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Abstract. Dialectometry produces aggregate distance matrices in which a dis-
tance is specified for each pair of sites. By projecting groups obtained by clustering
onto geography one compares results with traditional dialectology, which produced
maps partitioned into implicitly non-overlapping dialect areas. The importance
of dialect areas has been challenged by proponents of continua, but they too need
to compare their findings to older literature, expressed in terms of areas.

Simple clustering is unstable, meaning that small differences in the input matrix
can lead to large differences in results (Jain et al. 1999). This is illustrated with a 500-
site data set from Bulgaria, where input matrices which correlate very highly (r =
0.97) still yield very different clusterings. Kleiweg et al. (2004) introduce composite

clustering, in which random noise is added to matrices during repeated clustering.
The resulting borders are then projected onto the map.

The present contribution compares Kleiweg et al.’s procedure to resampled boot-
strapping, and also shows how the same procedure used to project borders from
composite clustering may be used to project borders from bootstrapping.

1 Introduction

We focus on dialectal data, examined at a high level of aggregation, i.e. the
average linguistic distance between all pairs of sites in large dialect surveys.
It is important to seek groups in this data, both to examine the importance
of groups as organizing elements in the dialect landscape, but also in order
to compare current, computational work to traditional accounts. Clustering
is thus important as a means of seeking groups in data, but it suffers from
instability: small input differences can lead to large differences in results, i.e.,
in the groups identified.

We investigate two techniques for overcoming the instability in cluster-
ing techniques, bootstrapping, well known from the biological literature, and
“noisy” clustering, which we introduce here. In addition we examine a novel
means of projecting the results of (either technique involving) such repeated
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clusterings to the geographic map, arguing that it is better suited to revealing
the detailed structure in dialectological distance matrices.

2 Background and Motivation

We assume the view of dialectometry (Goebl, 1984 inter alia) that we char-
acterize dialects in a given area in terms of an aggregate distance matrix,
i.e. an assignment of a linguistic distance d to each pair of sites s1, s2 in
the area Dl(s1, s2) = d. Linguistic distances may be derived from vocabu-
lary differences, differences in structural properties such as syntax (Spruit,
2006), differences in pronunciation, or otherwise. We ignore the derivation
of the distances here, except to note two aspects. First, we derive distances
via individual linguistic items (in fact, words), so that we are able to ex-
amine the effect of sampling on these items. Second, we focus on true dis-
tances, satisfying the usual distance axioms, i.e. having a minimum at zero:
∀s1D(s1, s1) = 0; symmetry: ∀s1, s2D(s1, s2) = D(s2, s1); and the triangle
inequality: ∀s1s2s3D(s1, s2) ≤ D(s1, s3) + D(s3, s2) (see (Kruskal 1999:22).
We return to the issue of whether the distances are ultrametric in the sense
of the phylogenetic literature below.

We focus here on how to analyze such distance matrices, and in particular
how to detect areas of relative similarity. While multi-dimensional scaling
has undoubtedly proven its value in dialectometric studies (Embleton (1987),
Nerbonne et al. (1999)), we still wish to detect dialect areas, both in order
to examine how well areas function as organizing entities in dialectology, and
also in order to compare dialectometric work to traditional dialectology in
which dialect areas were seen as the dominant organizing principle.

Clustering is a standard way in which to seek groups in such data,
and it is applied frequently and intelligently to the results of dialectometric
analyses. The research community is convinced that the linguistic varieties
are hierarchically organized; thus, e.g., the urban dialect of Freiburg is a sort
of Low Alemannic, which is in turn Alemannic, which is in turn Southern
German, etc. This means that the techniques of choice have been different
varieties of hierarchical clustering (Schiltz (1996), Mucha and Haimerl (2005)).

Hierarchical clustering is most easily understood procedurally: given a
square distance matrix of size n × n, we seek the smallest distance in it.
Assume that this is the distance between i and j. We then fuse the two el-
ements i and j, obtaining an n − 1 square matrix. One needs to determine
the distance from the newly added i+ j element to all remaining k, and there
are several alternatives for doing this, including nearest neighbor, average dis-
tance, weighted average distance, and minimal variance (Ward’s method). See
Jain et al. (1999) for discussion. We return in the discussion section to the
differences between the clustering algorithms, but in order to focus on the
effects of bootstrapping and “noisy” clustering, we use only weighted average
(WPGMA) in the experiments below.
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Fig. 1. An Example Dendrogram. Note the cophenetic distance is reflected in the
horizontal distance from the leaves to the encompassing node. Thus the cophenetic
distance between Borstendorf and Gornsdorf is a bit more than 0.04.

The result of clustering is a dendrogram, a tree in which the history of
the clustering may be seen. For any two leaf nodes in the dendrogram we may
determine the point at which they fuse, i.e. the smallest internal node which
contains them both. In addition, we record the cophenetic distance: this
is the distance from one subnode to another at the point in the algorithm at
which the subnodes fused.

Note that the algorithms depend on identifying minimal elements, which
leads to instability: small changes in the input data can lead to very different
groups’ being identified (Jain et al., 1999). Nor is this problem merely “theo-
retical”. Figure 2 shows two very different cluster results which from genuine,
extremely similar data (the distance matrices correlated at r = 0.97).

Fig. 2. Two Bulgarian Datasets from Osenova et al. (to appear). Although the
distance matrices correlated nearly perfectly (r = 0.97), the results of WPGMA
clustering differ substantially. Bootstrapping and noisy clustering resolve this insta-
bility.

Finally, we note that the distances we shall cluster do not satisfy the
ultrametric axiom: ∀s1s2s3D(s1, s2) ≤ max{D(s2, s3), D(s1, s3)} (Page and
Holmes (2006:26)). Phylogeneticists interpret data satisfying this axiom tem-
porally, i.e., they interpret data points clustered together as later branches
in an evolutionary tree. The dialectal data undoubtedly reflects historical
developments to some extent, but we proceed from the premise that the so-
cial function of dialect variation is to signal geographic provenance, and that
similar linguistic variants signal similar provenance. If the signal is subject
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to change due to contact or migration, as it undoubtedly is, then similarity
could also result from recent events. This muddies the history, but does not
change the socio-geographic interpretation.

2.1 Data

In the remainder of the paper we use the data analyzed by Nerbonne and
Siedle (2005) consisting of 201 word pronunciations recorded and transcribed
at 186 sites throughout all of contemporary Germany. The data was collected
and transcribed by researchers at Marburg between 1976 and 1991. It was
digitized and analyzed in 2003–2004. The distance between word pronuncia-
tions was measured using a modified version of edit distance, and full details
(including the data) are available. See Nerbonne and Siedle (2005).

3 Bootstrapping Clustering

The biological literature recommends the use of bootstrapping in order to ob-
tain stable clustering results (Felsenstein, 2004: Chap. 20). Mucha and Haimerl
(2005) and Manni et al. (2006) likewise recommend bootstrapping for the in-
terpretation of clustering applied to dialectometric data.

In bootstrapped clustering we resample the data, using replacement. In
our case we resample the set of word-pronunciation distances. As noted above,
each linguistic observation o is associated with a site×site matrix Mo. In the
observation matrix, each cell represents the linguistic distance between two
sites with respect to the observation: Mo(s, s

′) = D(os, os′). In bootstrapping,
we assign a weight to each matrix (observation) identical to the number of
times it is chosen in resampling:

wo =

{

n if observation o is drawn n times
0 otherwise

If we resample I times, then I =
∑

o
wo. The result is a subset of the original

set of observations (words), where some of the observations may be weighted
as a resulted of the resampling. Each resampled set of words yields a new
distance matrix Mi∈I , namely the average distances of the sites using the
weighted set of words obtained via bootstrapping.

We apply clustering to each Mi obtained via bootstrapping, recording
for each group of sites encountered in the dendrogram (each set of leaves
below some node) both that the group was encountered, and the cophenetic
distance of the group (at the point of fusion). This sounds as if it could lead
to a combinatorial problem, but fortunately most of the 2180 possible groups
are never encountered.

In a final step we extract a composite dendrogram from this collection,
consisting of all of the groups that appear in a majority of the clustering
iterations, together with their cophenetic distance. See Fig. 3 for an example.
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4 Clustering with Noise

Clustering with noise is also motivated by the wish to prevent the sort of in-
stability illustrated in Fig. 2. To cluster with noise we assume a single distance
matrix, from which it turns out to be convenient to calculate variance (among
all the distances). We then specify a small noise ceiling c, e.g. c = σ/2, i.e.
one-half standard deviation of distances in the matrix. We then repeat 100
times or more: add random amounts of noise r to the matrix (i.e., different
amounts to each cell), allowing r to vary uniformly, 0 ≤ r ≤ c.

Altenberg
Schraden 54

Bockelwitz
Schmannewitz 97

Linz
60

Grünlichtenberg
Roßwein 100

69

Lampertswalde
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72

65

Altlandsberg
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Groß Jamno
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Pretzsch
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Gerbstedt
Landgrafroda 100
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Borstendorf
Gornsdorf 100

Theuma
96

Mockern

55

Cursdorf
Osterfeld
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56

Fig. 3. A Composite Dendrogram where labels indicate how often a groups of sites
was clustered and the (horizontal) length of the brackets reflects mean cophenetic
distance.

If we let Mi stand in this case for the matrix obtained by adding noise (in
the i-th iteration), then the rest of the procedure is identical to bootstrapping.
We apply clustering to Mi and record the groups clustered together with their
cophenetic distances, just as in Fig. 3.

5 Projecting to Geography

Since dialectology studies the geographic variation of language, it is particu-
larly important to be able to examine the results of analyses as these corre-
spond to geography.

In order to project the results of either bootstrapping or noisy clustering to
the geographic map, we use the customary Voronoi tessellation (Goebl (1984)),
in which each site is embedded in a polygon which separates it from other sites
optimally. In this sort of tiling there is exactly one border running between
each pair of adjacent sites, and bisecting the imaginary line linking the two. To
project mean cophenetic distance matrices onto the map we simply draw the
Voronoi tessellation in such a way that the darkness of each line corresponds
to the distance between the two sites it separates. See Fig. 4 for examples
of maps obtained by bootstrapping two different clustering algorithms. These
largely corroborate scholarship on German dialectology (König 1991:230–231).
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Unlike dialect area maps these composite cluster maps reflect the vari-
able strength of borders, represented by the border’s darkness, reflecting the
consensus cophenetic distance between the adjacent sites.

Haag (1898) (discussed by Schiltz (1996)) proposed a quantitative tech-
nique in which the darkness of a border was reflected by the number of dif-
ferences counted in a given sample, and similar maps have been in use since.
Such maps look similar to the maps we present here, but note that the bor-
ders we sketch need not be reflected in local differences between the two sites.
The clustering can detect borders even where differences are gradual, when
borders emerge only when many sites are compared.3

6 Results

Bootstrapping clustering and “noisy” clustering identify the same groups in
the 186-site German sample examined here. This is shown by the nearly per-
fect correlation between the mean cophenetic distances assigned by the two
techniques (r = 0.997). Given the general acceptance of bootstrapping as a
means of examining the stability of clusters, this result shows that “noisy”
clustering is as effective.

The usefulness of the composite cluster map may best be appreciated by
inspecting the maps in Fig. 4. While maps projected from simple clustering
(see Fig. 2) merely partition an area into non-overlapping subareas, these
composite maps reflect a great deal more of the detailed structure in the
data. The map on the left was obtained by bootstrapping using WPGMA.

Although both bootstrapping and adding noise identifies stable groups,
neither removes the bias of the particular clustering algorithm. Fig. 4 compares
the bootstrapped results of WPGMA clustering with unweighted clustering
(UPGMA, see Jain (1999)). In both cases bootstrapping and noisy clustering
correlate nearly perfectly, but it is clear that the WPGMA is sensitive to more
structure in the data. For example, it distinguishes Bavaria (in southeastern
Germany) from the Southwest (Swabia and Alemania). So the question of the
optimal clustering method for dialectal data remains. For further discussion
see http://www.let.rug.nl/kleiweg/kaarten/MDS-clusters.html.

7 Discussion

The “noisy”clustering examined here requires that one specify a parameter,
the noise ceiling, and, naturally, one prefers to avoid techniques involving

3 Fischer (1980) discusses adding a contiguity constraint to clustering, which struc-
tures the hypothesis space in a way that favors clusterings of contiguous regions.
Since we use the projection to geography to spot linguistic anomalies—dialect
islands, but also field worker and transcriber errors—we do not wish to push the
clustering in a direction that would hide these anomalies.
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Fig. 4. Two Composite Cluster Maps, on the left one obtained by bootstrapping us-
ing weighted group average clustering, and on the right one obtained by unweighted
group average. We do not show the maps obtained using “noisy” clustering, as these
are indistinguishable from the maps obtained via bootstrapping. The composite dis-
tance matrices correlate nearly perfectly (r = 0.997) when comparing bootstrapping
and “noisy” clustering.

extra parameters. On the other hand it is applicable to single matrices, unlike
bootstrapping, which requires that one be able to identify components to be
selected in resampling. Both techniques require that one specify a number of
iterations, but this is a parameter of convenience. Small numbers of iterations
are convenient, and large values result in very stable groupings.
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