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1 Language Constructs

1.1 Terms
Terms denote objects of the domain. Usually, a term picks a particular indi-
vidual or set of the domain, but sometimes — as in the case of a restricted

parameter — the choice is not determined.

1.1.1 Variables

(Variable) ::= ?(Identifier)

denotes a variable, a totally undetermined object of the domain. Any occur-
rence of a variable may be captured, free or restrained (a terminology iftroduced
by Barwise [?]). We will see language constructs that introduce such variables
and possibly define the scope in which an occurrence is considered as captured,
free or restrained.

1.1.2 Restricted Parameters

(Restricted Parameter) ::= ({Variable) | (Restricting Wil))

A restricted parameter! restrains a variable to an object of the domam for
which the restricting formula holds. Any occurrence of the variable withinsome
NLL expression that would otherwise be considered free  as a consequence of
introducing the restricted parameter — becomes a restrained occurrence. There
may be more than one restricted parameter restraining the same variable.

1.1.3 Constants
(Constant) ::= (Identifier) | (String)

A constant denotes a totally determined object of the domain. Strings are
employed in order to

INotation: We use BNF syntax with non-terminals enclosed in “(}” brackets. Optional
constituents are enclosed in “[]” brackets. Alternation is indicated by 7. This way we are
free to use “[,[,]” as terminals of N'LL.



1. free the naming conventions to use arbitrary expressions, and

2. refer to names and formulate information about names

1.1.4 Function Terms

(Function Term) := {Function Name)((Term), ..)
(Function Name) ::= (Identifier)

Example: father(Jones) denotes the unique individual who is the
father of Jones.

A function name uniquely denotes a function. Functions have a fixed num-
ber of arguments. The position of a (term) in the list of supplied arguments
identifies the argument to the function. Functions are typed and there is a
way of associating a type signature with a function. For example the primitive
functions

in, on, near, at
all have the signature:
Physical_Object — Spatial Region.

Example: in(California) denotes the spatial region of the state of
California.

For some binary functions, such as “plus” and “times” we introduce n-ar
3
abbreviations, e.g. when n > 2

plus(zy....z,) = plus{z;, plus(za.. .&,))

1.1.5 Location Terms

A special kind of function term is the location term. Such a term can either be
formed by primitive functions (such as in, on ...) with range Spatial_Region
or by intersecting spatial regions (see [?]).

(Location Term) ::= reg-X{(Location Term}),(Location Term)}

reg-X is defined as the intersection operation over spatial regions. reg-X is
associative and commutative:

reg-X{reg-X{a.b}.c} = reg-X{areg-X{b.c}}
reg-X{a,b} = reg-X{b.a}}

We also use the abbreviated notation for an intersection of n(n > 2) regions:
reg-X{ry, 72, ... 7o} = reg-X{ry, reg-X{ra ... .} }

Example: work(agent: Jones loc: reg-X{in(Cal),at(IBM)})



An Overview of N LL

Joachim Laubsch (hplabs), John Nerbonne (DIFKI)
November 14, 1991

1 Language Constructs

1.1 Terms

Terms denote objects of the domain. Usually, a term picks a particular indi-
vidual or set of the domain, but sometimes - as in the case of a restriclicd
parameter — the choice is not determined.

1.1.1 Variables

(Variable) ::= ?(Identifier)

denotes a variable, a totally undetermined object of the domain. Any occur-
rence of a variable may be captured, free or restrained (a terminology iftroduced
by Barwise [?]). We will see language constructs that introduce such variables
and possibly define the scope in which an occurrence is considered as captured,
free or restrained.

1.1.2 Restricted Parameters

(Restricted Parameter) ::= ({Variable) | (Restricting Wff))

A restricted parameter! restrains a variable to an object of the domain for
which the restricting formula holds. Any occurrence of the variable within some
N LL expression that would otherwise be considered free — as a consequence of
introducing the restricted parameter — becomes a restrained occurrence. There
may be more than one restricted parameter restraining the same variable.

1.1.3 Constants

(Constant) ::= (Identifier) | (String)
A constant denotes a totally determined object of the domain. Strings are
employed in order to

INotation: We use BNF syntax with non-terminals enclosed in ()" brackets. Optional
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constituents are enclosed in “H" brackets. Alternation is indicated by *|”.
free to use “|,[,]” as terminals of N'LL.

This way we are



1. free the naming conventions to use arbitrary expressions, and

2. refer to names and formulate information about names

1.1.4 Function Terms

(Function Term) ::= (Function Name)({Term), ..)
(Function Name) ::= (Identifier)

Example: father(Jones) denotes the unique individual who is the
father of Jones.

A function name uniquely denotes a function. Functions have a fixed num-
ber of arguments. The position of a (term) in the list of supplied argiments

identifies the argument to the function. Functions are typed and there is a
way of associating a lype signature with a function. For example the primitive
functions

in, on, near, at
all have the signature:

Physical_Object — Spatial_Region.

Example: in(California) denotes the spatial region of the state of
California.

For some binary functions, such as “plus” and “times” we introduce n-ary
abbreviations, e.g. when n > 2

plus(zy, ...z, ) = plus{e,, plus(ry. ... r,))

1.1.5 Location Terms

A special kind of function term is the location term. Such a term can either be
formed by primitive functions (such as in, on ...) with range Spatial Region
or by intersecting spatial regions (see [?]).

(Location Term) ::= reg-X{(Location Term),(Location Term)}

reg-X is defined as the intersection operation over spatial regions. reg-X is
associative and commutative:

reg-X {reg-X{a.b},c} = reg-X{areg-X{bh.c}}
reg-X{a,b} = reg-X{b,a}}

We also use the abbreviated notation for an intersection of n(n > 2) regions:
reg-X{r1, ra, ... Tn} = reg-X{ri, reg-X{ry ... rn} }

Example: work(agent: Jones loc: reg-X{in(Cal),at(IBM)})
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1 Introduction

NLL is a logical language for representing the meaning of natural language ex-
pressions. Its design has two goals: (1) to facilitate construction of the semantic
structures from the syntactic and lexical structures, and (2) provide a formal
base for disambiguation (e.g. DRT), and domain-specific imterpretation {e.g
transduction into a database query language, such as SQL. or a language lor
controlling some application, such as the NewWave task language).

While the advantages of using logic for representing natural language measn-
ings are widely appreciated, no consensus has been reached on the set of de-
sirable features to be included in the logical language. The core of NLL —
as presented in this report — constitutes common practice in computational
linguistics (see [1]). We can see various extensions to this core in order to
experiment with more controversial semantic issues, e.g. tense and temporal
expressions, events and situations, or propositional attitudes.

We do not view NLL as “yet another representation language” but as a
step towards a standard logical form usable by different language understand-
ing systems. N LL is richer in expressive power than the currently developed
“Knowledge Interchange Format” KIF ([7]), because N LL was desighed to case
producing semantic forms. We can imagine a simple transduction phase that
would map such A'LL forms into KIF forms.

The next section describes the syntax and semantics of A'LL constructs.
The grammar of NLL is implemented using a YACC style parser/generator
([2]), and is summarized in section 3. Expressions of NLL can be constructed
programmatically using the abstract syntax described in section 4.

2 Language Constructs

2.1 Terms

Terms denote objects of the domain. Usually, a term picks a particular indi-
vidual or set of the domain, but sometimes — as in the case of a restricied
parameter — the choice is not (fully) determined.



2.1.1 Constants

(Constant) ::= (Identifier) | (String) | (Numeral)

A constant denotes a totally determined object of the domain. Identifiers
are used as tokens for objects of the domain. Strings are employed in order to

e free the naming conventions to use arbitrary expressions, and
e refer to names and formulate information about names

Syntactically, a string is a sequence of characters (except ") delimited by ™.

Numerals denote the respective numbers. We rely here on the notation of the
Common Lisp host language which provides integers, floating point numbers,
rationals, and complex numbers.

2.1.2 Variables
(Variable) ::= ?(Identifier)

denotes a variable, a totally undetermined object of the domain. Any oceur-
rence of a variable may be captured, free or restrained (a terminology introduced
by Barwise [3]). We will see language constructs that introduce such variables
and possibly define the scope in which an occurrence is considered as captured,
free or restrained.

2.1.3 Restricted Parameters

(Restricted Parameter) ::= ([{Determiner)] ?(Identifier) | (Restriction))
(Restriction) ::= (Wff)

A restricted parameter! restrains a variable to an object of the domain for

which the restricting formula holds. Any occurrence of the variable within some
NLL expression that would otherwise be considered free as a Consequence
of introducing the restricted parameter — becomes a restrained occurrence.

There may be more than one restricted parameter restraining the same variable.
The optional determiner of a restricted parameter specifies the quantificational
force of the restraint on the variable. The default quantificational force is the
existential-determiner, but any determiner — like in a quantified W - can be
used.

Example: ”Jones hired two secretaries.”
hire(agent:Jones patient:(({= 2}) ?w | Secretary(instance:?w)))

INotation: We use BNF syntax with non-terminals enclosed in “()" brackets. Optional

. . !
constituents are enclosed in “[J” brackets. Alternation is indicated by “{7. This way we are
free to use “|,[,]” as terminals of N LL.



The interpretation of a restricted parameter depends on a theory of discourse
representation, which will assign in general several interpretations for formulas
containing such variables. The interpretation of the above formula in terms of
generalized quantifiers (see 2.3.3) yields the following A'LL formula:

(({= 2}) 7w Secretary(instance:?w) hire(agent:Jones patient:?w))
The determiner “that” may be used as the quantificational force, as in:

” Jones hired that secretary.”
hire(agent:Jones patient:(that ?w | Secretary(instance:?w)))

It is the task of a pragmatics module to find the object satisfying the re-
striction of that restricted parameter.
2.1.4 Function Terms

(Function Term) ::= (Function Name)({Term), ..)
{Function Name) ::= (Identifier)

Example: father(Jones) denotes the unique individual who is the
father of Jones.

A function name uniquely denotes a function. Functions have a fixed num-
ber of arguments. The position of a (term) in the list of supplied arguments
identifies the argument to the function. Functions are typed and there is a
way of associating a type signature with a function. For example the primitive
functions

in, on, near, at
all have the signature: Physical Object — Spatial_Region.

Example: in(California) denotes the spatial region of the state of
California.

For some binar functions, such as “ 1lus” and “times” we introduce n-ary
3 p B,
a,bbrevia,tions, €.g. when n > 2

plus(zi,...z,) = plus(zy,plus(zy,...2Tn))

2.1.5 Location Terms

A special kind of function term is the location term. Such a term can either be
formed by primitive functions (such as in, on ...) with range Spatial_Region
or by intersecting spatial regions (see [5]).



(Location Term) ::= reg-X{(Location Term),{Location Term)}
| {Locative Function Term)

| {Constant)
{Locative Function Term) ::= (Locative Function)((Termy})
(Locative Function) ::=in |on |at | near | ...

reg-X is defined as the intersection function over spatial regions,

reg-X: Spatial Region x Spatial_Region — Spatial Region

reg-X is associative and commutative.

reg-X{reg-X{a,b},c} = reg-X{a,reg-X{b,c}}
reg-X{a,b} = reg-x{b,a}

Since reg-X is associative we also use the abbreviated notation for an inter-

section of n, (n > 2) regions:

reg-X{ri, ra, ... tn} = reg-X{ri, reg-X{rs ... 7o} }

Example: work(agent:Jones loc:reg-X{in(SanJose),in(Cal),at(IBM)})

2.1.6 Measure Terms

(Measure Term) ::= (Specified Measure)

| {Unspecified Measure)

| {(Maximally Specified Measure)

(Specified Measure) ::= { (Specifier) (Unspecified Measure) }

(Unspecified Measure) ::= (Variable) | (Simple Measure) | (Complex Measure)

1. Simple Measures are denoted by numerals.
{Simple Measure) ::= (Numeral)

2. Complex Measures are composed of a magnitude (degree) and a scale.
(Complex Measure) ::= [ (Degree) (Scale) ]
{Degree) ::= {Variable) | (Simple Measure) | (Specificd Measure)
(Scale) =1 H’oot [kg |
Associated with a scale is a measure function g (ranging over the natural
or real numbers). We assume that g is additive and multiplicative (see

[9]).-

Example:

”Jones is 6 feet tall.”
tall(theme:Jones, measure:[6 foot])



3. Specified Measures allow us to express measure determiners (see [9]).

(Specified Measure) ::= { (Specifier) (Unspecified Measure) }
(Specifier) = < | < | = [ # | > | >

Semantically, a Specified Measure is equivalent to a Restricted Parameter,
as the following examples show:

{<[0}=(m]?m < [41])
{4} = (m|?m < 4)

But specified measures do not introduce parameters to which further ref-
erence is possible, and they are more compact in expression (cf. [9] for
discussion).

Example:

” Jones is at most 6 feet tall.”
tall(theme: Jones, measure:{ < [6 footl})

4. Maximally Specified Measures differ from Specified Measures only in that
they allow specifying a delta and a factor (e.g. the delta "2 more than”
or the factor "twice as many as”).

(Maximally Specified Measure) ::=
{ (Specifier) {Unspecified Measure)
[delta {:(Unspeciﬁed Measure) ] :(Specified Measure) }]
'{* :{ (Simple Measure) l {Variable) }] }

Note that the argument for delta or * cannot be a Maximally Specified
Measure (no recursion).

Examples:

”more than 2 inches more than 6 feet” {
“twice as many as 3 kg” {
"a third as much as 53 mpg” {

> [6 foot] delta:[2 inchl}
= [3 kgl *:2)

= [53 MPG] *:1/3}

2.1.7 Plural Terms

Group Term (Group Term) ::= +{(Term), (Term)}



As the location constructor reg-X (see 2.1.5), the group constructor + is
associative and commutative. We also use the abbreviated notation for
the composition of n(n > 2) groups:

+{91, 92, - gn} = +{o1, +{g2 - gn}}
Example: +{T,D,H} = +{T,+{D,H}}
Sigma Term (sigma (Variable) | (Restricting WHf))

A sigma term designates a group of individuals — the sum of all indi-
viduals for which the restricting W1l holds. Sigma is a variable binding
operator which restrains its variable like a restricted parameter does. A
sigma term denotes a particular individual sum defined (by Link [8]) as

axPlr) = 1x(" Py AV, (T Py) — y < 0))
where * is an operator on I-place predicates P which gencrates all the
individual sums of members of the extension of P. Then oz P(z) denotes
the supremum of * P(z).

Example: ” All the men meet.”
meet (theme/g: (sigma 7x | man(inst/i:?x)))

which expresses that the meet relation holds for the group consisting of all
individuals which are instances of man. (The role “theme/g™ i1s-a special-
isation of the “theme” role. The “/g” suffix indicates that its argimnent
must be a plural term. see 2.3.1.)

A sigma term may be interpreted in terms of a restricted parameter. c.g

for the above example we have:

(?g | and{group(argi:?g) man(inst/i:?g)
(forall 7gil man(inst/i:?g1)
subgroup(argl:?gl arg2:7g))})

In general, in order to translate a sigma term, we create a restricted pa-
rameter for some group and require that this group is the maximal group.

If we want to express that the group has a particular size. we must use a
restricted parameter instead of a sigma term:

Example:

"Jones hired the two secretaries.”
hire(agent:Jones
patient/i:(the ?g | and{group(argl:?g)
Size(argl:?g arg2:2)
Secretary(inst/i:7g)
Salient(argl:7g)}))

6



This interpretation picks a salient group of two secretaries. Under a dif-
ferent interpretation, we would want to disallow any other group of two
or more secretaries:

(the 7g | and{group(argl:?g)
Size(argl:?g arg2:2)
Secretary(inst/i:7g)
(forall ?gl Secretary(inst/i:7gi)
subgroup(argl:?gl arg2:7g))})

2.1.8 Complex Terms

In order to express aggregation operations on sets, s.a. finding the maximumor
sum, we introduce terms which bind variables. The syntax of complex terms is:

(Complex Term) ::= ((VB-TF-Operation) (Variable),
{(Operand) | (Wff))
(VB-TF-Operation) ::= *sum |*product |*min |*max |*avg

{Operand) ::= (Term)

A variable binding term former — (VB-TF-Operation) — is used to con-
struct aggregations over the domain.

Example:
(*sum 7z, Ty Ty | sales(agt:7z jan$:7y))
operation bound-vars operand restriction

Assuming that the ‘sales’ relation holds of agent 7z and jan$ 7y iff salesiman
7z sells products worth ?y dollars in January, then the complex term refers to
the total dollar sales for all salesmen in January.

Suppose we would model the relation ‘sales’ as a multi-set of tuples. called
“Sales”, and jan$ is the accessor to the jan$ field of a tuple {similarly for agent).
Then this is equivalent to

Z jan$(s) | 3z agent(s) = 2
seSales
Note that it is important here that “Sales” denotes a multi-set, since there
may be more than one january sale for a given salesman.
The operand part of a (Complex Term) is not limited to a single variable;
instead, any (Term} can be used here as the following example shows:
(*sum ?z,7m1,7m2,7m3 plus(?m1,7m2,7m3) |
sales(agt:7z jan$:7m1 feb$:7m2 mar§: i)

with the meaning

Z jan$(s) + feb$(s) + mar$(s) | Iz agent(s) = z
seSales



2.2 Predicates
2.2.1 Simple Predicates

Simple Predicates may be anadic (may have arbitrary arity, unlike functions}.
For each simple predicate a set of allowed arguments is specified. (The order of
arguments is immaterial). The arguments are represented as roles (see 2.3.1).
We allow an abbreviated notation which — in case no role names are given -
supplies the default role names argl, arg2, ... in the order the arguments are
supplied.

Relational algebra (cf. [6], p. 265) introduces PROJECTIONS as a means
of referring to relations of variable arity. A notational convenience for the use
of anadic relations is that arguments to relations be identified via KEYWORDS
rather than positions in argument vectors.

An example of an anadic predicate is the predicate “sale”, defined to have
the role set:

{agent, reciptent product.date $val}
In NLL all of the following are well-formed:
sale(agt:obrien rcpnt:TRW product:887799 date:22Dec88 $val:18500)

sale(agt:obrien product:887799 date:22Dec88 $val:18500)
sale(xrcpnt:TRW product:887799 date:22Dec88 $val:18500)

sale(xrcpnt:TRW)
sale()

2.2.2 Predicate Constants

The following predicates are defined in the core of NLL.

identity =(argl:(Term) arg2:(Ternm))

i-part i-part(theme:(Term) in:(Plural Term))
size size(argl:(Term) arg2:(Plural Term))
atom atom(arg1:(Term))

2.2.3 Order Relation

Strict Order >(argl:(Term) arg2:(Term))
<(argl:(Term) arg2:(Term))



Partial Order >=(theme:(Term) pole:(Term))
<=(theme: (Term) pole:(Term))
=(theme:(Term) pole:(Term))

The order relations are defined on measure terms. An example of an order
relation applied to a complex measure and a function term is:

>(theme: [6 feet] pole:plus([5 feetl,[2 inchl))

2.2.4 A-Predicates

(A-Predicate) ::= (lambda arg,:(Variable), ...,argn:{Variable) (Wff))
A-Predicates allow constructing a predicate from a W by abstracting over
some free variables of the Wff. This is desirable in disambiguation where a
predicate variable may become bound later by some A-Predicate.
Examples:

e VP ellipsis

"Jones works at IBM and Smith does too."
P =qef (X arg;:7x work(agent:?x loc:at(IBM)))
and{p(arg;:Jones) p(arg;:Smith) }

Here p is a meta variable, not an entity of NLL. It belongs to the meta-
language?. That is, all the occurrences of p in the final line must be
replaced by the expression, which is the definition of p to produce the
NLL form for the sentence.

e Predicative Traces

"How tall did Smith think that Jones is _ 7"
(?lambda 7w
(lambda argl:?P
think(agt:Smith theme:|(?P(Jones))))
(argl:1(lambda(argl:?x) tall(theme:?x spec:?w))))

e Type raising

"Smith and every manager attended."
P =4e5 (lambda arg;:7x attended(theme:?x))
and{P(argl:Smith)

(forall ?m Manager(inst:?m) P(argl:?m))}

2During interim stages of semantics processing we use such variables simply by adopting
some naming convention.



e N Anaphora

"The tall student talked and the short one listened."
The analysis comes in two parts
1 (the ?x and{Student(inst:?x) tall(theme:?x)}
talk(agent:?x))
2 (the 7y and{P(argi:?y) short (theme:?y)}
listen(agent:7y))

We now find a plausible definition for P:
<P::def (lambda arg;:?x student(inst:?x))
Compare this to:

“Several tall students talked. One listened.”
1 (Several 7x and{Student(inst:?x) tall(theme:?x)}
talk(agent:7x))
2 (({= 1}) 7y P(argl:?y)
listen(agent:?y))

We find as a plausible definition for P the abstraction of the restriction
set

P =4.; (lambda arg;:?x student(inst:?x) tall(theme:7x))

2.2.5 Complex Predicates

{Complex Predicate) = (Predicate Operator) (Simple Predicate)

{Predicate Operator) = -or | -as | -less | -ost | -least

A predicate operator may be applied o predicates whnch are gradablc. Such
a predicate P has associated a measure function with range Mp ordered by
< p. The set of roles defined for P contains at least the roles “theme”, “pole”,
and “spec”.

Example:

"Jones is 2 inches taller than 6 feet."
-er(tall) (theme:Jones pole:[6 feet] spec:[2 inch]) =
tall(theme: Jones
spec:(7h | >(theme:7h
pole:plus([6 feet],[2 inch]))))

10



2

The meaning of the predicate operator “-er” is:

-er(P)(theme:z pole:p spec:d) =
Jmemp P <p mA|m —p|=dA P(theme:z spec:m)

Similarly, the meaning of the predicate operator “-less™ is:

~less(P)(theme:z pole:pspec:d) =
Amemp m <p pA|m —p| =dA P(theme:x spec:ni)

2.3  Well-formed Formulas
2.3.1 Atomic Wfls

(Atomic WAT) ::= (Predicate)({Role-Argument Pair) ...)
(Role-Argument Pair) ::= (Role) © (Term)
(Role) = (Simple Role) | {Complex Role)

Simple Roles The core of NLL defines many simple roles (see 2.3.1). but
the set of simple roles is open. An application will define predicates and roles
particular to a domain.

Since predicates are anadic, the question arises what the meaning of an
atomic wif is which supplies less roles than are defined for the predicate. (If a role
is supplied that is not defined for the predicate, or if a role is multiply supplied,
the meaning of the atomic wif will be undefined.) For all the unsupplied roles
values are assumed to exist:

Consider the N LL expression P(ry:ay...ry : an) and let 2(12) be the roles
defined for P, and {s)...s,,} be the set of roles tn R{(F) but not supplied. i.c.

{5‘56 R’(P)/\ﬂaizl nli = b}

P(ri:iay...mp 1 an) =
By, v P(r1:a1 ...y 1 Gn, 81 V1. . Sm t Uy)

” [

Example: Suppose the “eat” predicate has the defined roles “eater”, “eaten”
— and no other roles. Then it follows from the semantics of N LL that:

eat(eater:John) = oy eat(eater:John eaten:7x)

11



Complex Roles Some roles can take as an argument either an individual or
a group term (see 2.1.7). In order to refer to the individual members of the
group, we use the suffix ” /i”, and in order to refer to the group we use the suffix
» /g” .

(Complex Role) ::= (Individual Role) | (Group Role)

(Individual Role) ::= (Simple Role) /i

{Group Role) ::= (Simple Role) /g

Examples:

"Tom, Dick and Harry carry a piano."
carry(agent/g:+{Tom, Dick, Harry} theme:(?x | Piano(inst:?x)))

The complex role agent/g indicates that Tom, Dick and Harry collectively
carry a piano (the collective reading).

"Tom, Dick and Harry sing."
sing(agent/i:+{Tom, Dick, Harry})

Here, agent/i indicates that each of the individual members of the group
sings (the distributive reading). A special rule would make this distributive
inference explicit:

and{sing(agent:Tom) sing(agent:Dick) sing(agent:Harry)|
Some verbs allow only the collective reading. Such a verb s ‘mcer
“The managers meet in room ‘Chaos’."

meet (agent/g: (sigma ?m | Manager(inst:?m))
loc:in((?1 | Room(inst:?1 name:’Chaos’))))

2.3.2 Non-atomic WFF

(Non-atomic WFF) ::= (Negation) [ {Conditional-W1f) | (N-ary-Conn-Wff)
(Negation) ::= ~ (WfT)

(Conditional- W) ::= if ( (W) (W) [ (W) ] )

{N-ary-Conn-WiT) ::= (N-ary-Conunective) {{WIf) ..}

(N-ary-Connective) 1= and I()I‘ i iff | Xor

The meaning of these is as usual in predicate logic.
Examples:

"Abrams does not hire Browne."
“hire(agent:Abrams patient:Browne)

"“Jones either works or manages Smith."
xor{works(agt:Jones) manage(agt:Jones pat:Smith)}



“If Abrams hired Browne, he manages him."
if(hire(agent:Abrams patient:Browne)
manage(agent:?a patient:?al))

2.3.3 Quantified WHT

(Quantified WAt} ::= ( (Quantifier) (Scope) )

(Quantifier) ::= (Determiner) (Variable) ... (Restrictor)

{Quantifier) ::= (Ternary Quantifier)

{Ternary Quantifier) ::= (Order Relation) (Variable) ...
{Restrictor) {Pole Restrictor)

{Restrictor) 1= (WIT)

{Pole Restrictor) ::= (Wff)

{Scope) 1= (WIf)

{Determiner) ::= {Simple Determiner) | (Complex Determiner)

(Simple Determiner) ::= exists iforall [ the imost iseveral | max I min

(Complex Determiner) ::= ( (Maximally Specified Measure) )

Generalized quantifiers: The notion of a generalized quantifier? is based on
the relation between two sets — a restriction set R and a body set B. RN B is
called the intersection set 1. Within NLL. a generalized quantifier Q is defined
as a binary predicate?:

A, m)Qn, )

which is applied to the cardinality of the restriction set, [R]. and the cardinabiy
of the intersection set |RN B|. This number-theoretic characterization of gener-
alized quantifiers is adequate for finite sets. There is an equivalent formulation
in terms of sets and relations among sets (for a comparison see [10]).

Syntactically, a Generalized Quantifier is expressed by (Quantifier) and de-
termines the Restriction set (R). The (Scope) of a (Quantified WIf) determines
the body set (B). The meaning of a Quantified Wff can be expressed as a
relation involving R and the intersection set I = RN B®.

Existential Determiner: exists 7x o(7r)

If the (Scope) of the (Quantified W) is given by (7)) and only x
occurs free in ¢(72) and ¥(7x), then

3We include only natural language quantifiers which are “quantificational” excluding pos-
sessives, vague quantifiers, and quantifiers expressing defaults (such as “usually”).

4For a comprehensive introduction and survey of quantifiers in logic and linguistics see
[10].

5In the following, we present the number-theoretic characterization of the quantifiers, with
the set-theoretic ones in parentheses.



{exists 7x ¢(7x)y(7x)) is true ifl

IRNS}|>0(or ROB #£0)

where B = {?z|¢(?2)} and B = {Za{(?x)}.
Universal Determiner: forall 7x ¢(7x)

(forall 7x ¢(7z)¥(7z)) is true iff |R| = |I] (or R C B)

Most: most 7x ¢(7z)

(most 7x ¢(7z)p(?z)) is true iff |I| > |R|/2
We are unable to represent most in terms of set-theoretic relations: the given
semantics of most assumes that both 7 and K are findde sots. The same apphies
to the following quantificrs.
Several: several 7x ¢(’x)

(several ?x ¢(7x)y(7z)) is true iff |I] > 1

The: the ?x ¢(?z)
(the ?x ¢(72)y(?x)) is true iff |R| = |I| =1

Max: max 7x ¢(7z)
(max 7x o(7u)w(7a)) s true il 2] > O A ¢ (maxr(12))

where maz is a function that selects the largest elenmient from a set of nnmbers.

Min: min ?x ¢(7z)
(min ?7x ¢(7z)y (7)) is true iff |R| > 0 A y(min(R))

where min is a function that selects the smallest element from a set of numbers.

Complex determiners (Maximally Specified Measures):

(({=1}) ?x o(70) ©(72)) is true il [/} =1
(=21 7x o(70) (7)) is true ifT [ =2

similarly for the specifiers <. <. #, >, >
(< "n}) 7x o(7x) U( )) is true i [7] <7n
(({< P 7x o) ©{(72)) is true ifl |/} <n
({ ™)) 7x 6(7) ¥(72)) is true iff |1] £7n
(({> ™n}) 7x ¢(?z) ¢(?z)) is true iff |I| >7n
(({> ™n}) 7x ¢(72) ¥(7z)) is true iff |I| >7n
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Example: “More than five men smoke.”
(({> 5}) ?x man(inst:?x) smoke(agent:?x))

This quantified wif is true iff the intersection of the set of men and
the set of objects that smoke is greater than 5.

Note that the Unspecified Measure part of the Specified Measure may be a
variable. This is useful in

Comparatives: “More consultants work than engineers teach.”

(exists 7?n NatNum(inst:?n)
and{({(= ?n)} ?m Engineer(inst:?m) teach(agt:?m))
({(> 7n)} ?c Consultant(inst:?c) work(agt:?¢c))})

“How many” questions: “How many men sioke?™"

(?lambda 7m Measure(inst:?m)
(({= 7m}) ?7x man(inst:?x) smoke(agent:?x)))

In the above cases, the determiner’s Unspecified Measure has always been
a Simple Measure, but it may be a Complex Measure (having a degree and a
scale), as in the following example:

“At most 3 1 oil spilled.”
(({< [3 11}) 7x 0il(dinst:?x) Spill(theme:7x))

The Complex Measure {3 1] contains the scale I. We assume that there s a
function Quantity; which returns the quantity in liters, associated with a mass
object. Then the above is satisfied iff

ZQuantityz(i) <3
iel
where I = { 7x | Oil(inst:?x)} N {?x | Spill(theme:7x)}.
Similarly, the magnitude of the complex measure may be a variahle:

“Between 3 and 5 1 oil spilled.”
(exists ?n NatNum(inst:?n)
and{(({= [7n 1]}) 7x oil(inst:?x) spill(theme:7x))
>=(theme:?n pole:3)
<=(theme:?n pole:5)})

6 (see section 2.3.4)
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Ternary Determiners > ?x ¢1(7z) ¢2(7z)

Let
1 (Txyny(Tx) = 1)

Ga(TxyNY(Tx) = Iy
Then (> 7x ¢1(7z) ¢2(7z) v(72)) is true il |1y] > |[2]

Similarly, for the other order relations >= < <=: =
(>= 7x 61(%2) ¢2(7z) (7)) is true iff [I1| > |I2]. ..

Example:

"More men than women smoke."
(> 7x man(inst:?x) woman(inst:7x) smoke(agt:?x))

(max ?n smoke(agt:(({= 7n}) 7w | woman(inst:?w)))
(exists ?m >(standard:?m pole:7n)
smoke(agt: (({= ?m}) ?x | man(inst:?x)))))

In words: if ?7n were the maximal number of women who smoke, there s a
larger number, 7m, of men who smoke.

2.3.4 Question Wit

(Question Wf) ::= ((Questioner) (Scope))
(Questioner) ::= 7lambda (Variable), ... (Restriction)
(Scope) 1= (WIT)

{Restriction) 1= (WIT)

The meaning of (7lambda 7x ¢(7x) ¢{7r) ) is a predicare ehiaracterizing
set. of all true propositions that arise from substituting ?x by some denoting
term n in

and{¢(?z)¥(?z)}

Identifying the meaning of a question with the set of all true possible answers
gives us a set which is too large, and it must be further reduced on pragmatic
grounds. One pragmatic rule would for instance state that the term n carries
information — allows the reduction of the set of possible referents of n.”

Examples:

"What did O’Brian sell?”
(7lambda 7x Thing(inst:?x) sale(agent:0’Brian product:?x))

7 An example of an uninformative answer to the question: “Who bought the hook”™ would
be: “the one who bought the book”.
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"How many copies of Advancelink did IG-Farben buy in December?"
(?lambda ?n NatNum(inst:inst:?n)
sale(product:Advancelink
recipient:Igfarben
date:December))

"Which woman manages what department?"

(?lambda ?x,7y
and{woman(inst:?x) department(inst:?y)}
manage(agt:7x pat:7y))

2.3.5 Examples

"A child walks."

(exists ?x child(inst:?x) walk(agent:7?x))
"Al1l children walk."

(forall ?x child(inst:?x) walk(agent:7?x))
"Several children walk."

(several 7x child(inst:?x) walk(agent:?x))
"Most children walk."

(most ?x child(inst:?x) walk(agent:?x))
"The child walks."

(the ?x child(inst:7x) walk(agent:7x))
"One child walks."

((= 1) ?x child(inst:?x) walk(agent:7x))
"Three children walk."

({> 3} ?x child(inst:?x) walk(agent:?x))

"At least 3 but no more than 6 children sing."

sing(agent: (sigma ?x
and{Child(inst/i:?x)
>=(standard: (?n | Size(argi:?x arg2:7?n)) pole:3)
“>(standard:?n pole:6)}))

"Three liters of oil spilled."
({= [3 1]} ?x 0il(inst:?x) spill(theme:?x))

"Exactly two more consultants work than MTSs teach.™

(exists 7n NatNum(inst:7n)
and{({= ?n} ?m Mts(inst:?m) teach(agent:?m))
({> 7n delta:2} 7c Consultant(inst:?c)
work(agent:7¢))})

17



"At least two more consultants work than MTSs teach.”

(exists 7n NatNum(inst:?n)
and{({= 7n} 7m Mts(inst:7m) teach(agent:?m))
({> 7n delta:(?d | 7d > 2)} ?c Consultant(inst:?c)
work(agent:?7¢))})

"Exactly twice as many comsultants work as MTSs teach."”

(exists ?n NatNum(inst:?n)
and{({= 7n} 7m Mts(inst:?m) teach(agent:?m))
({> ?n *:2} ?c Consultant(inst:?c)
work(agent:7¢c))})

"Exactly half as many consultants work as MTSs teach."
(exists 7n NatNum(inst:?n)
and{({= ?n} ?m Mts(inst:7m) teach(agent:?m))

({> 7?n *:1/2} 7c Consultant(inst:7c)
work(agent:?c))})

18



3 BNF of NLL’s Concrete Syntax

(W) := (Atomic Wff)
i {Non-atomic WFF)
| {(Quantified WHT)
| (Question W)

(Atomic WHf) ::= (Predicate)({Role-Argument Pair) .. )
i {Propositional Variable)
i true ] false
{Role-Argument Pair) ::= (Role):(Term)
(Role) ::= (Simple Role) | {Complex Role)
(Simple Role) ::= agent | theme ipatient | apprehender igoal | beneficiary
| for [ to ifrom f within | with ] location
i date | time l direction ] destination
i at iin ion | by iunder ] beside ] over
i proposition [ situation ] result ievent ! state
i instance iof [ possessor | possessed 1 bearer
i measure ispeciﬁer [ pole idifferenw ‘}sl‘a‘m,lani
] key ] relatuml ] relatum? ] np-n-relatum
i arg iargl ] arg?2 | argd [ argd ] argd | argh
{Complex Role) ::= (Individual Role) i(Group Role)
(Individual Role) ::= (Simple Role) /i
{Group Role) ::= (Simple Role) /g
(Propositional Variable) ::= (Identifier)

(Non-atomic WFF) ::= (Negation) | (Conditional-Wff) | (N-ary-Conn-WiT)
{Negation) := ~(Wff)

(Conditional-W1T) ::= if ( (W) (W) [ (Wff) ] )
(N-ary-Conn-Wff) ::= (N-ary-Connective) {{Wff) ...}
(N-ary-Connective) 1= and ior iiff ] xor

(Term) ::= (Variable)

Constant)
Function Term)

Measure Term)
Plural Term)
Restricted Parameter)

=
I
I
[ (Location Term)
I
K
I(
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i {Complex Term)

(Variable) ::= 7(Identifier)

(Constant) ::= (Identifier) | (String) | (Numeral)
(Function Term) ::= (Function Name)((Term), ...)
(Function Name) ::= (Identifier)

{(Location Term) ::= reg-X{(Term), ...}

{Measure Term) 1=
(Unspecified Measure) | (Specified Measure) i(é\v’laxim;dly Specificd Measure)
(Unspecified Measure) ;1=
{Variable) | (Simple Measure) | (Complex Measure)
(Simple Measure) ::= (Numeral)
(Complex Measure) ::= | (Degree) (Scale) ]
(Degree) ::= (Variable) | (Simple Measure) | (Specified Measure)
(Scale) =1 | foot | kg |..
{Specified Measure) = { (Specifier) {Unspecified Measure) }
(Specifier) ::= (Order Relation)
(Order Relation) n= < | <|=]>|>
(Maximally Specified Measure) ::=
{ {Specifier) (Unspecified Measure)
[ delta {:(Unspeciﬁed Measure) | :(Specified Measure) }]
[ *:{ (Simple Measure) | (Variable) }] }

{Plural Term) ::= {Group Term) | (Sigma Term)

(Group Term) ::= +{(Term), ... }

(Sigma Term) ::= (sigma ?(Identifier) | (Wff))

(Restricted Parameter) 1= ([(l_)(‘!brlninm‘}] ?(tdentifier) | (Restriction))

{Restriction) 1= (WIf)

{Complex Term) :=
((VB-TF-Operation) (Variable), ... (Operand) | (Wff))
(VB-TF-Operation) ::= *sum | *product | *min | *max | *avg

(Predicate) ::= (Simple Predicate) | {Complex Predicate) [ {A-Predicate)
(Simple Predicate) ::= (Identifier)
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(Complex Predicate) ::= (Predicate Op(-‘:ra,tor.) (Simple Predicate)
(Predicate Operator) ::= -er |-as |-less | -est |-too |-least
{A-Predicate) ::= (A arg,:(Variable), ... arg,:(Variable) (Wff))

{Quantified WA} ::= ( {(Quantifier) {Scope) )

{Quantifier) ::= (Determiner) (Variable) ... (Restrictor)

(Quantifier) ::= (Ternary Quantifier)

{Ternary Quantifier) ::= {Order Relation) (Variable) ... (Restrictor) (Pole Restrictor)
(Restrictor) ::= (WHf)

(Pole Restrictor) ::= (Wi{)

(Scope) 1= (Wf)

{Determiner) ::= (Simple Determiner) | (Complex Determiner)
(Simple Determiner) ::= exists | forall | the | most | several | iax | niin
(Complex Determiner) ::= ( (Maximally Specified Measure) )

{Question W) ::= ({Questioner} {Scope))
{Questioner) 1= ?lambda (Variable), ... (Restriction)
(Scope) = (WIF)

(Restriction) == (WfI)

21



4 NLL’s Abstract Syntax

For each defined type of structure we list its slots (by convention a slot’s name
begins with “-”) and the type of argument filling this slot. Since slots are
inherited — to get all slots for a subtype, consult the type hierarchy in section
4.2 and form the union of all the slots from the subtype up to the root NLIL-
Domain. l.e. every type has the slot “-extras” which can be used by the
implementation to store additional information. This slot should be of the type
association-list. The non-terminals of the grammar usually have a type of the
same name associated with them, and studying that grammar rule and the slots
for the type should make it obvious how the semantic action for that BNF rule
should be expressed (e.g. in YACQ).

4.1 Structures and their Slots
4.1.1 NLL-Domain

[ NLL-Domain [ -Extras Assoclation-List ] ]

4.1.2 NLL-Term

NLL-Const -Name {Symbol iString} }

NLL-Integer | -Att  Integer |

NLL-Real -Att  Real ]

| -Name Symbol

NLL-Var-Occ | -Bound-Var  NLL-Bound-Var ]

Function-Ter -Function Simple-Predicate

unction-tert | -Arguments  Seq(NLL-Term)

Location-Term -Component-terms  NLL-Term
| Group-Term -Component-terms  NLL-Termn

4.1.3 Complex-Term

-Operation VB-TF-Operation
-Bound-Vars NLL-Bound-Var
-Operand NLL-Term
-Restriction ~ NLL-Wi{f

Complex-Term

4.1.4 NLL-Bound-Var

-Name Symbol
NLL-Bound-Var -References  Set(NLL-Var-Occ)
-Scope NLL-Expr
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4.1.5

Restricted-Parameter

4.1.6

Measure

Specified-Measure

Complex-Measure

4.1.7

[ Role
Role-Complex

Role

Role-Variable-Pair

Role-Argument-Pair

4.1.8 Predicate

[ Simple-Predicate

Complex-Predicate

Lambda-Predicate

Maximally-Specified-Measure

Restricted-Parameter

-Var

-Restriction
-Quantificational-Force

-Delta
. -Factor
[ -Magnitude NLL-Term
| -Scale Symbol
-Name Symbol]
-Role Role ]
-Role Role-Complex
-Variable NLL—Bound—Va.r]
-Role Role-Complex
-Argument NLL-Term ]
[ -Name Symbol ]
-Predicate  Simple-Predicate
-Operator Predica,te—()pera,t,orJ

-Lambda-List

-Scope

NLL-Bound-Var

NLL-WIT
QForm-Determiner

[ -Specifier
-Numeric
-Specifier

NLL-Term
Order-Relation

Order-Relation }

-Numeric

NLL-WH{f

23
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{Specified-Measure | Complex-Measure}
{NLL-Var-Occ | Unspecified-Numeric}

Set{Role-Variable-Pair) }




4.1.9

Propositional-Variable

Atomic-WHF
N-ary-Conn-Wff

Negated-WIf

Conditional-Wf

Propositional-Sense

Qform-WHF

Qform

Ternary-Quantifier
Simple-Determiner
Complex-Determiner

‘Well-formed Formula

~-Name Symbol ]
-Predicate

[ _Connective
-Subformula-Set

-Pole-restrictor

-Name Symbol ]

-Specified-Measure

24

-Role-Argument-Pairs

NLL-Predicate
Set(Role-Argument-Pair)
N-ary-Conn

Set(NLI-Wff) }

| -Scope  NLL-WfT ]

| -Connective  Conditional
-Antecedent  NLL-W{f
-Consequent  NLL-Wff
-Else-Clause NLL-Wff

" _Conceptual-Level Integer
-Proposition NLL-Wf{f }

[ -Qform  Qform
-Scope  NLL-W{f }

| -Determiner Determiner
-Vars Seq(NLL-Bound-Var)
-Restrictor NLL-WI{T

NLL-WII |

Specified-Measure

|




4.2 NLL’s Type Hierarchy

The root of the type hierarchy is NLL-Domain. Leaf nodes of the hierarchy have
a short arrow, non-terminal nodes a long arrow. Those non-terminal nodes are

expanded in following diagrams.

4.2.1 NLL-Domain
— NLL—Bound—Var}

—{ Greater-or-Equal

Strict-Order-Relation 4 Order-Relation }—\

| Partial-Order-Rel.

——[NLL-Expr } >

—{ Group-Role-Complex }——1

—{Individual-Role-Complex |

Role-Complex -~

—{ Role-Variable-Pair |- y

—{ Role-Argument-Pair | J

NEL-Domain]



4.2.2 NLL-Expr

—4 NLL-Term } ~

—{NLL—Predicate Jl <
——{ Predicate-Operator } ~

———>{ Qform-Determiner }——————1
——»-[ Conditional If !L'\’ LL-Logical-Clonst }rﬁ

—>{ Questioner }

—»{ Ternary-Quantifier

4 N-ary-Quantifier ~—{ Q@l—_} MMMMMM

—{ Distributive-Operator }

~»{ Qform-Wff IL
Atomic-WHT

—{ Propositional-Variable

—*[ Atomic-False Il I'NLL-Literal [——}—r{ NLL-Wf }——/

—{ N-ary-Conn-WHT
—{ Conditional-Wiff
—{ Generalized-Count }——
—{ Generalized-Maximum |—
—v] Generalized-Minimum }————>—————>{ VB-TF-Operation ]——————-’
—{ Generalized-A verage |—/
—{ Generalized-Product |—1
— Generalized-Suin fon o

Non-Atomic- Wﬂ'J—A/




4.2.3 NLL-Predicate and Predicate-Operator

Size-Predicate

—4 Atom-Predi;ate

NLL-Pred-Const ———{ Simple-Predicate

—)-{ I-Part-Predicate
—mentity-Predica’ce
%ambda—Predicate E

LS I L—Predi(‘i te

]

—{ Complex-Predicate |

—{ Predicate-Operator-Enough }—
—r{ Predicate-Operator-too |——————\
—{ Predicate-Operator-most }——%ar{ Predicate-Operator |
—i1 Predicate-Operator-as |-————

Predicate-Operator-Less -
p
—] Predicate-Operator-More }——-

4.3 Qform-Determiner

—{ Question-Lambda | { Question-Determiner

—1{ Universal-Determiner

—{ Existential—Determinetlﬂf Simple-Determiner }—1

—{ Complex-Determiner | % Determiner Qform-Determiner
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4.4 NLL-Term

—{NLL-Const | ~
—+{ Placeholder-Var NLL-Var-Occ

SoA

—] Propositional-Sense } - >—{ NLL-Term

—{ Complex-Term }

Restricted-Parameter }—/

—r[ Function-Term :

—>{ Location-Term } ]

—»{ Group-Term } ~
—r{ Measure-Term } -

—{ Max.-Spec.-Measure l——-—~~——-} Specificd-Measure }
{ NLL-Real
NLL-Integer 7 Unspec.-Measure

—{ Complex-Measure }

NLL-Numeric ,




4.5 Role
Agent-Role
Theme-Role

.

Patient-Role

—{ Apprehender-Role

-

Goal-Role

——>{ Beneficiary-Role }-———\

For-Role

|

|

4 To-Role
From-Role
Within-Role
With-Role

Location-Role

bl

Date-Role
Time-Role

|

Direction-Role

|

—{ Destination-Role

At-Role
In-Role
On-Role
By-Role
Under-Role

it

1 Beside-Role
Over-Role

|

-—r! Proposition-Role

:

Situation-Role

o
o
=
=
=
=
<
a.
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—{ State-Of- Affairs-Role |—
Result-Role

FF

Event—Role
Instance-Role
Of-Role

Possessor-Role

—»{ Possessed-Role }—\

Bearer-Role

"

Measure-Role
Specifier-Role

Pole-Role

iy

Difference-Role
[Standard ol
—1{ Relatum1-Role }———
—{ Relatum?2-Role }———
—{ Np-N-Relatum-Role
Arg3-Role

Role
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