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Abstract

In this study we use bipartite spectral graph partitioning to simultaneously cluster

varieties and identify their most distinctive linguistic features in Dutch dialect data.

While clustering geographical varieties with respect to their features, e.g. pronun-

ciation, is not new, the simultaneous identification of the features which give rise to

the geographical clustering presents novel opportunities in dialectometry. Earlier

methods aggregated sound differences and clustered on the basis of aggregate dif-

ferences. The determination of the significant features which co-vary with cluster

membership was carried out on a post hoc basis. Bipartite spectral graph clustering

simultaneously seeks groups of individual features which are strongly associated,

even while seeking groups of sites which share subsets of these same features. We

show that the application of this method results in clear and sensible geographical

groupings and discuss and analyze the importance of the concomitant features.
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1. Introduction

Dialect atlases contain a wealth of material that is suitable for the study of the

cognitive, but especially the social dynamics of language. Although the material

is typically presented cartographically, we may conceptualize it as a large table,

where the rows are the sampling sites of the dialect survey and the columns are the

linguistic features probed at each site. We inspect a table created for the purpose

of illustrating the sort of information we wish to analyze.

HOE? EEL . . . night hog . . . ph th asp. . . .

Appleton + A . . . [naIt] [hOg] . . . + + + . . .

Brownsville + A . . . [nat] [hAg] . . . + + + . . .

Charleston + B . . . [nat] [hAg, hOg] . . . - - - . . .

Downe - B . . . [nat] [hAg] . . . - - - . . .

Evanston ? B . . . [naIt] [hOg] . . . + + + . . .

The features in the first two columns are intended to refer to the cognates, fre-

quently invoked in historical linguistics. The first three varieties (dialects) all have

lexicalizations for the concept ‘hoe’ (a gardening instrument), the fourth does not,

and the question does not have a clear answer in the case of the fifth. The first two

varieties use the same cognate for the concept ‘eel’, as do the last three, although

the two cognates are different. More detailed material is also collected, e.g. the

pronunciations of common words, shown above in the fourth and fifth columns,

and our work has primarily aimed at extracting common patterns from such tran-

scriptions. As a closer inspection will reveal, the vowels in the two words sug-

gest geographical conditioning. This illustrates the primary interest in dialect atlas

collections: they constitute the empirical basis for demonstrating how geography

influences linguistic variation. On reflection, the influential factor is supposed to
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be not geography or proximity simpliciter, but rather the social contact which ge-

ographical proximity facilitates. Assuming that this reflection is correct, the atlas

databases provide us with insights into the social dynamics reflected in language.

More abstract characteristics such as whether initial fortis consonants like [p,t]

are aspirated (to be realized then as [ph,th]) is sometimes recorded, or, alter-

natively, the information may be extracted automatically (see references below).

Note, however, that we encounter here two variables, aspiration in /p/ and aspira-

tion in /t/, which are strongly associated irrespective of geography or social dynam-

ics. In fact, in all languages which distinguish fortis and lenis plosives /p,b/, /t,d/,

etc., it turns out that aspiration is invariably found on all (initial) fortis plosives (in

stressed syllables), or on none at all, regardless of social conditioning. We thus

never find a situation in which /p/ is realized as aspirated ([ph]) and /t/ as unaspi-

rated. This is exactly the sort of circumstance for which cognitive explanations are

generally proposed, i.e. explanations which do not rely on social dynamics. The

work we discuss below does not detect or attempt to explain cognitive dynamics in

language variation, but the data sets we used should ultimately be analyzed with an

eye to cognitive conditioning as well.1 The present paper focuses exclusively on

the social dynamics of variation.

Exact methods have been applied successfully to the analysis of dialect vari-

ation for over three decades [3, 4, 5], but they have invariably functioned by first

probing the linguistic differences between each pair of a range of varieties (sites,

such as Whitby and Bristol in the UK) over a body of carefully controlled mate-

rial (say the pronunciation of the vowel in the word ‘put’). Second, the techniques

1Wieling and Nerbonne [2] explore whether the perception of dialect differences is subject to a

bias toward initial segments in the same way spoken word recognition is, an insight from cognitive

science.
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AGGREGATE over these linguistic differences, in order, third, to seek the natural

groups in the data via clustering or multidimensional scaling (MDS) [6].

Naturally techniques have been developed to determine which linguistic vari-

ables weigh most heavily in determining affinity among varieties. But all of the

following studies separate the determination of varietal relatedness from the ques-

tion of its detailed linguistic basis. Kondrak [7] adapted a machine translation tech-

nique to determine which sound correspondences occur most regularly. His focus

was not on dialectology, but rather on diachronic phonology, where the regular

sound correspondences are regarded as strong evidence of historical relatedness.

Heeringa [8, pp. 268–270] calculated which words correlated best with the first,

second and third dimensions of an MDS analysis of aggregate pronunciation dif-

ferences. Shackleton [9] used a database of abstract linguistic differences in trying

to identify the British sources of American patterns of speech variation. He applied

principal component analysis to his database to identify the common components

among his variables. Nerbonne [10] examined the distance matrices induced by

each of two hundred vowel pronunciations automatically extracted from a large

American collection, and subsequently applied factor analysis to the covariance

matrices obtained from the collection of vowel distance matrices. Prokić [11] ana-

lyzed Bulgarian pronunciation using an edit distance algorithm and then collected

commonly aligned sounds. She developed an index to measure how characteristic

a given sound correspondence is for a given site.

To study varietal relatedness and its linguistic basis in parallel, we apply bi-

partite spectral graph partitioning. Dhillon [12] was the first to use spectral graph

partitioning on a bipartite graph of documents and words, effectively clustering

groups of documents and words simultaneously. Consequently, every document

cluster has a direct connection to a word cluster; the document clustering implies

a word clustering and vice versa. In his study, Dhillon [12] also demonstrated that
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his algorithm worked well on real world examples.

The usefulness of this approach is not only limited to clustering documents and

words simultaneously. For example, Kluger et al. [13] used a somewhat adapted

bipartite spectral graph partitioning approach to successfully cluster microarray

data simultaneously in clusters of genes and conditions.

There are two main contributions of this paper. The first contribution, which

has also been described (in less detail) by Wieling and Nerbonne [1], is to apply

a graph-theoretic technique, bipartite spectral graph partitioning, to a new sort of

data, namely dialect pronunciation data, in order to solve an important problem,

namely how to recognize groups of varieties in this sort of data while simultane-

ously characterizing the linguistic basis of the group. The second contribution is

the application of a ranking procedure to determine the most important sound cor-

respondences in a cluster of varieties. This approach is an improvement over the

procedure of ranking the most important elements in a cluster based only on their

frequency [12], because it also takes differences between clusters into account.

The remainder of the paper is structured as follows. Section 2 presents the

material we studied, a large database of contemporary Dutch pronunciations. Sec-

tion 3 presents the methods, including the alignment technique used to obtain sound

correspondences, the bipartite spectral graph partitioning we used to simultane-

ously seek affinities in varieties as well as affinities in sound correspondences, and

the method to rank the importance of the sound correspondences in each cluster.

Section 4 presents our results, while Section 5 concludes with a discussion and

some ideas on avenues for future research.
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Figure 1: Distribution of GTRP localities including province names
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2. Material

In this study we use the most recent broad-coverage Dutch dialect data source

available: data from the Goeman-Taeldeman-Van Reenen-project (GTRP) [14, 15].

The GTRP consists of digital transcriptions for 613 dialect varieties in the Nether-

lands (424 varieties) and Belgium (189 varieties), gathered during the period 1980–

1995. For every variety, a maximum of 1876 items was narrowly transcribed ac-

cording to the International Phonetic Alphabet. The items consist of separate words

and phrases, including pronominals, adjectives and nouns. A detailed overview of

the data collection is given by Taeldeman and Verleyen [16].

Because the GTRP was compiled with a view to documenting both phono-

logical and morphological variation [17] and our purpose here is the analysis of

phonology (pronunciation), we ignore many items of the GTRP. We use the same

562 item subset as introduced and discussed in depth by Wieling et al. [18]. In

short, the 1876 item word list was filtered by selecting only single word items, in-

cluding plural nouns (the singular form was sometimes preceded by an article and

therefore not included), base forms of adjectives instead of comparative forms and

the first-person plural verb instead of other forms. We omit words whose variation

is primarily morphological as we wish to focus on pronunciation. In all varieties

the same lexeme was used for a single item.

Because the GTRP transcriptions of Belgian varieties are fundamentally differ-

ent from transcriptions of Netherlandic varieties [18], we will restrict our analysis

to the 424 Netherlandic varieties. The geographic distribution of these varieties

including province names is shown in Figure 1. Furthermore, note that we will not

look at diacritics, but only at the 82 distinct phonetic symbols. The average length

of every item in the GTRP (without diacritics) is 4.7 tokens (symbols in a phonetic

transcription).
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3. Methods

To obtain a clear signal of varietal differences in phonology, we ideally want

to compare the pronunciations of each variety with a single reference point. We

might have used the pronunciations of a proto-language for this purpose, but these

are not available. We settled on using the sound correspondences of a given variety

with respect to a reference point as a means of comparison. These sound corre-

spondences form a general and elaborate basis of comparison for the varieties. The

use of the correspondences as a basis of comparison is general in the sense that we

can determine the correspondences for each variety (more on how we do this be-

low), and it is elaborate since it results in nearly 1000 points of comparison (sound

correspondences).

But this strategy also leads to the question of what to use as a reference point.

There are no pronunciations in standard Dutch in the GTRP and transcribing the

standard Dutch pronunciations ourselves would likely have introduced between-

transcriber inconsistencies. Heeringa [8, pp. 274–276] identified pronunciations in

the variety of Haarlem as being the closest to standard Dutch. Because Haarlem

was not included in the GTRP varieties, we chose the transcriptions of Delft (also

close to standard Dutch) as our reference transcriptions. See the discussion section

for a consideration of alternatives.

3.1. Obtaining sound correspondences

To obtain the sound correspondences for every site in the GTRP with respect

to the reference site Delft, we used an adapted version of the regular Levenshtein

algorithm [19].

The Levenshtein algorithm aligns two (phonetic) strings by minimizing the

number of edit operations (i.e. insertions, deletions and substitutions) required to
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transform one string into the other. For example, the Levenshtein distance between

[lEIk@n] and [likh8n], two Dutch variants of the word ‘seem’, is 4:

lEIk@n delete E 1

lIk@n subst. i/I 1

lik@n insert h 1

likh@n subst. 8/@ 1

likh8n

4

The corresponding alignment is:

l E I k @ n

l i k h 8 n

1 1 1 1

When all edit operations have the same cost, various alignments yield a Leven-

shtein distance of 4 (i.e. by aligning the [i] with the [E] and/or by aligning the [@]

with the [h]). To obtain only the best alignments we used an adaptation of the Lev-

enshtein algorithm which uses automatically generated segment substitution costs

based on pointwise mutual information (PMI) [20]. This adaptation was proposed,

described in detail, and evaluated by Wieling et al. [21] and resulted in significantly

better individual alignments than using the regular Levenshtein algorithm.

The approach consists of obtaining initial string alignments by using the Leven-

shtein algorithm with a syllabicity constraint: vowels may only align with (semi-)

vowels, and consonants only with consonants, except for syllabic consonants which

may also be aligned with vowels. After the initial run, the substitution cost of ev-

ery segment pair (a segment can also be a gap, representing insertion and deletion)

is calculated according to a pointwise mutual information procedure assessing the

statistical dependence between the two segments:
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PMI(x, y) = log2

(
p(x, y)

p(x) p(y)

)
Where:

• p(x, y) is estimated by calculating the number of times x and y occur at the

same position in two aligned strings X and Y , divided by the total number

of aligned segments (i.e. the relative occurrence of the aligned segments x

and y in the whole data set). Note that either x or y can be a gap in the case

of insertion or deletion.

• p(x) and p(y) are estimated as the number of times x (or y) occurs, divided

by the total number of segment occurrences (i.e. the relative occurrence of

x or y in the whole data set). Dividing by this term normalizes the co-

occurrence frequency with respect to the frequency expected if x and y are

statistically independent.

Positive PMI values indicate that segments tend to cooccur in correspondences

(the greater the PMI value, the more segments tend to cooccur), while negative

PMI values indicate that segments do not tend to cooccur in correspondences. New

segment distances (i.e. segment substitution costs) are generated by subtracting the

PMI value from 0 and adding the maximum PMI value (to ensure that the minimum

distance is 0).

After the new segment substitution costs have been calculated, the strings are

aligned again based on these new segment substitution costs. Calculating new

segment distances and realigning the strings is repeated until the string alignments

remain constant. Our alignments were stable after 12 iterations.

After obtaining the final string alignments, we use a matrix to store the pres-

ence or absence of each segment substitution for every variety (with respect to the
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reference place). We thus obtain a binary m × n matrix A of m varieties (in our

case 423; Delft was excluded as it was used as our reference site) by n segment

substitutions (in our case 957; not all possible segment substitutions occur). A

value of 1 in A (i.e. Aij = 1) indicates the presence of segment substitution j in

variety i (compared to the reference variety), while a value of 0 indicates the ab-

sence. We experimented with frequency thresholds, but decided against applying

one in this paper as their application seemed to lead to poorer results. We postpone

a consideration of frequency-sensitive alternatives to the discussion section.

3.2. Bipartite spectral graph partitioning

An undirected bipartite graph can be represented by G = (R,S, E), where R

and S are two sets of vertices and E is the set of edges connecting vertices from

R to S. There are no edges between vertices in a single set, e.g. connecting nodes

in R. In our case R is the set of varieties, while S is the set of sound segment

substitutions (i.e. sound correspondences). An edge between ri and sj indicates

that the sound segment substitution sj occurs in variety ri. It is straightforward

to see that matrix A is a representation of an undirected bipartite graph. Figure 2

shows an example of an undirected bipartite graph consisting of four varieties and

three sound correspondences.

If we represent a graph such as that in Figure 2 using a binary adjacency matrix

in which a cell (i,j) has the value 1 just in case there is an edge from i to j (i.e. a

feature is instantiated at a site), and 0 otherwise. Then the spectrum of the graph is

the set of eigenvalues of its adjacency matrix.

Spectral graph theory is used to find the principal properties and structure of a

graph from its graph spectrum [22]. Dhillon [12] was the first to use spectral graph

partitioning on a bipartite graph of documents and words, effectively clustering

groups of documents and words simultaneously. Consequently, every document
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Vaals

Sittard

Appelscha

Oudega

:

:

-:

Figure 2: Example of a bipartite graph of four varieties and three sound correspondences

cluster has a direct connection to a word cluster. In similar fashion, we would like

to obtain a clustering of varieties and corresponding segment substitutions. We

therefore apply the multipartitioning algorithm introduced by Dhillon [12] to find

k clusters:

1. Given the m×n variety-by-segment-correspondence matrix A as discussed

previously, form

An = D1
−1/2AD2

−1/2

with D1 and D2 diagonal matrices such that D1(i, i) = ΣjAij and D2(j, j) =

ΣiAij

2. Calculate the singular value decomposition (SVD) of the normalized matrix

An

SVD(An) = U ∗Λ ∗ V T

and take the l = dlog2ke singular vectors, u2, . . . ,ul + 1 and v2, . . . ,vl + 1
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3. Compute Z =

D1
−1/2 U [2,...,l+1]

D2
−1/2 V [2,...,l+1]


4. Run the k-means algorithm on Z to obtain the k-way multipartitioning

To illustrate this procedure, we will co-cluster the following variety-by-segment-

substitution matrix A in k = 2 groups (note that this matrix is visualized by Fig-

ure 2).

[2]:[I] [d]:[w] [-]:[@]

Vaals (Limburg) 0 1 1

Sittard (Limburg) 0 1 1

Appelscha (Friesland) 1 0 1

Oudega (Friesland) 1 0 1

We first construct matrices D1 and D2. D1 contains the total number of edges

from every variety (in the same row) on the diagonal, while D2 contains the total

number of edges from every segment substitution (in the same column) on the

diagonal. Both matrices are show below.

D1 =


2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

 D2 =


2 0 0

0 2 0

0 0 4



We can now calculate An using the formula displayed in step 1 of the multiparti-

tioning algorithm:
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An =


0 .5 .35

0 .5 .35

.5 0 .35

.5 0 .35


Applying the SVD to An yields:

U =


−.5 .5 .71

−.5 .5 .71

−.5 −.5 0

−.5 −.5 0

 Λ =


1 0 0

0 .71 0

0 0 0



V =


−.5 −.71 −.5

−.5 .71 −.5

−.71 0 .71


To cluster in two groups, we look at the second singular vectors (i.e. columns)

of U and V and compute the 1-dimensional vector Z:

Z =
[
.35 .35 −.35 −.35 −.5 .5 0

]T

Note that the first four values correspond with the places (Vaals, Sittard, Appelscha

and Oudega) and the final three values correspond to the segment substitutions

([2]:[I], [d]:[w] and [-]:[@]).

After running the k-means algorithm on Z, where k = 2, the items are assigned

to one of two clusters as follows:
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[
1 1 2 2 2 1 1

]T
The clustering shows that Appelscha and Oudega are clustered together (cor-

responding to the third and fourth items of the vector, above) and linked to the

clustered segment substitution of [2]:[I] (cluster 2). Similarly, Vaals and Sittard

are clustered together and linked to the clustered segment substitutions [d]:[w] and

[-]:[@] (cluster 1). Note that the segment substitution [-]:[@] (an insertion of [@]) is

actually not meaningful for the clustering of the varieties (as can also be observed

in A), because the bottom value of the second column of V corresponding to this

segment substitution is 0. It could therefore just as likely be grouped in cluster 2.

Nevertheless, the k-means algorithm always assigns every item to a single cluster.

The procedure to determine the importance of sound correspondences in a clus-

ter is discussed next.

3.3. Determining the importance of sound correspondences

Before deciding how to calculate the importance of each sound correspon-

dence, we need to consider the characteristics of important sound correspondences.

Note that if a variety contains a sound correspondence, this simply means that

the sound correspondence (i.e. two aligned segments) occurs at least once in any

of the aligned pronunciations (with respect to the reference variety Delft).

In the following, we will discuss two characteristics of an important sound

correspondence, ‘representativeness’ and ‘distinctiveness’.

Representativeness indicates the proportion of varieties in the cluster which

contain the sound correspondence. A value of 0 indicates that the sound corre-

spondence does not occur in any of the varieties, while a value of 1 indicates that

the sound correspondence occurs in all varieties in the cluster. This is shown in the

formula below for sound correspondence [a]:[b] and cluster ci:
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Representativeness(a, b, c1) =
Varieties in cluster ci containing sound corr. [a]:[b]

Total number of varieties in cluster ci

The second characteristic of an important sound correspondence is ‘distinctive-

ness’. This characteristic indicates how prevalent a sound correspondence is in its

own cluster as opposed to other clusters.

Suppose sound correspondence [a]:[b] is clustered in group c1. We can count

how many varieties in c1 contain sound correspondence [a]:[b] and how many va-

rieties in total contain [a]:[b]. Dividing these two values yields the relative occur-

rences of [a]:[b] in c1.

RelativeOccurrence(a, b, c1) =
number of varieties in c1 containing [a]:[b]

number of varieties containing [a]:[b]

For instance, if [a]:[b] occurs in 20 varieties of which 18 belong to c1, the

relative occurrence is 0.9. We intend to capture in this measure how well the corre-

spondence signals the area represented by c1. While it may seem that this number

can tell us if a sound correspondence is distinctive or not, this is not the case. For

instance, if c1 consists of 95% of all varieties, the sound correspondence [a]:[b]

is not very distinctive for c1 (i.e. we would expect [a]:[b] to occur in 19 varieties

instead of 18). To correct for this, we also need to take into account the relative

size of c1.

RelativeSize(c1) =
number of varieties in c1

total number of varieties

We can now calculate the distinctiveness of a sound correspondence by sub-

tracting the relative size from the relative occurrence. Using the previous example,

this would yield 0.90 − 0.95 = −0.05. A positive value indicates that the sound

correspondence is distinctive (the higher the value, the more distinctive), while a
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negative value indicates values which are not distinctive. To ensure the maximum

value equals 1, we use a normalizing term as can be seen in the following formula:

Distinctiveness(a, b, c1) =
RelativeOccurrence(a, b, c1)− RelativeSize(c1)

1− RelativeSize(c1)

A distinctiveness value of 0 indicates that the observed and expected percentage

are equal. Values below 0 (which are unbounded) indicate sound correspondences

which are not distinctive, while positive values indicate distinctive values.

To be able to rank the sound correspondences based on their distinctiveness and

representativeness, we need to combine these two values. A simple way to deter-

mine the importance of every sound correspondence based on the distinctiveness

and representativeness is to take the average of both values, as is illustrated in the

following formula.

Importance(a, b, c1) =
Representativeness(a, b, c1) + Distinctiveness(a, b, c1)

2

Because it is essential for an important sound correspondence to be distinctive,

we will only consider sound correspondences having a non-negative distinctive-

ness. As both representativeness and distinctiveness will now range between 0 and

1, the importance will also range between 0 and 1. Higher values within a cluster

indicate more important sound correspondences for that cluster. As we took the

cluster size into account in calculating the distinctiveness, we can also compare the

clusters with respect to the importance values of their sound correspondences.

In the following section we will report the results on clustering in two, three

and four groups.2

2We also experimented with clustering in more than four groups, but the k-means clustering
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4. Results

After running the multipartitioning algorithm3 we obtained a two-way cluster-

ing in k clusters of varieties and segment substitutions. Figure 3 illustrates the

simultaneous clustering in two dimensions. A black dot is drawn if the variety

(y-axis) contains the segment substitution (x-axis). The varieties and segments are

sorted in such a way that the clusters are clearly visible (and marked) on both axes.

To visualize the clustering of the varieties, we created geographical maps in

which we indicate the cluster of each variety by a distinct pattern. The division in

2, 3 and 4 clusters is shown in Figure 4.

In the following subsections we will discuss the most important geographical

clusters together with their simultaneously derived sound correspondences. In ad-

dition to discussing linguistically interesting sound correspondences [1], we will

also discuss the importance of these subjectively selected sound correspondences

and show the most important sound correspondences. The main point to note is

that besides a sensible geographical clustering, we also obtain linguistically sensi-

ble results.

Note that the connection between a cluster of varieties and sound correspon-

dences does not necessarily imply that those sound correspondences occur only in

that particular cluster of varieties. This can also be observed in Figure 3, where

sound correspondences in a particular cluster of varieties also appear in other clus-

ters (but less densely).

algorithm did not give stable results for these groupings. It is possible that the random initialization of

the k-means algorithm caused the instability of the groupings, but since we are ignoring the majority

of information contained in the alignments it is more likely that this causes a decrease in the number

of clusters we can reliably detect.
3The implementation of the multipartitioning algorithm was obtained from http://adios.

tau.ac.il/SpectralCoClustering
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Figure 3: Co-clustering varieties (y-axis) and segment substitutions (x-axis) in 2 (left), 3 (middle)

and 4 (right) clusters

Figure 4: Geographic projection of varieties clustered in 2 clusters (left), 3 clusters (middle) and 4

clusters (right)
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The Frisian area

The division into two clusters clearly separates the Frisian language area (in the

province of Friesland) from the Dutch language area. This is the expected result

as Heeringa [8, pp. 227–229] also measured Frisian as the most distant of all the

language varieties spoken in the Netherlands and Flanders. It is also expected in

light of the fact that Frisian even has the legal status of a different language rather

than a dialect of Dutch. Note that the separate “islands” in the Frisian language

area (see Figure 4) correspond to the Frisian cities which are generally found to

deviate from the rest of the Frisian language area [8, pp. 235–241].

A few interesting sound correspondences between the reference variety (Delft)

and the Frisian area are displayed in the following table and discussed below. The

correspondences in the table were chosen subjectively from the long list of corre-

spondences provided by the bipartite spectral graph clustering procedure based on

their being interpretable, e.g. based on the literature concerning Dutch and Frisian

[1]. We also compare the correspondences selectively chosen in earlier work with

those determined by the calculations based on importance, i.e. the combination

of representativity and distinctiveness. The importance of each subjectively se-

lected sound correspondence is indicated in the table by its rank (the most impor-

tant sound correspondence has rank 1). For completeness, the importance and its

two components distinctiveness and representativeness are also displayed.

Reference [2] [2] [a] [o] [u] [x] [x] [r]

Frisian [I] [i] [i] [E] [E] [j] [z] [x]

Rank 3 8 20 1 11 14 4 41

Importance 0.96 0.88 0.77 0.97 0.85 0.83 0.96 0.65

Representativeness 0.95 0.76 1 1 0.86 1 0.95 0.81

Distinctiveness 0.97 1 0.54 0.95 0.84 0.65 0.97 0.49
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Only looking at the sound correspondences pur sang, we can see that the Dutch

/a/ or /2/ is pronounced [i] or [I] in the Frisian area. This well known sound cor-

respondence can be found in words such as kamers ‘rooms’, Frisian [kIm@s] (pro-

nunciation from Anjum), or draden ‘threads’ and Frisian [trIdn] (Bakkeveen). In

addition, the Dutch (long) /o/ and /u/ both tend to be realized as [E] in words such as

bomen ‘trees’, Frisian [bjEm@n] (Bakkeveen) or koeien ‘cows’, Frisian [kEi] (Ap-

pelscha).

We also identify clustered correspondences of [x]:[j] where Dutch /x/ has been

lenited, e.g. in geld (/xElt/) ‘money’, Frisian [jIlt] (Grouw), but note that [x]:[g]

as in [gElt] (Franeker) also occurs, illustrating that sound correspondences from

another cluster (i.e. the rest of the Netherlands) can indeed also occur in the Frisian

area. Another sound correspondence co-clustered with the Frisian area is the Dutch

/x/ and Frisian [z] in zeggen (/zEx@/) ‘say’ Frisian [siz@] (Appelscha).

Besides the previous results, we also note some problems. First, the accusative

first-person plural pronoun ons ‘us’ lacks the nasal in Frisian, but the correspon-

dence was not tallied in this case because the nasal consonant is also missing

in Delft. Second, some apparently frequent sound correspondences result from

historical accidents, e.g. [r]:[x] corresponds regularly in the Dutch:Frisian pair

[dor]:[trux] ‘through’. Frisian has lost the final [x], and Dutch has either lost a final

[r] or experienced metathesis. These two sorts of examples might be treated more

satisfactorily if we were to compare pronunciations not to a standard language, but

rather to a reconstruction of a proto-language.

When looking at the importance of the subjectively chosen sound correspon-

dences, we can see that out of the eight selected sound correspondences four are

in the top ten. As there are a total of 184 sound correspondences grouped in the

Frisian cluster, this indicates that our method to identify important sound corre-

spondences conforms largely with our subjectively selected important sound cor-
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respondences. In addition, the problematic sound correspondence [r]:[x] has a very

low rank. Also note that the sound correspondence [a]:[i] has a low rank (20), but

clearly belongs to a group of important sound correspondences consisting of /a/-

and /i/-like sounds (i.e. [2]:[I] has rank 3 and [2]:[i] has rank 8).

The table below shows the 5 most important sound correspondences for the

Frisian area ranked according to their importance.

Rank 1 2 3 4 5

Importance 0.97 0.96 0.96 0.96 0.94

Reference [o] [o] [2] [x] [k]

Frisian [E] [I] [I] [z] [S]

Besides the sound correspondences already discussed, we see two additional

important sound correspondences, [o]:[I] and [k]:[S]. The former is illustrated in

the word schoon [sxo:n] ‘clean’, pronounced [skIn] (Bakkeveen) or [skjIn] (Hol-

werd, Joure), as well as in kopen [ko:p@] ‘buy’, pronounced [kI@pj@] (Grouw,

Akkrum). The latter correspondence occurs in words such as raken [ra:k@] ‘strike’

pronounced [rEitS@] in Friesland (Appelscha, Bakkeveen) or in maken [ma:k@] ‘ma-

ke’ pronounced [mEitS@] (e.g. in Anjum and Jubbega). The first may be part of the

larger shift noted above, in which the low back vowels have been fronted, and the

latter is the result of a palatalization of the /k/, which is commonly noted in Frisian.

The Limburg area

The division into three clusters separates the southern Limburg area from the

rest of the Dutch and Frisian language area. This result is also in line with previ-

ous studies investigating Dutch dialectology; Heeringa [8, pp. 227–229] found the

Limburg dialects to deviate most strongly from other different dialects within the

Netherlands-Flanders language area once Frisian was removed from consideration.

22



Some interesting sound segment correspondences for Limburg are displayed in

the following table and discussed below.

Reference [r] [r] [k] [n] [n] [w]

Limburg [ö] [K] [x] [ö] [K] [f]

Rank 12 21 1 5 13 57

Importance 0.58 0.53 0.81 0.64 0.57 0.44

Representativeness 1 0.91 0.86 0.77 0.59 0.68

Distinctiveness 0.16 0.15 0.75 0.51 0.54 0.21

Looking only at the sound correspondences, Limburg uses more uvular ver-

sions of /r/, i.e. the trill [ö], but also the voiced uvular fricative [K]. These occur in

words such as over ‘over, about’, but also in breken ‘to break’, i.e. both pre- and

post-vocalically. The bipartite clustering likewise detected examples of the famous

“second sound shift”, in which Dutch /k/ is lenited to /x/, e.g. in ook ‘also’ realized

as [ox] in Epen and elsewhere. Interestingly, when looking at other words there

is less evidence of lenition in the words maken ‘to make’, gebruiken ‘to use’, ko-

ken ‘to cook’, and kraken ‘to crack’, where only two Limburg varieties document

a [x] pronunciation of the expected stem-final [k], namely Kerkrade and Vaals.

The limited linguistic application does appear to be geographically consistent, but

Kerkrade pronounces /k/ as [x] where Vaals lenites further to [s] in words such

as ruiken ‘to smell’, breken ‘to break’, and steken ‘to sting’. Further, there is no

evidence of lenition in words such as vloeken ‘to curse’, spreken ‘to speak’, and

zoeken ‘to seek’, which are lenited in German (fluchen, sprechen, suchen).

Some regular correspondences merely reflect other, and sometimes more fun-

damental differences. For instance, we found correspondences between [n] and [ö]

or [K] for Limburg , but this turned out to be a reflection of the older plurals in -r.

For example, in the word wijf ‘woman’, plural wijven in Dutch, wijver in Limburg
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dialect. Dutch /w/ is often realized as [f] in the word tarwe ‘wheat’, but this is

also due to the elision of the final schwa, which results in a pronunciation such as

[taö@f], in which the standard final devoicing rule of Dutch is applicable.

While there was much overlap between the subjectively selected and the best

objectively determined sound correspondences in the Frisian area, this appears to

be less so for the sound correspondences of Limburg. Out of the top ten sound

correspondences, we only identified two sound correspondences. However, con-

sidering that there are 156 sound correspondences in the Limburg cluster, we can

still conclude that we detected many good sound correspondences (four out of six

are still in the top fifteen). Just as in the Frisian cluster, we can also identify a group

of sound correspondences here, linking an /r/-like sound in Delft to a slightly dif-

ferent /r/-like sound in Limburg (i.e. [r]:[ö] and [r]:[K]).

The table below shows the 5 most important sound correspondences for the

Limburg area ranked according to their importance. When comparing this table to

the top five sound correspondences of Friesland, we clearly see that Friesland is

characterized by more important sound correspondences than Limburg. This is a

sensible result as in Friesland a separate language is spoken, while in Limburg only

a dialect of Dutch is spoken.

Rank 1 2 3 4 5

Importance 0.81 0.73 0.67 0.65 0.64

Reference [k] [n] - [o] [n]

Limburg [x] [x] [p] [y] [ö]

Besides the already discussed sound correspondences, we see three additional

important sound correspondence, [n]:[x], -:[p] (an insertion of a [p]) and [o]:[y].

The [n]:[x] correspondence is ultimately morphological, we suspect, but it appears
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in words such as bladen [bla:d@n] ‘magazines’ pronounced [blaj@x] in e.g. Roer-

mond and Venlo in Limburg; graven [xra:v@n] ‘graves’, pronounced [xKav@x] in

Gulpen, Horn and elsewhere in Limburg; and kleden [kled@n] ‘(table)cloths’, pro-

nounced [klEId@x] e.g. in Kerkrade and Gulpen in Limburg. The [p] is interpreted

as inserted in the words krom ‘crooked’ Limburgs [kKOmp] (Echt) and komen

‘come [inf.]’ Limburgs [køOmp] (Vaals). The correspondence [o]:[y] is found

in words such as droog ‘dry’ Limburgs [dKyx] (Eisden); bomen ‘trees’ Limburgs

[by@m] (Sevenum); geloven ‘believe [3rd.pl.pres.]’ Limburgs [x@ly@v@] (Vaals);

dopen ‘baptize’ Limburgs [dy@p@] (Meijel); and dooien ‘thaw’ Limburgs [ty@n@]

(Kerkrade).

The Low Saxon area

Finally, the division into four clusters also separates the varieties from Gronin-

gen and Drenthe from the rest of the Netherlands. This result differs somewhat

from the standard scholarship on Dutch dialectology [8], according to which the

Low Saxon area should include not only the provinces of Groningen and Drenthe,

but also the province of Overijssel and the northern part of the province of Gelder-

land. It is nonetheless the case that Groningen and Drenthe normally are seen to

form a separate northern subgroup within Low Saxon [8, pp. 227–229].

A few interesting sound correspondences are displayed in the following table

and discussed below.

Reference [@] [@] [@] - [a]

Low Saxon [m] [N] [ð] [P] [e]

Rank 7 8 58 53 14

Importance 0.59 0.58 0.43 0.51 0.56

Representativeness 0.98 0.98 0.12 0.88 0.88

Distinctiveness 0.20 0.18 0.74 0.13 0.25
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Looking only at the sound correspondences, the best known characteristic of

this area, the so-called “final n” (slot n) is instantiated strongly in words such as

strepen, ‘stripes’, realized as [strepm] in the northern Low Saxon area. It would

be pronounced [strep@] in standard Dutch, so the differences shows up as an unex-

pected correspondence of [@] with [m], [N] and [ð]. We return to this below.

The pronunciation of this area is also distinctive in normally pronouncing words

with initial glottal stops [P] rather than initial vowels, e.g. af ‘finished’ is realized as

[POf] (Schoonebeek). Furthermore, the long /a/ is often pronounced in an umlauted

fashion, [e], as in kaas ‘cheese’, [kes], e.g. in Gasselte, Hooghalen and Norg.

In contrast to the other two clusters, we did not subjectively select any top

five sound correspondences. We did, however, select two top ten sound correspon-

dences out of a total of 220 sound correspondences in the Low Saxon cluster. This

again indicates that our importance ranking method overlaps somewhat with our

subjective selection. Similar to the other two clusters, we can identify a group of

sound correspondences, consisting of the /@/-like sound in Delft connected to an

/m/- or /n/-like sound in Low Saxon (i.e. [@]:[m], [@]:[N] and [@]:[ð], mentioned

above).

The table below shows the 5 most important sound correspondences for the

Low Saxon area ranked according to their importance. It is clear that the Low

Saxon area is characterized by sound correspondences which are slightly less im-

portant than the sound correspondences for Limburg and much less important than

the sound correspondences in Friesland. This again is a sensible result as the dialect

spoken in the Low Saxon area is less pronounced than the dialect of Limburg.
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Rank 1 2 3 4 5

Importance 0.73 0.68 0.63 0.60 0.60

Reference [f] [v] [f] [k] [V]

Low Saxon [b] [b] [m] [P] [b]

Unfortunately we did not detect any top five sound correspondences, hence

all top five sound correspondences will be discussed next. The [f]:[b] correspon-

dence appears in words such as proeven [pruf@] ‘test’, pronounced [proybm
"
] in

Low Saxon, in e.g. Barger-Oosterverld and Bellingwolde; schrijven [sxr@If@] pro-

nounced [sxribm
"
] in Low Saxon, e.g. in Aanloo and Aduard; or wrijven, stan-

dard [fr@If@], ‘rub’ pronounced [vribm
"
] in Low Saxon. Similar examples involve

schuiven ‘shove’ and schaven ‘scrape, plane’.

The correspondence just discussed involves the lenition and devoicing of the

stop consonant /b/, but we also have examples where the /b/ has been lenited, but

not devoiced, and this is the second correspondence, to which we now turn. In

these cases [v] corresponds with the [b] in words such as leven ‘live [3rd.pl.pres.]’

Low Saxon [lebm
"
] (Aduard); bleven ‘remain [3rd.pl]’ Low Saxon [blibm

"
] (Ad-

uard); doven ‘deaf [pl.]’ Low Saxon [dubm
"
] (Aduard); graven ‘dig [3rd.pl.]’ Low

Saxon [xrabm
"
] (Anloo); and dieven ‘thieves’ Low Saxon [dibm

"
] (Westerbork). The

[f]:[m] correspondence occurs in words such as zeventig ‘seventy’ Low Saxon

[zømt1x] (Aduard); boven ‘above’ Low Saxon [bom] (Aduard); proeven ‘taste,

sample [3rd.pl.pres]’ Low Saxon [prym] (Hollandsche Veld); schrijven ‘write [3rd.

pl.pres]’ Low Saxon [sxrim] (Bellingwolde); and wrijven ‘rub [3rd.pl.pres]’ Low

Saxon [Vrim] (Aduard).

The final two examples are interesting because they are not commented on

often. We notice [k]:[P] correspondence where /k/ was historically initial in the

weak syllable /-k@n/, for example in planken [plANk@] ‘boards, planks’, pronounced
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[plANPN
"
] in Low Saxon. Similar examples are provided by denken ‘think’ pro-

nounced [dENPN
"
] in Low Saxon, and drinken ‘drink’ pronounced [drINPN

"
] in Low

Saxon. This correspondence is quite regular, while the last, [V]:[b], is found in

exactly one word eeuwen [euV@] ‘centuries’, pronounced [eubm
"
] at several Low

Saxon sites.

We note that some of these examples again detect likely non-historical corre-

spondences, e.g. the [f]:[m] correspondence exemplified in the Aduard pronunci-

ation [bom], where the [m] may correspond not to the medial Delft [f] ([bof@n]),

but rather to the final [n], which has assimilated in place due to the [f], which in

turn was then later lost. The same may be said of the examples proeven ‘taste, sam-

ple’ and schrijven ‘write’ (above). This underscores the need for manual inspection

even though the procedure is successful in uncovering interesting correspondences.

5. Discussion

In this study, we have applied a novel method to dialectology in simultaneously

determining groups of varieties and their linguistic basis (i.e. sound segment corre-

spondences). We demonstrated that the bipartite spectral graph partitioning method

introduced by Dhillon [12] gave sensible clustering results in the geographical do-

main as well as for the concomitant linguistic basis.

As mentioned above, we did not have transcriptions of standard Dutch, but

instead we used transcriptions of a variety (Delft) close to the standard language.

While the pronunciations of most items in Delft were similar to standard Dutch,

there were also items which were pronounced differently from the standard. While

we do not believe that this will change our results significantly, using standard

Dutch transcriptions produced by the transcribers of the GTRP corpus would make

the interpretation of sound correspondences more straightforward.
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We indicated in Section 4 that some sound correspondences, e.g. [r]:[x], would

probably not occur if we used a reconstructed proto-language as a reference instead

of the standard language. A possible way to reconstruct such a proto-language is

by multiple aligning [23] all pronunciations of a single word and use the most

frequent phonetic symbol at each position in the reconstructed word. It would be

interesting to see if using such a reconstructed proto-language would improve the

results by removing sound correspondences such as [r]:[x].

In this study, we only looked at the importance of individual sound correspon-

dences, and we have compared sound correspondences noted in earlier manual

work with sound correspondences ranked by simple measures we developed to

find representative and distinctive elements. Earlier we had detected important

correspondences by examining the clustered sound correspondences and then “eye-

balling” sets of alignments to see where they were instantiated. In this paper we

have implemented statistical measures designed to find important sound correspon-

dences more automatically. When we then applied these measures to the same data

from which we had manually identified what seemed like important correspon-

dences, i.e. the three clusters in Section 4, we note that in every case additional

correspondences were noted, which could in turn be confirmed in a manual verifi-

cation step. We conclude from this that the measures are functioning well. It also

turns out that the correspondences noted earlier in the “eyeballing” fashion were

also ranked highly, although not always in the top five.

The important sound correspondences found by our procedure are not always

the historical correspondences which diachronic linguists build reconstructions on.

Instead, they may reflect entire series of sound changes and may involve elements

that do not correspond historically at all. We suspect that dialect speakers likewise

fail to perceive such correspondences as general indicators of another speaker’s

provenance, except in the specific context of the words such as those in the data
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set from which the correspondences are drawn. This means that some manual

investigation is still necessary to analyze the distinctive elements of the dialects as

well.

We nonetheless note that we may be able to improve the procedures applied

here incorporating more phonological context into the basic alignment routines.

We have experimented with incorporating more context in the past, and have con-

cluded not only that it is feasible, but also that the result is in general an improve-

ment [24].

While sound segment correspondences function well as a linguistic basis, it

might also be fruitful to investigate morphological distinctions present in the GTRP

corpus. This would enable us to compare the similarity of the geographic distri-

butions of pronunciation variation on the one hand and morphological variation on

the other.

In this study, we focused on the original bipartite spectral graph partitioning

algorithm introduced by Dhillon [12]. Investigating other approaches such as bi-

clustering algorithms for biology [25] or an information-theoretic co-clustering ap-

proach [26] would be highly interesting.

It would likewise be interesting to attempt to incorporate frequency, by weight-

ing correspondences that occur frequently more heavily than those which occur

only infrequently. While it stands to reason that more frequently encountered vari-

ation would signal dialectal affinity more strongly, it is also the case that inverse

frequency weightings have occasionally been applied [4], and have been shown

to function well. We have the sense that the last word on this topic has yet to be

spoken, and that empirical work would be valuable.

Our paper has improved the techniques available for studying the social dynam-

ics of language variation. In dialect geography, social dynamics are operationalized

as geography, and bipartite spectral graph partitioning has proven itself capable of
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detecting the effects of social contact, i.e. the latent geographic signal in the data.

Other dialectometric techniques have done this as well. But linguists have

rightly complained that linguistic factors have been neglected in dialectometry [27,

p.176]. This paper has shown that bipartite graph clustering can detect the linguis-

tic basis of dialectal affinity, and thus provide the information that Schneider and

others have missed.

We additionally note that we may expect that cognitive constraints are also

reflected in the empirical basis for studies such as these. They should emerge as

strong associations that are not conditioned by geography. By showing how to

identify geographically conditioned variable associations (correlations), we should

be in an improved position to detect the unconditioned ones. One major striking

effect in variation due to cognitive dynamics is worth special mention even though

we see no way to investigate it using the techniques of the present paper, and that

is the fact that sound correspondences are interesting objects of study. This is

only possible because sounds are organized phonemically—so that a shift in the

pronunciation of a sound in one word tends to result in its shift in another as well.

This tendency is real, and is worthy of more exact attention.

Future work will also need to address how cognitive and social dynamics in-

teract, preferably by deploying techniques capable not only of detecting social and

cognitive conditioning, but also capable of linking these to the concrete effects they

have on the distributions of linguistic features.
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