin from the premise that one of the goals of dialectology is
to characterize the signals of provenance normally present in speech. Naturally
this begins with detecting those signals and then proceeds to investigate their
structure. We speak of �signals� to emphasize that people should be able to
receive them, and this leads immediately to the idea that we should validate

15



0

50

100

150

200

0.0

0.2

0.4

0.6

0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

Cronbach’s Alpha

n

r

α
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to provide consistent signals.
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our measurements by comparing them to dialect speakers' judgments.
Gooskens and Heeringa (2004) have developed this idea and made it op-

erational. They analyzed Norwegian pronunciations along the lines sketched in
Sec. 3 above, and they played recordings of the pronunciations to dialect speak-
ers, who judged how similar the pronunciations were to their own. Gooskens
and Heeringa then measured the correlation between the perceptual judgments
and pronunciation distances (r = 0.7). We have also applied this in comparing
di�erent versions of the pronunciation di�erence measure (Heeringa et al. 2006),
and it seems the best way to validate the work independently. We should add
that most analyses indicate that the various di�erent versions of the pronuncia-
tion measure do not di�er signi�cantly when evaluated strictly. It is surprisingly
di�cult to demonstrate the superiority of the more discriminating systems.

6 Emerging Issues

If we are satis�ed that pronunciation distance measures contribute valuably to
the dialectologist's toolbox, then several opportunities arise, and several further
tasks suggest themselves. Perhaps the most exciting opportunity is the chance to
attempt to characterize the general relation between geographic and linguistic
distance. Séguy (1971) shows that dialectometric distances grow sublinearly as
a function of geography, a result which most studies have con�rmed to-date.
Nerbonne and Heeringa (2008) replicate Séguy's �nding using Dutch data and
argue that this contradicts Trudgill's well-known �gravity model�. The present
overview is too brief to go into further detail, but our argument made essential
use of the measurement techniques presented here.

The success of the technique suggests that it should be possible to de-
tect recent borrowings as those words that show an unexpectedly low distance
given overall varietal distances, and it is exciting to consider what other cultural
markers might be studied quantitatively to understand the degree to which lin-
guistic variation behaves like other cultural traits. Finally, we wish to know the
correlation of di�erent linguistic levels � lexical, phonological and syntactic �
as signals of provenance.

There are also several points at which we feel the techniques presented here
should be improved. It should be clear that we are not satis�ed with the minor
bene�ts that have been adduced for systems with segment distances. Linguisti-
cally we are quite certain that �ner distinctions may be reliably drawn, and it is
a puzzle as to why their bene�t should be so hard to demonstration. Our current
hypothesis is that the high level of aggregation may be hiding the bene�ts. It
would also be sensible to explore the relation between dialect perception and
other aspects of phonetics, asking whether and which traits they share (Wieling
and Nerbonne, 2007). Finally, we look forward to the development of better
techniques for identifying the major linguistic factors in aggregate comparison.
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Appendix

In this appendix we compare the feature-based measurements in Sec. 4 to mea-
surements based on the binary same/di�erent distinction. In both the feature-
based and the binary system we set the distance between vowels and consonants
to be prohibitively high, e�ectively enforcing the syllabicity constraint noted in
the text.
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Figure 4: Maps contrasting the measures based on features (left) with the maps
based on binary segment distances (but respecting V/C distinction on right.
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