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Abstract

We present computational linguistics techniques which can help researchers

dealing with the increasing amount of available digital text, focusing on

potential use in the history of science. We examine two tasks: automat-

ically extracting terms from documents and identifying relations between

the terms. We show that the two tasks can be performed reliably and fast,

and that new terms and relations can be identified automatically.

1 Introduction

In the recent decade, there has been a large increase in the amount of digital text
available. These new data collections offer great opportunities for researchers,
and this paper will sketch how information extraction (IE) proceeds on
the basis of large reserves of text.

Computational linguistics (CL) has sought to extract information au-
tomatically from increasingly large collections of texts for some time now. For
example, in a competition in 2007, participants were required to build systems
that process up to a million documents and from these documents, extract
answers to arbitrary questions. Twenty-two systems participated in the task
[Giampiccolo et al., 2007].

Typically, CL work processes articles from newspapers and encyclopedias.
Recently there has also been an increasing amount of work with documents from
the medical domain, and we shall focus on this domain in the present article as
its texts are probably most similar to those of interest for historians of science.
In fact, there has been little work applying CL to texts used in other fields such
as history and literature.1 We believe that CL can provide useful contributions
to these fields, but we shall not attempt to survey all the uses to which CL
techniques might be put in studying history or literature (but see Nerbonne
[2007] for remarks on applications of text classification), but focus rather on
how information is extracted about particular domains of inquiry.

It is worth noting that a great deal of the CL work is practically motivated
by the wish to provide flexible access to textual information and to organize
it in ways conducive to automatic reasoning. The fact that there is practical
motivation for the work suggests that it will continue, and presumably continue
to improve, even if its contribution to current history of science is quite modest.
This means that the field may be of strategic value to the history of science

1But see Cardie and Wilkerson [2008] for applications to political science and Hirst and
Feiguina [2007] for applications to literary scholarship.
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in the longer term. A second consequence of the practical motivation is the wish
to quantify progress, and we shall return to this below (2).

This paper presents two examples of CL techniques that we believe could be
valuable to researchers who wish to track the content in large text collections:
automatic terminology extraction and automatic relation extraction. We advo-
cate exploring a closer cooperation between CL and studies in the history of
science, following Dibattista [2003], envisaging the potential value of the ability
to track technical vocabulary in a scientific field. This might concern the intro-
duction of novel terms or novel associations among existing terms as indications
of innovation; it might mean detecting other changes in technical vocabulary,
e.g., frequency changes, as indications of changes in scientific ideas, or at least,
changes in scientific attention; or, most ambitiously, it could mean deriving a
good deal of information about the ontology of a field automatically, where we
understand ontology to comprise the classes of objects studied and the relations
attributed among those objects. We present techniques aimed at deriving on-
tological information from medical texts in the remainder of this article. We
hope in this way to stimulate interest in CL techniques as they may be used in
studying the history of science.

After this introduction, we deal with terminology extraction in section 2. We
will explain what techniques can be used for this task and look at term variation
and term labeling in more detail. In section 3, we will look at relation extraction.
We will show how text patterns for relation extraction can be learned from a
few examples and how they can be evaluated. We will conclude in section 4.

2 Term Detection

This section describes experiments in which terms were extracted automatically
from texts. We start by giving the definition of a term. Then we present the
data and the preprocessing methods used in the experiment. Next we discuss
the extraction techniques used in the experiments as well as their performance.
The last sections present two challenges for the extraction process: dealing with
term variants and assigning labels to terms.

2.1 What is a term?

In this section, we introduce some theoretical foundations of terminology to get
insight into how to recognize terms in text. There are several formulations of the
meaning of terminology given in dictionaries and encyclopedias. However,
in general, they refer to terminology as a study or a system of terms used
in a special jargon, discipline, subject, or context [Fahmi, 2008]. Formally, a
term is defined as “a designation consisting of one or more words representing
a general concept in a special language” (ISO-704, 2000). [[JN: needs to be in
lit. references]]

Terms are different from words. The most frequent method of term formation
is through combinations of existing lexical elements in particular ways [Sager,
1997]. However, Sager indicates that the formation of complex terms consisting
of two or more lexical elements is not always straightforward, since there is
no simple linguistic criterion for distinguishing between complex terms (e.g.,
high-density disk) and free-formed phrases (e.g., high pressure).
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Automatic term extraction uses computer programs to identify strings from
text that are potential terms [Fahmi, 2008]. This can be done completely auto-
matically or semi-automatically and is referred to as automatic term extraction,
semi-automatic term extraction, automatic term recognition, or term extraction.
In the rest of this paper, we call this process term extraction.

Automatic extraction of information from text is very important to many
applications, such as to information retrieval, question answering, and boot-
strapping or extending ontologies for the semantic web. Naturally, it would be
gratifying to see that research in pure science, such as the history of science,
political science, or literary studies, could benefit from techniques developed for
applied purposes.

Our own focuses on term extraction used to identify arguments of medical
relations. We present the workings of information extraction in automatic term
and relation extraction in order to suggest how these techniques can be valu-
able to researchers, say in humanities, who deal with large sets of data. Many
different methods have been proposed for term extraction, such as linguistic
techniques [Ananiadou, 1994; Bourigault, 1992], statistical techniques [Dagan
and Church, 1994; Justeson and Katz, 1995], or a combination of both [Frantzi
et al., 1998; Maynard, 2000]. In the extraction of multiword terms, most of
the statistical methods (e.g., log-likelihood, mutual information, and C-value)
use only the frequency of occurrence of the candidate terms in text as basis
for calculations aimes at identifying terms. Besides the frequency occurrence
information from text, we can also use external knowledge, such as an initial set
of terms, to improve the accuracy of term extraction [Jacquemin et al., 1997].

The first step in term extraction is to extract candidate terms from text.
If the text has been processed by a parser, we can use the added linguistic
information, e.g., the phrase within which a candidate term is used, to extract
the candidate terms; otherwise we should use sequences of words (n-grams) for
finding interesting information. Among various linguistic information that has
been exploited by previous researchers, part-of-speech (word class) information
is the most widely used. All approaches rank candidate terms according some
statistical scores and thus bring the most likely-term candidates to the top of
the list.

2.2 Measuring Success

Figure 1: Precision = |True-Claims|/|Claims|, Recall = |True-Claims|/|Truth|
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As we noted in the introduction, a great deal of the CL work on IE is prac-
tically motivated. This, together with the complexity of the task, has led to
the adoption of concrete measures of success. In the case of IE (and informa-

tion retrieval) we test on the basis of document collections where the correct
results of processing have been identified by experts in the domain under inves-
tigation. If we are trying to identify terms in a particular domain, then these
will have been marked in the test collection. The list of expertly annotated
terms constitutes the “truth”, the putative terms we claim to detect are claims,
and our success can be measured on the basis of the proportion between the
intersection of these two, i.e. the “ true claims” on the one hand and the claims
but also the entire true set on the other. Recall measures how much of the
truth is detected, and precision how much of what is detected is true. See
Fig. 1 for a sketch.

Note that precision and recall are normally inversely related to each other,
meaning that by accepting lower recall you can achieve higher precision and
vice versa. If, for example, one returns all possible candidates recall will be
100% (and precision infinitesimal). If, on the other hand, very few candidates
are proposed, precision is likely to benefit, while recall will suffer.

There are variants of this scheme used in cases where it is infeasible to
have test collections annotated completely, e.g. uninterpolated average

precision, which computes the precision of a each initial subset of a ranked
list of terms and outputs the average of all the precision scores [Manning and
Schütze, 1999, 535ff]. In this case we need to specify the size of the ranked list,
speaking for example of the first 500 elements and its uninterpolated average
precision.

2.3 System Architecture Diagram

Now we briefly describe the system architecture used in our work reported in
the following sections of this paper, as shown in Figure 2. The architecture
consists of four main processes, namely Automatic Term Recognition (ATR),
Term Labeling, Variation Detection, and Relation Extraction, and two more
applications which will not be discussed in this paper, i.e., Ontology Building
and Question Answering. We start the whole workflow with parsing the corpus
using the Alpino parser, and storing parsed sentences as XML.

In the ATR experiments, we extract medical terms from the parsed sentences
using both linguistic and statistical approaches. The output of this process is
a set of candidate terms ranked by their “termhood”, a score assigned by the
process based on textual properties. We apply a threshold to select elements
with high termhood scores. We then label these terms with medical semantic
labels in the Term Labeling module. For this purpose, we label candidates with
semantic information from the Semantic Type found in the Unified Medical
Language System (UMLS), a collection of lists with definitions of medical terms.
Since UMLS contains few Dutch terms, we translate new Dutch terms found
in the corpus into English in order to get semantic types from their matching
terms in the UMLS. Among these terms, there are term pairs which are each
other’s synonyms. We detect these synonyms as well as terms’ abbreviation in
the Variation Detection process (Fig. 2). To evaluate whether a term pair is a
synonym or abbreviation, we use the frequency of its occurrence in Web texts.

Terms and their semantic labels, together with candidate-relation triples
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Figure 2: System architecture diagram of the experiments in this paper.

extracted from the parsed sentences, become inputs for the Relation Extraction
process. To generate relation patterns, we use a subset of the corpus whose
sentences have been annotated manually with relation types. Based on these
patterns, we extract the candidate-relation triples from the rest of the corpus.
For example, we extract relation triples that can be used to generate information
tables for a Question Answering application, or extract concept and relation
instances for the Ontology Building process.

2.4 Data and Preprocessing

In this section we describe the foundation of our term extraction work: the text
collection and the terminological resources as well as the automatic linguistic
analysis used for preprocessing the data. Our text collection has been built from
two Dutch medical texts, namely:

1. Elsevier’s medical encyclopedia: a medical encyclopedia intended for gen-
eral audience and containing 379K words.2

2. Dutch edition of the Merck Manual: a general-purpose medical handbook
intended for professionals and containing 780K words.3

The corpora are medical reference books and provide definitions for each
term, and for terms describing diseases also their symptoms, causes, diagnosis,
and treatment. Consider, for example, an article in the Dutch edition of the
Merck Manual as shown in Figure 3. This article provides medical information
for the disease acute necrotizing gingivitis. Some substrings in the article are

2The encyclopedia was made available to us by Spectrum b.v., and can also be found online
at www.kiesbeter.nl/medischeinformatie/

3www.merckmanual.nl
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ACUTE NECROTIZING GINGIVITIS

Acute necrotizing gingivitis (Plaut-Vincent agina, acute necrotizing ulcerative gingivitis)
is a painful, non-contagious infection of the gums which causes pain, fever and fatigue.
This disorder is also called trench mouth, a term from World War I when many soldiers
contracted the disease in the trenches. [...]

SYMPTOMS

Often acute necrotizing gingivitis start suddenly with painful gums, an uneasy feeling and
fatigue. Furthermore, there is bad breath. The gums are affected and are covered with
a gray layer of dead tissue. The gums start bleeding and eating and swallowing become
painful. Often the lymph glands start to swell while the patient experience a light fever

TREATMENT

The treatment starts with a careful but thorough cleaning of theteeth whilst the dentist

removes all dead tissue and dental plaque. This may require a local anesthetic. In the first
day after treatment, the patient may have to rinse the mouth with hydrogen peroxide-based

rinses (3% hydrogen peroxide mixed with an equal amount of water) instead of brushing

the teeth. [...]

Figure 3: An article about acute necrotizing gingivitis disease in the Dutch
edition of the Merck Manual. The length of the first and third paragraphs have
been reduced.

printed in italic to indicate that they are also terms, for example, Plaut-Vincent
angina. Our term extraction task is aimed at extracting these kinds of terms
automatically.

For the medical domain, two sources of terminological or external knowledge
are available, i.e. UMLS (noted above), and a collection of small terminologies
collected from the Internet. For our term extraction task in this section, we
use both of the resources. This is a point where applied research is pleased to
exploit additional resources in order to optimize performance. But naturally,
one may not always expect to find such resources, especially in connection with
historical research. There it will be essential to extract terms exclusively from
texts.

2.5 Using filters for extracting terms

The first step in the term extraction process is to find candidate terms in text
by looking for context patterns containing specific words or syntactic construc-
tions. These context patterns are called filters. In this section, we compare two
linguistic filters, namely a part-of-speech (PoS) tag (or word class) filter
and a syntactic filter.

The PoS tag filter: A PoS tag filter is a rule which selects a prespecified
sequence of word classes. A basic example of such a rule is Determiner Adjective
Noun. The use of PoS tag filters has been widely reported by previous studies
[Bourigault, 1992; Daille et al., 1994; Justeson and Katz, 1995]. Some of these
filters are very specific such as the one in Dagan and Church [1994] that allows
only N+ sequences. The precision of this kind of filters is high, but since the
filters do not allow some prepositions that are frequently found in terms , such
as of, their recall would tend to be low. However, other filters such as the ones
used in Justeson and Katz [1995] allow more PoS tags and more possibilities
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of sequences. In our experiment, we use the filter by Justeson and Katz [1995]
because we want to get a high recall, and let the next step (the statistical
method) improve the precision.

We slightly modify the Justeson and Katz filter for Dutch by adding an
optional determiner to the original filter, because our terminology resources,
such as the ICD-9 DE ([[not introduced – reference ?????]]), include terms with
determiners (e.g., degeneration of the choroids and stenosis of the larynx, both of
which satisfy the PoS tag sequence filter Noun Preposition Determiner Noun).
We evaluate whether this addition will lead to better results or instead just
introduce more noise.

The syntactic filter : all our texts have been analyzed by a syntactic parser
which has identified syntactic structures such as noun phrases and verb phrases,
as well as the relations between these phrases. Since we have this syntactic
information at our disposal, we have also looked at the possibility of building
syntactic filters. We have extracted word sequences marked as noun phrases
from the corpus and selected these as candidate terms. For example, applied
to the first sentence in the Figure 3, this filter produces the following candidate
terms:

• Acute necrotizing gingivitis Plaut-Vincent angina acute necrotizing ulcer-
ative gingivitis

• Acute necrotizing gingivitis

• Plaut-Vincent angina acute necrotizing ulcerative gingivitis

• acute necrotizing ulcerative gingivitis

• painful non-contagious infection of the gums

• gums

• pain fever

• pain

• fever

• fatigue

The syntactic filter is more liberal than the PoS tag filter. It extracts candi-
date terms of any PoS tag sequence as long as the sequences are of category noun

phrase. As shown in this example, the filter extracts a very long noun phrase
(the first candidate, 10 words), which would not have been selected by the PoS
tag filter. The reason for this is that the automatic syntactic analysis ignores
punctuation signs such as commas and brackets while these are kept by the
PoS filter. The syntactic filter is able to extract nested candidate terms, such
as Acute necrotizing gingivitis and gums, which appear in longer noun phrases.
Despite the removal of punctuation signs by the preprocessing step, the filter is
able to identify the embedded noun phrase acute necrotizing ulcerative gingivitis
and suggest it as a candidate term.

We tested both filters and found that the PoS tag filter performed better
than the syntactic filter. The syntactic filter proposed more candidates (50,287–
45,449) but the PoS tag filter achieved higher precision (37%–20%) and recall
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rates (62%–38%). Some examples of the proposed terms: illness (suggested
by both filters), kidney disorder (only proposed by the Syntactic filter) and
obstruction of movement (only found by the PoS tag filter).

2.6 Ranking candidate terms

In order to improve the precision of the term extraction process, we perform
a second step after filtering candidate terms from text. Working on candidate
terms consisting of two words, we rank candidates based on the frequencies
of the individual words and the strength of the statistical association between
them. We evaluate eight different methods for assessing association strength
using uninterpolated average precision for the first 500 terms (see Section 2.2)
as evaluation.

We calculated the association strenghts using the output of the PoS fil-
ter. The baseline method for candidate term ranking is simple frequency which
assigns a higher rank to frequent word pairs. This approach achieved an un-
interpolated average precision score of 67%. Of the seven other methods that
we evaluated, the two best were chi-square (χ2) and Dice’s coefficient [Manning
and Schütze, 1999, p.299]. Both achieved a precision score of 88% ?.

This approach works fine for terms consisting of two words. If candidate
terms contain more than two words, for example body mass index, we may
divide them into so-called pseudo bigrams. These are pairs of phrases which
may contain one word or more than words. For example, body mass index can
be divided in two pseudo-bigrams: body – mass index and body mass – index.
The statistical methods can be applied to both pairs and for each method we
choose the pair with the highest combined score.

The single-word candidate terms are a special challenge. The statistical
methods based on association strength are obviously inapplicable. A popular
alternative is to measure how specific the term is to a selection of texts. The
intuition is that domain-specific terms will occur more frequently in domain-
specific texts than in general texts. However, we refrained from using additional
general texts.

The method which we developed for ranking candidate terms that consist
of only one word is based on the distribution of words in the ranked list of
candidate multiword terms. We chose a rank threshold (in the range 2000–6000)
and labeled all terms above this threshold relevant while the rest were labeled
general. Next, we designed a termhood score for single words which prefers
words which frequently occur in relevant terms over words which frequently
occur in general terms.

The candidate single-word terms were ranked according to the termhood
scores and the ranked list was compared with a term list extracted from an
annotated corpus. We compared five different rank threshold values and found
that the algorithm performed best with a threshold value of 4000. We measured
a precision of 56% at rank 9000, slightly better than the 54% achieved using the
baseline method, [[JN – I’m not sure what the following phrase means concretely
???]] a ranking approached [[??]] which only used term frequencies. Similar
procedures will be needed if one is dealing with historical texts.
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2.7 Term variation

Two different terms may refer to the same concept. This is called term varia-
tion. For example, carcinoma and cancer are variants and can be used inter-
changeably. Depending on the domain, terminological variants are estimated to
account for 15-35% of the joint occurrence of the two (or more) terms involved
[Daille, 2003]. It is a well-known phenomenon that needs special treatment.
We wish to keep track of variants for several reasons, such as for indexing and
retrieval [Jacquemin, 2001], conceptual structuring [Daille, 2003], and enhanc-
ing term extraction [Nenadić et al., 2004]. Besides occurrence in text, term
variations also occur in controlled terminological resources, such as UMLS.

In our task, the purpose of the variation recognition is mainly to detect
synonyms as they frequently occur in our extracted relations. These synonyms
are linked by coordinations that need to be recognised correctly. Consider, for
example, the following sentence that contains a medical relation in our corpus:

Leprosy is a contagious disease caused by the leprosy bacillus “My-
cobacterium leprae” or “Hansen bacillus” named after the Norwegian
physician Armauer Hansen who discovered it in 1873.

The sentence contains variants of the term leprosy bacillus, namely Mycobac-
terium leprae and Hansen bacillus. Since we work on medical text, there is
another frequent variation types, namely acronyms and abbreviation variation.
Consider, for example, the following sentence from our corpus, which illustrates
how acronyms also lead to term variation:

Tuberculosis, abbreviated with TBC, or even TB, is formerly a very
dreaded disease caused by the bacterium “Mycobacterium tuberculo-
sis”.

Fahmi [2008] discusses several types of term variations in different degrees
of detail. In this section, we investigate one further type of variation which
commonly occurs in medical questions: synonymy. We describe our method
for detecting synonymous words and evaluate the performance of the methods
using a medical corpus.

Our method for finding synonyms is adapted from the DIPRE method [Brin,
1999]. We use text patterns to find pairs of synonyms. We incorporate syntactic
information into patterns, as in Hearst [1992] and Pustejovsky et al. [2001]. The
syntactic information is mainly for detecting terms that occurr in the corpus.

The synonym extraction method consists of three consecutive processes within
an iteration. The extraction starts with the injection of a small set of synonym
pairs as seeds which could be selected manually from the corpus. Each pair is
a tuple like <term1, term2> where term1 and term2 are the seed synonyms.
Having a seed list, we apply the following steps, first to learn variation patterns,
and next to extract synonym pairs from the corpus:

Step 1 The process searches for the occurrence of the seed tuples in the corpus
and keeps the contexts surrounding the tuples. For example, from the
phrase tubercolosis ( or TB ), the pattern X ( or Y ) will be extracted.

Step 2 Next, the generated patterns are sought throughout the corpus to ex-
tract a new set of candidate synonym tuples that match the patterns.
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Step 3 Then semantic compatibilities are computed for the candidate syn-
onyms based on their occurrence in the Web pages (see Fahmi [2008] for
more details). The synonym pairs are ranked based on their compatibility
scores and pairs with scores below a certain threshold are discarded.

Step 4 Finally, the extracted synonym pairs are used as a new seed list. The
four processing steps are repeated until the number of the extracted syn-
onym pairs satisfies an expected level of coverage or until no new pairs are
found.

As in Hearst [1992] and Brin [1999], the size of the initial seed list can be
very small, as few as 3 pairs can be sufficient. However, if the corpus is small, as
ours indeed is, the frequency of the seeds in the corpus can be very low as well.
They will generate a small number of synonym patterns, which subsequently
yield a small set of new synonym tuples. A possible solution to this problem is
to increase the size of the initial seed list.

The extraction approach has been applied to a medical corpus, a collection
of Dutch medical texts containing 57,004 sentences. We started with a seed list
of three synonym pairs. We compared two selection criteria: one based on un-
restricted cooccurrence (PNEAR) and one based on cooccurrence in prespecified
text patterns (Por). PNEAR found more pairs (699–233) and achieved higher
recall scores (85%–70%) but Por obtained a higher precision score (98%–61%).
Interestingly enough, the two methods made different errors, for example lens–
cataract for Por and back–epidural for PNEAR. Fahmi [2008] contains details.

2.8 Term labeling

In the previous sections we have discussed approaches to term and variant recog-
nition. The output of these processes are terms ranked by termhood scores. At
this point, we do not know whether a term such as tuberculosis is a name of a
disease, treatment, or virus. These labels are assigned by the next processing
step, Term Labeling or Classification.

In general, the task of term classification is to disambiguate terms. Term
classification may help to map a term to its position in an ontology or thesaurus,
or to understand the roles of a term in a relation (e.g., as actors, sources,
objects) [Hatzivassiloglou et al., 2001]. This section describes approaches to
term classification and discuss their relevance to our tasks.

Typically, term classification tasks rely on machine learning techniques. Fre-
quently, these techniques are based on statistical models, such as Hidden Markov
Models (HMMs) and naive Bayes. Additionally, they may use other techniques,
such as decision trees, rule induction, support vector machines (SVMs), and
genetic algorithms [Manning and Schütze, 1999].

Nobata et al. [1999] compared two classification methods based on statis-
tical models and decision trees in a task of classifying terms from MEDLINE
abstracts. Using the first method, they classified terms by computing the simi-
larity of the terms to the distribution of words in a preclassified word list from
databases. Since a word list is rarely complete, it can be extended with the
output of a word clustering process. In the second method, they used several
feature sets including PoS tags, morphological information, and a list of words
specific to the domain. They found that the statistical method is comparatively
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Data set training testing

treats 4,251 15
has symptom 3,782 11
causes 3,136 21
has definition 3,496 11
diagnoses 1,103 25
occurs 942 28
prevents 429 10
All 56,654 350

Table 1: The relation types and the numbers of sentences in the training and
test set of the IMIX medical corpus in which they are instantiated. Sentences
counted in the test set were positive examples among the 50 sentences randomly
selected from the corpus.

better at classifying terms referring to DNA and RNA, while the decision tree
method is better at classifying source [[of what??? –JN]] and protein.

We are inspired by Nobata et al. [1999] who used a set of preclassified words
from databases to classify terms from text. For a medical domain, this idea
is worth a try as since a large term database is available: UMLS. The UMLS
Metathesaurus contains a large number of preclassified terms (2.10 million terms
or 4.7 million term class labels). This counters data sparseness, a common
problem found when using machine learning techniques. However, UMLS is not
a kind of training dataset that can be used directly for such a learning algorithm.
We hypothesize that with an appropriate method, the UMLS Metathesaurus can
be used to classify unseen terms.

We evaluated the performance of the method in labeling the 2000 most
frequent terms of the IMIX medical corpus with one of a set of eleven labels. The
system achieved an accuracy of 73.3%. Suprisingly enough, labeling multiword
terms was easier (78.2%) than labeling single word terms (72.6%). The approach
resulted in different accuracies for the eleven labels. The highest accuracy was
80.4% for the label disease symptom while the lowest was 34.8% for disease
feature.

3 Relation Extraction

This section deals with the use of dependency information to extract relations
from text. We pursue an approach in which we automatically learn text patterns
from sentences that contain related terms. On the basis of these patterns, we
extract new relation information from non-classified sentences. This method
is evaluated on two different corpora, namely the IMIX medical corpus and a
medical subset of the Wikipedia pages.

3.1 Resources

We use the IMIX medical corpus for learning relation patterns. The corpus
consists of texts from a medical encyclopedia and a medical handbook and was
described in Section 2.4. Human annotators identified and marked the terms and
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the relations occurring in the texts. Fahmi [2008] presents the seven different
relation types that are present in the 57,004 labeled sentences. As shown in
Table 1, the number of occurrences of the different relations types varies. The
relation type treats is the most frequent while prevents is the least frequent.

For each relation, we randomly selected 50 sentences as test set. For the
purpose of the evaluation, we reannotated the test set: only sentences that con-
tain two fully specified arguments of the relation are considered to be relevant
instances of the relation. Note that, since relation labeling was done at text
level, information of a single relation may be spread over more than one sen-
tence. Because our preprocessing method operates on sentence level, we are
only interested in sentences which contain complete relations.

For testing the performance of the relation patterns, we used the text of
lemmas in the category Health Care from Dutch Wikipedia (105,088 sentences).
We parsed this corpus using the Alpino parser [van Noord, 2006], which results
in dependency parse trees. As this material was not annotated, evaluation
of precision was performed by manually checking the output of the relation
extraction system.

We used a subset of 3,142,578 terms from the UMLS for classifying relation’s
arguments. 5% of the terms were in Dutch while the other 95% were in English.

3.2 Learning Relation Patterns

The first task in the relation extraction process is to find patterns that predict
term relations in text. We learn these patterns from the annotated IMIX corpus
in four steps:

1. First, we extract all annotated relation phrases from the texts, for example
RSI stands for repetitive strain injury. Each phrase is divided in three
parts: the two relation objects (RSI and repetitive strain injury) and the
remainder of the phrase (stands for), which will be the candidate pattern.

2. Next, we use linguistic methods for identifying the main parts of the two
relational objects ((RSI and injury) and use the term labeling process
(Section 2.8) for assigning labels to both (disease and disease).

3. Then, we collect the parses of each of the candidate patterns and compute
a weight for each of them based on how often they occur within a relation
phrase and how often they do not.

4. Finally, the weights are combined with the available labeling information
to produce weighted relation patterns of the format (type, label1, label2,
phrase, weight). An example of such a pattern is (definition, disease,
disease, stand for, 0.80). This specifies that a phrase linking two diseases
with stand for has an 80% chance to express the definition of the first
disease.

3.3 Extracting Relations

We use the patterns (type, label1, label2, phrase, weight) for extracting new
pairs of concepts that are related by the relation of the same type. In order to
achieve this, we look in the corpus for dependency structures that contain the
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phrases specified in the pattern as well as terms that can be labeled with label1
and label2.

Ideally, the semantic types of both arguments of the retrieved dependency
patterns match with both semantic types label1 and label2. However, while
inspecting the data, we found some relevant triples that match neither or only
one of the two semantic types. Therefore, we have relaxed the selection criterion
and identified three different groups of relation supporting information:

Level 1: full match: the dependency structure matches the relation type and
both labels

Level 2: single label match: the dependency structure matches the relation
type and only one of the two labels

Level 3: relation-only match: the dependency structure matches only the re-
lation type and none of the two labels

This approach serves two goals. First, we hope to increase the recall of the
approach by relaxing the selection criterion. Second, we are interested in finding
out how well each of the three schemes performs, especially in comparison with
the other two schemes.

3.4 Evaluation

We evaluate our method using two resources described in section 3.1, namely
the IMIX medical corpus (imix) containing 57,004 sentences, and a medical
subset of the Wikipedia (wikipedia) containing 105,088 sentences. The task is
to learn and to extract relations for the medical relation types in Table 1.

We distinguish two phases in this process. In the learning phase, we derive
the parameters (weights) of the extraction process from the annotated IMIX

corpus. In the extraction phase, we derive new pairs of related concepts from
the WIKIPEDIA corpus.

In the learning phase, we learn relation patterns from labeled sentences. We
generate a relation model containing relation patterns and the corresponding
scores. The imix corpus contains 3,136 training sentences. From them, we
derive 3,803 relation patterns. An example of such a pattern is disease be caused
by disease. The patterns do not occur frequently in the corpus. The example
pattern is the most frequent one with 23 occurrences. There are only 23 patterns
which occur six or more times.

We used two corpora to evaluate the performance of the extracted relation
patterns. For each of the seven relations causes, has definition, occurs,
treats, has symptom, prevents and diagnoses, and for each of the three
extraction levels, we randomly selected twenty dependency structures and man-
ually evaluated their accuracy. The results can be found in Table 2. Extraction
at level 1 (91% on average) proved to be much more accurate than at the other
two levels (60% and 41%). However, most correct pairs were found at level 2
(60%*14,982 = 8,989), so including this selection criterion will boost the recall
score.

An example of a correct pair proposed by level 1 is sepsis is caused by an
infection. An incorrect pair found by level 3 is fire is caused by a spark. This
example shows a frequent error in the output at level 3: the two concepts are
related but they do not fit in the target medical domain.
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dependency structures accuracies

Relation type L1 L2 L3 L1 L2 L3

causes 942 1,625 647 95% 90% 75%
has definition 4,102 6,118 657 95% 65% 30%
occurs 548 2,219 1,238 90% 80% 50%
treats 300 1,826 1,026 85% 60% 45%
has symptom 1,220 2,668 850 80% 30% 0%
prevents 24 171 470 75% 50% 50%
diagnoses 34 265 231 60% 60% 35%
All 7,170 14,892 5,119 91% 60% 41%

Table 2: Number of matching dependency structures and their estimated ac-
curacies (random selection of 20) per relation with 2, 1 or 0 matching concept
labels.

4 Conclusions and Future Prospects

We have illustrated CL applications on text aimed at ontology extraction, ex-
amining both automatic term recognition and relation extraction. Both appli-
cations are useful for researchers that need to detect the content in large text
reserves.

We have deliberately focused on information extraction (IE) in this snap-
shot of CL work on texts and how it might contribute to the history of science.
We should add that there is other CL work which might also be interesting,
e.g., work classifying the sorts of literature references used in scientific papers,
confirming, contradicting, distancing, etc. [Lenhert et al., 1990]. As a fur-
ther example of CL work with potential spinoffs for history and, in particular,
History of Science, we mention the substantial body of work on automatic sum-
marization of texts [Mihalcea and Ceylan, 2007, and references there]. There is
no room to present this work in detail here, but, in addition to needing to iden-
tify content, summarization work is concerned with identifying those focused
sections of texts in which novel contributions are identified succinctly.

But the work on information extraction is more likely to be interesting both
because there is a more substantial community of researchers involved, and also
because it provides a more direct reflection of the content of scientific papers.
Zhang et al. [2007] uses CL techniques on a body of texts on American history
to populate an ontology of historical events. It is a modest first step, but it
suggests that the collaboration between CL and History is promising.
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