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Abstract

A research on connectionist mapping from written to
spoken forms in natural language is presented. The more
plausible for this task Simple Recurrent Network was used
instead of a static one. The model was trained on Dutch
monosyllabic corpus. The effects of frequency, length and
consistency were examined too and they were found matching
to reported data in psycholinguistic experiments.

Introduction
Among a number of linguistic problems attracting attention
in cognitive science is the word reading task, in particular
the mapping from written to spoken forms in natural
language. Connectionist models, if successfully trained on
this problem and if their performance correlates to human
performance in reading, can supply a framework for lexical
processing. For example, Seidenberg & McClelland (1989,
hence SM89) and Plaut et al (1996) suggest that a single-
route distributed process performs this transformation, as
opposed to the symbolic dual-route model  which claims
that the reader must also have a lexical route that handles
exceptions, or irregular words(Coltheart 1980, 1993). The
dual-route model has a connectionist implementation too:
Zorzi (1998)  proposed a Multil ayered Perceptron (MLP)
with an alternative structure to handle both easier rule-based
mappings and the more difficult, exceptional words.

Although these connectionist models are reported to
perform well , they employ static lexical encoding, which
imposes constraints and might be considered a theoretical
drawback. A better account for the variable and sequential
nature of words would be sequential processing, which
produces single phoneme at a time, as in the Sejnowski &
Rosenberg’s NETtalk model (1987). Simple Recurrent
Networks (SRN) by Elman (1990) fit even better in this
lexical representation scheme, with the advantage of gradual
left context dependence, as opposed to the window context
dependence in the NETtalk model. This capacity is due to
the distributed contextual memory in SRNs, gradually

evolving in time, while in the NETtalk the temporal
information is encoded in a fixed-size window.

SRNs are reported to be successful in other difficult
lexical tasks, e.g., learning the phonotactics of monosyllabic
Dutch corpus (Stoianov, Nerbonne & Bouma 1998, hence
SNB98), which raises hopes for success in the reading task.
Also, Plaut (in press) employs an extended SRN model for
this task. In the current paper we propose further
exploitation of the SRN model on this challenging problem.

To accomplish this, we trained a SRN on mapping
orthographic-phonetic representations of all 6100 Dutch
monosyllables, as found in the CELEX lexical database.
This diff icult data set contains also rare and foreign words.
The lexical encoding that was used in phonotactics learning
(SNB98), in which the left context only is presented, is not
enough for this task, because only the proper output
phoneme should be activated, as opposed to predicting all
successors in the phonotactics problem. Therefore, a more
specific data presentation was applied. The learning was
successful and the network generalized well too. In addition
to learning, we examined the SRN’s errors for various
effects found in previous psycholinguistic experiments, such
as word frequency and grapheme-to-phoneme mapping
consistency. The sequential data representation allowed us
to observe other effects too, such as word length and error
positioning. The SRN error profile matched closely to the
human performance in reading, which supports the
suggestion that SRN models can be used as a basic
sequential processing module in a larger cognitive
framework, explaining our cognitive linguistic capacity.

Mapping from orthography to phonology &
the evolution of connectionism.

The reading process is complex. It involves acquiring visual
input; transformation to abstract graphemic representations;
further mapping to abstract auditory representations and
finally, production of motor commands that cause sounds. If
the visual data has semantic meaning, it is accessed too.
Simultaneous modeling of all these stages is difficult, so
assuming that the input and output steps are done, one can
work on the intermediate level. Our work involves only the
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mapping from abstract graphemic representations to abstract
phonetic representations. Therefore, hereafter by ‘ reading’,
we will mean this mapping.

Since the first successful connectionist system that
transformed text to phonemes – the NETtalk (Sejnowski &
Rosenberg 1987) – a number of other connectionist
architectures that model the human reading process have
been suggested. Among these, Seidenberg & McClelland
(1989) and Plaut, McClelland, Seidenberg & Patterson
(1996), have been influential on connectionist NLP research
(e.g., Milostan & Cottrell 1998; Harm 1998). A
connectionist model that takes the opposite side of the
single route / dual-route controversy was proposed by Zorzi
(1998), who suggests that the MLP might benefit from an
extra set of connections, from the input to the output layer.
This extra set of connections is interpreted as a second
“route”, similar to the Grapheme-to-Phoneme-Conversion
(GPC) rules (Coltheart 1978). The information flow through
the standard hidden layer is expected to interpret the more
complex mappings, or exceptional words.

All these models are based on the general PDP postulates
of using distributed representations and distributed
knowledge, principles that stem from our neural system.
Connectionist models benefit other useful properties too –
generalization for unseen data, noise resistance, etc. – which
are considered hard for symbolic systems.

 An important divergence between NETtalk and the latter
models is the employed lexical representation. In NETtalk,
which is a static feedforward MLP, words are represented
sequentially to the network, one letter at a time, together
with a context of a few letters surrounding the letter to be
pronounced. The network is trained to produce the phoneme
that corresponds to the current letter and context. In
contrast, the models in SM89, Plaut et al. (1996) and Zorzi
(1998) explore static lexical representations, where words
are presented to the NN at once and the corresponding
phonologic representations are produces at once, too.

The SM89 model uses representation based on triples of
graphemes and phonemes: “Wickelfeatures” . In the input
pattern correspondent to a given word, active orthographic
Wickelfeatures will be those, which are a sub-part of the
input word. The output phonetic encoding is similar. The
model used 400 input orthographic units and 460 output
phonetic units. This representation raises the necessity of a
complex feature encoder and decoder.

The connectionist models proposed in Plaut et al (1996)
are a feedforward MLP and an attractor NN (an extension of
MLP with a recurrent layer at the output, which aimed at
more precise targeted identification). They explore an
alternative static data representation, which accounts for the
spelli ng-to-sound regularities of English monosyllabic
words. In this representation, there are slots for the onset
and coda consonants and the vowels of the nucleus. By
observing the existing graphotactic and phonotactic
restrictions in the orthographic and phonetic onset, nucleus
and coda representations, the authors manually constructed
reduced input and output representations with 105 input

grapheme and 61 output phoneme units. These units stand
for a limited number of orthographic and phonetic onsets,
nuclei and codas. After a number of successful experiments
on learning a orthography to phonology mapping, their
claim is that this connectionist model and lexical
representation can account for the basic abiliti es of skilled
readers to pronounce correctly both regular and exceptional
items, while still generalizing to novel items. In addition,
network error profile with respect to word frequency and
grapheme-to-phoneme mapping consistency were tested
against human performance in reading. For this purpose,
reading latencies were considered to correspond to network
error (in MLP) or to the time required for the network to
settle to a stable output pattern (in attractor NN model). The
experiments and mathematical analysis explain how the
networks succeeded in handling quasi-regular domains
(both regular and exception words) and producing
frequency and consistency interactions exhibited by
humans. In spite of this, in natural languages language
objects are dynamic, including the words in their
orthographic and phonetic representations, which has been
dismissed by unjustified application of one of the Hinton' s
principles about connectionist models:

For processing to be fast, the major constituents of an
item should be processed in parallel.  (Hinton 1990)

Words have constituents (graphemes or phonemes) that
are inevitably encountered in a strictly sequential fashion,
therefore, words should be processed sequentially.
Phonemes span time too, but dealing with words, we can
consider the phonemes as static objects and process them in
parallel. As far as the graphemes are concerned, one might
argue that in reading we perceive visual objects larger than
single graphemes, e.g., words. But this is done by skill ed
readers, possibly by use of some extra mechanisms.
Beginners initially read one letter at a time (or group of
letters) therefore the models should account for this.

Given this, there is nothing wrong with the NETtalk
model, which was criticized in Plaut et al (1996) because of
the Hinton’s principle. Nevertheless, NETtalk has another
problem, based on the fixed limited context. The network
would not map correctly two words with different phonetic
representations, which differ somewhere beyond the
temporally shifting graphemic context scope. A model that
is theoretically able to handle such dependencies is Simple
Recurrent Networks (Elman 1990), where the output of the
network depends on the whole left context, and which we
explore in the following section.

Learning to Read Aloud with SRN
The experimental setting in our research is based on a
standard SRN, trained to learn sequential association in
orthography-to-phonology conversion (Fig.1). The network
performance was measured on the training and unseen
words. Further, the performance was analyzed for different
variables, such as word frequency, length, grapheme-to-
phoneme mapping consistency and error positioning, from
which we drew some conclusions about the syllabic
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structure in Dutch. Preliminary analysis of a damaged
network and its correlation to dyslexia is provided too.

Fig.1 Simple Recurrent Networks and mapping from
orthography to phonology.

Method
A Simple Recurrent Network (Elman 1990) was trained to
learn a sequential mapping: the orthography-to-phonology
conversion of all 6100monosyllabic Dutch words, as
extracted from CELEX lexical database. The same corpus
was used in our previous studies on graphotactics and
phonotactics (SNB98). The data set contains orthographic
and phonetic word representations and the frequencies of
word occurrence in the Dutch language. This corpus was
split i nto a training set (5100 words) and a test set (1000
words). The orthographic and phonetic word representations
have mean length 4.53 (σ=1.08, min=3, max=9), and  3.92
(σ = 0.94, min=2, max=8) respectively. The word
representations are built of 26 graphemes and 44 phonemes,
plus one extra symbol representing space (‘#’), used as a
fill er specifing end-of-word. The graphemes and phonemes
were encoded orthogonally, that is, for each grapheme and
phoneme, there is one input or output neuron respectively.
One might speculate that with regard to the network
associative capacity, this representation is equivalent to a
distributed, feature-based representation, because we can
always add two more static layers that decode and encode
such feature-based representations to the orthogonal ones.
During training and testing, the orthographic and phonetic
word representations were given to the network
sequentially, one symbol at a time. In order for the network
to be able to correctly reproduce different phonological
representations for words with identical beginnings (left
context), phonological production is delayed for three steps.
In this manner, the network receives partial right context as
well . Therefore, the network decision at each moment is
based on the full l eft and partial right context
(3 graphemes), simultaneously encoded distributively in the
context layer.

Experiments were conducted with different number of
hidden neurons, ranging from 100 to 400. Best performance
was found with the largest network. In this report, we
present results for a network with 200 hidden neurons,
resulting in about 55,000 weights. The network architecture
is given in Fig.1, where an example mapping from the

orthographic to the phonetic representation of the word
‘nets’ is shown as well . The delay is implemented
technically by producing three fill ing symbols ( end-of-
word - ‘#‘ ) at the output and feeding the input with the
same symbol until the full phonetic representation is
generated at the output layer.

Training
The training process is organised in epochs, in the course of
which the whole training data set (5100 words) is presented
to the network in accordance with word distribution, that is,
word frequencies (SNB98). In order to reduce the learning
time, the actual word frequencies were shrunk by applying a
logarithm function, resulting in about 12,500 training
sequences per session. Such an approach has been used by
other authors as well (e.g., Plaut et al 1996; Zorzi 1998).
Next, for each word, the sequence of graphemes is
presented to the input, one by one, followed by three end-
of-word symbols. Each time step is completed by copying
the hidden layer activations to the context layer, which are
used in the next step (Elman, 1990). At the same time, after
the network generates its expectations for the phonemes at
the output layer, the representation of the true phoneme is
used to compute an error for the current time step. This
error is used by the BackPropagation Through Time (BPTT)
learning algorithm (see for details Haykin 1994; SNB98),
which includes a forward move where errors are collected
and a backward move, during which global error is back-
propagated through time until the beginning of the current
training sequence. This process is followed by updating the
network weights with values, accumulated during the
backward move. The state of the network (i.e., the context
memory) is reset after processing one word.

The network was trained on 18 epochs, resulting in
approximately 200,000 word presentations. The total
number of individual word presentations ranged from 18 to
200, according to the individual word frequencies. The
network started with a sharp error drop to about 4%, slowly
decreasing down to 1.2% (see Table 1).

  Table 1. Dynamics of the SRN error during the training.

Epoch 1 2-4 4-10 10-17 18
Error (%) 4.1% 2% 1.6% 1.4% 1.2%

We expect further error decrease with longer training,
although this would need much more training time, because
the learning coefficient η decreases by 30% after each
epoch, starting from 0.3 and restricted with a bottom limit at
0.001. Learning grapheme to phoneme conversion is quite a
diff icult task, so we had to apply some other special
techniques to improve it. First, instead of the standard
Backpropagation algorithm, we used a BPTT learning
scheme as described above. Next, standard momentum
αα=0.5 term was applied. Further, the training process was
supervised by an evolutionary algorithm that trained a pool
of networks on the same problem and after each training
epoch, it eliminated the network with the worst

Output Layer:
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Input Layer: 27 Context:
200
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performance, keeping clones of the networks that performed
better. This training method was developed in our previous
studies on phonotactics (SNB98) and was found to perform
better than the standard single-network training.

Performance
A procedure that examined all training examples followed
each training epoch, in which we distinguished phonemic
and network errors. Phonemic error occurred if during the
network processing, the most active neuron didn’t
correspond to the expected phoneme. Network error
estimated the percent of all mispronounced phonemes,
weighted by the frequency of the word the phonemes belong
to. This procedure results in fear estimation of the network
performance, accounting for the distribution of the words in
natural language. As we mentioned earlier, the final
network error estimated during the training was 1.2%. We
analyzed the type of the incorrect productions the network
has made and found that 75% of them were substitutions
between close phonemes, mainly vowels, which might be
used as an argument to reduce error.

The generalization capabilities of the network were tested
on a test set, which contained the orthographic and phonetic
representations of 1000 unseen during training words. For
the sake of comparison to Plaut et al (1996), we should note,
that the test words should be interpreted as nonwords
because they have not been used for training. We could use
them for testing, because we had their correct phonetic
representations. Still, there might be words that are
exceptional with regard to the reading, therefore we
expected higher error. The performance on this test set was
1.4%, which confirmed that the network learned the Dutch
GPC rules for monosyllables. As we predicted, error
increase was primary due to the exceptional words.

The overall performance is similar to Zorzi (1998) and
worse than SM89, and Plaut et al (1996), which we attribute
to the twice larger data set and incomplete training.
Obviously, the 18 training epochs resulting in 18 up to 200
exposures for a single word were not enough to achieve
perfect performance, especially for the exceptional words.
Also, networks with larger hidden layers tend to learn
better, however at the cost of longer training time.

Error profile analysis
In addition to overall network accuracy, connectionist
systems that model lexical tasks also aim at approximating
the correspondent human performance with regard to
different variables such as word frequency. This aspect in
connectionist modeling is important, because it contributes
to verifying whether the suggested models can be used for
modeling the correspondent human processes. For this
purpose, the model performance is compared with reaction
time or error in reading.

The variables we examined were word frequency, word
length, consistency of the grapheme-to-phoneme mapping
and error positioning. Previous reports (Plaut et al 1996;
Zorzi 1998) deal mainly with word frequency and

consistency, unable to exhibit significant length effects. The
sequential nature of SRNs and structure of the training
process naturally involve these characteristics, so we were
able to test them, as does Plaut (in press).

Consistency in orthography to phonology conversion
measures how much the pronunciation of a given item is
coherent to the pronunciation of orthographically similar
items. An interesting issue is how to measure consistency.
Plaut et al (1996) used the similarity in spelling of rhymes
(see below) in order to estimate it. We adopted another
definition, suggested by Jared et al (1990), according to
which consistency depends on the summed frequency of the
word’s friends and word’s enemies. "Friends" are words
with similar spelling and similar pronunciation, while
"enemies" are words with similar spelling, but distinct
pronunciation. We categorized consistency into four
categories (similarly to Plaut et al 1996). Words with many
more friends than enemies are called regular, as opposed to
words with many more enemies than friends, which are
named exceptions. There are two intermediate categories –
ambiguous – with as many friends as enemies – and semi-
regular – with somewhat more friends than enemies. Error
with regard to consistency is given in Table 2. The strong
interaction between error and consistency is in parallel to
the observed effect of reduced naming latencies and greater
accuracy in pronunciation for regular words and increased
latencies and lower pronunciation accuracy for irregular
ones (Coltheart 1978; Glusko 1979). Still, we see in Table 2
much higher error for exceptional words, which we attribute
to the insufficient training.

Table 2. SRN performance against word consistency.

Consistency ExceptionAmbiguous Semi-Regular Regular
Error (%) 30 % 5 % 0.8 % 0.1 %
Entropy 1.4 1.2 1.05 1.0

The next important effect we verified was the network
performance for different word frequencies (Table 3). This
effect was observed in most of the models (Plaut 1996,
1998; Zorzi 1998) and psycholinguistic studies; The SRN
also exhibited good frequency effects with up to five times
better performance for high-frequency words as compared
to the low-frequency items.

Table 3. SRN performance against word frequency.

Frequency Low Mid-Low Mid Mid-High High
Error (%) 4.1% 1.5% 1.0% 0.7% 0.8%

In previous studies (Plaut et al 1996 for review) important
frequency-consistency interaction was found, where the
frequency effect almost disappears for consistent words. To
test for this effect, we conducted 2-dimensional analysis of
error with regard to frequency and consistency and found
the pattern exhibited in human reading studies (Fig.2).
Frequency is unimportant for consistent words, somewhat
important for ambiguous words and crucial for exceptional
words.  We should note that the significant error for very
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exceptional words doesn’t influence much the overall error,
due to the very small number of words from that category.

Fig.2  Network error for various degrees of grapheme-to-
phoneme consistency as a function of frequency &
consistency. The frequency influence on error almost
disappears for regular words, where error is very small.

Further, we analyzed the network performance with regard
to word length. Connectionist models based on static word
representations didn’t show apparent interaction between
error and length, because static word processing can not be
affected by word length. This was the reason Plaut to turn to
a sequential connectionist model in his recent paper (in
press). As we see in Table 4, there is a specific U-shaped
dependency between error and word length. For short and
long words, error is higher than for words of size 4 to 7. Our
explanation for the higher error of the short words is that the
network doesn’t have enough information to produce the
correct pronunciation. On the other hand, the higher error for
longer words is easy to explain, as error accumulates during
left context processing.

Table 4. SRN performance against word length.

Length Short Mid-Short Mid Mid-Long Long
Error (%) 11% 3.1% 2.5% 3.0% 5.6%

And finally, we present an error analysis with regard to the
position at which it appears during the process of phoneme
producing (Table 5). Given the higher error for longer
words one might expect that higher error at the final
positions, but it is not so clear why it is higher at the 2nd and
3rd positions. In order to answer to this question, we
conducted further finer-grained analyze of the position of
the error concentrating on sub-lexical units.

Table 5. SRN performance against error position.

Position 1 2 3 4-5 6-7
Error (%) 1.9% 4.8% 3.7% 1.7% 2.5%

Syllabic structure
Most linguists divide syllables into onset (which contains
the initial consonants), followed by nucleus (intermediate
vowels) and ending with coda (the final consonants). Also,
they look for a more complex internal structure of the
syllable, e.g., (1) or (2) (Kessler & Treiman 1997), most
theoretical linguists preferring (1).

(1) ( onset – rhyme( nucleus – coda) )

(2) ( body(onset – nucleus)  – coda )

Observing the non-uniform error distribution in the words
(see above), we were interested how the error was
distributed into the above sub-syllabic units. The results
showed that the higher error in the middle of the words was
due to higher error at the vowel positions (which includes
positions 2 and 3 in Table 5 due to variable onset length).
The error at the vowel was 8%, while the error in the coda
was about 1.9%. There was lower error in the onset as well
(1.5% – 1.8%). This means that there is a specific error
break at the transition onset-nucleus. This error peak is in
parallel to another interesting fact that we observed, namely
that the mean entropy in the body was 3.37, σσ=0.55, while
the mean entropy in the rhyme was 1.90, σσ=1.21. This
supports statistically the position that the body is less
coherent, and the rhyme more.

Therefore, we can conclude that the syllabic structure in
Dutch is not plain, but follows the onset-rhyme division (1).
The same structure was found in English as well (Kessler &
Treiman 1997). With a non-sequential model this would be
difficult to measure.

Network damaging and dyslexia
The PDP models are well known for their damage resistance
due to their distributed way of representing data and
knowledge. A network damage might consist of loss of
neurons or memory distortion. We experimented with
adding noise to weights and neuron removal. The noise was
represented as random numbers, uniformly distributed in the
range [-p … p]. There was no apparent effect of 1-2%
hidden neurons removal, which was similar to adding slight
noise (p=0.10) to 90% of the neurons, while removing 5%
of the hidden neurons resulted in 20-25% error, which was
similar to adding noise with p=0.30. A milder effect was
observed with noise p=0.20, where  the error jumped to 6%.

We investigated how damages influenced network
performance for various frequency and consistency levels,
searching for processes similar to those found in dyslexics.
There are two main categories of dyslexia resulting from
brain damage (Coltheart 1993; Plaut 1996). In surface
dyslexia, patients can read non-words but have problems
with exceptional words – they regularize them by using
Grapheme-to-Phoneme-Conversion (GPC) rules (Colthearth
1993). The other pattern, phonological dyslexia is
characterized by difficulties in pronunciation of non-words,
although familiar words can be read, i.e., patients seem to
have lost GPC rules. The pattern of error we observed after
network damage looks like phonological dyslexia. The
exceptional words get worse, but the affect on regular words
is more apparent. Mild damage (noise, p=0.20 or discarding
2-3% of the hidden neurons) affects ambiguous (from 4-5%
to 15% error) and regular words (from 0.2-1% to 2-10%
error) much more than words with exceptional
pronunciation. At the same time, the frequency effect was
reduced significantly. More severe damage (removing 5%
neurons or noise, p=0.30) resulted in much larger error for
regular words and a fading of consistency effect.
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In addition, we would note that increasing noise affected
almost twice as many test words (i.e., nonwords) with
exceptional pronunciations as training words from the same
category; that is, some test words with exceptional
pronunciations perhaps assimilate to the reading of some
similar words, but a slight amount of noise easily disrupts
this relation. Also, weight damage was more likely to affect
the end of the words, which we attribute to corrupting the
rules that the network has built in order to encode the
context in memory.

Discussion
In this paper we presented our initial experiments on
learning grapheme-to-phoneme mapping in Dutch with
Simple Recurrent Networks. The main goal in the study was
to test the ability of SRNs to learn such a complex mapping
employing very simple data encoding – sequential
presentation of a single grapheme at a time – as opposed to
static connectionist models (Plaut et al 1996; Zorzi 1998)
and the more complex sequential mapping scheme in Plaut
(in press). In order to test how well SRNs approximate
human performance in reading, we studied the influence of
word frequency and consistency, as well as word length and
error-position, which static connectionist models could not
observe. Further, trained networks were deliberately
damaged with an aim to model dyslexia. SRN performed
well on training and unseen test data sets even after very
limited number of training epochs. Also, there were
significant consistency and frequency effects on error. The
error interacted with word length as well. The observed
pattern of error positioning suggested a specific non-
symmetric syllabic structure for Dutch, which was found in
English as well. The reported data on damaging did not
show all dyslexic patterns, but we should note that the
experiments are still in progress and the data is suggestive.

How does this study contribute to the dialog between
single- and dual-route models? We consider SRNs as a
single-route model, where a single, although complex
mapping produces all outputs in contrast to the “dual-route”
network by Zorzi (1998). However, is Zorzi’s model dual-
route? We claim that it can be simulated by a single-route
MLP with restrictions on the weights during training.
Zorzi’s network structure – with connections that map
directly from orthography to phonology (standing for GPC
rules) and another set of connections that maps through a
standard hidden layer (supposed to maintain a lexicon) –
can emerge in training. Still, because it is difficult to
analyze the way a uniform network does its job, Zorzi’s
model contributes to our understanding how neural
networks can handle such a difficult problem. Maybe, if we
structure SRNs in a similar way, we might achieve even
better performance, by minimizing the complexity of the
learning task. In addition, this would help to model surface
and phonological dyslexia in a more direct way.
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