
Learning Computational Grammars

John Nerbonne�, Anja Belzy, Nicola Canceddaz, Hervé Déjeanx,
James Hammerton{, Rob Koelingy, Stasinos Konstantopoulos�,
Miles Osborne�, Franck Thollard x and Erik Tjong Kim Sang k

Abstract

This paper reports on the LEARNING

COMPUTATIONAL GRAMMARS (LCG)
project, a postdoc network devoted to
studying the application of machine
learning techniques to grammars suit-
able for computational use. We were in-
terested in a more systematic survey to
understand the relevance of many fac-
tors to the success of learning, esp. the
availability of annotated data, the kind
of dependencies in the data, and the
availability of knowledge bases (gram-
mars). We focused on syntax, esp. noun
phrase (NP) syntax.

1 Introduction

This paper reports on the still preliminary, but al-
ready satisfying results of the LEARNING COM-
PUTATIONAL GRAMMARS (LCG) project, a post-
doc network devoted to studying the application
of machine learning techniques to grammars suit-
able for computational use. The member insti-
tutes are listed with the authors and also included
ISSCO at the University of Geneva. We were im-
pressed by early experiments applying learning
to natural language, but dissatisfied with the con-
centration on a few techniques from the very rich
area of machine learning. We were interested in�University of Groningen,fnerbonne,konstantg@let.

rug.nl, osborne@cogsci.ed.ac.uky SRI Cambridge, anja.belz@cam.sri.com, Rob.Koe-
ling@netdecisions.co.ukzXRCE Grenoble, nicola.cancedda@xrce.xerox.comxUniversity of Tübingen, Herve.Dejean@xrce.xerox.
com, thollard@sfs.nphil.uni-tuebingen.de{University College Dublin, james.hammerton@ucd.iekUniversity of Antwerp, erikt@uia.ua.ac.be

a more systematic survey to understand the rele-
vance of many factors to the success of learning,
esp. the availability of annotated data, the kind
of dependencies in the data, and the availability
of knowledge bases (grammars). We focused on
syntax, esp. noun phrase (NP) syntax from the
beginning. The industrial partner, Xerox, focused
on more immediate applications (Cancedda and
Samuelsson, 2000).

The network was focused not only by its sci-
entific goal, the application and evaluation of
machine-learning techniques as used to learn nat-
ural language syntax, and by the subarea of syn-
tax chosen, NP syntax, but also by the use of
shared training and test material, in this case ma-
terial drawn from the Penn Treebank. Finally, we
were curious about the possibility of combining
different techniques, including those from statisti-
cal and symbolic machine learning. The network
members played an important role in the organi-
sation of three open workshops in which several
external groups participated, sharing data and test
materials.

2 Method

This section starts with a description of the three
tasks that we have worked on in the framework of
this project. After this we will describe the ma-
chine learning algorithms applied to this data and
conclude with some notes about combining dif-
ferent system results.

2.1 Task descriptions

In the framework of this project, we have worked
on the following three tasks:

1. base phrase (chunk) identification
2. base noun phrase recognition
3. finding arbitrary noun phrases



Text chunks are non-overlapping phrases which
contain syntactically related words. For example,
the sentence:[NP He ] [VP reckons] [NP the current

account deficit] [VP will narrow ][PP to ] [NP only$ 1.8 billion ][PP in ] [NP September] .

contains eight chunks, four NP chunks, two VP
chunks and two PP chunks. The latter only con-
tain prepositions rather than prepositions plus the
noun phrase material because that has already
been included in NP chunks. The process of
finding these phrases is calledCHUNKING. The
project provided a data set for this task at the
CoNLL-2000 workshop (Tjong Kim Sang and
Buchholz, 2000)1. It consists of sections 15-18 of
the Wall Street Journal part of the Penn Treebank
II (Marcus et al., 1993) as training data (211727
tokens) and section 20 as test data (47377 tokens).

A specialised version of the chunking task is
NP CHUNKING or baseNP identification in which
the goal is to identify the base noun phrases. The
first work on this topic was done back in the
eighties (Church, 1988). The data set that has
become standard for evaluation machine learn-
ing approaches is the one first used by Ramshaw
and Marcus (1995). It consists of the same train-
ing and test data segments of the Penn Treebank
as the chunking task (respectively sections 15-18
and section 20). However, since the data sets
have been generated with different software, the
NP boundaries in the NP chunking data sets are
slightly different from the NP boundaries in the
general chunking data.

Noun phrases are not restricted to the base lev-
els of parse trees. For example, in the sentenceIn
early trading in Hong Kong Monday , gold was
quoted at $ 366.50 an ounce ., the noun phrase[NP $ 366.50 an ounce] contains two embedded
noun phrases[NP $ 366.50] and [NP an ounce].
In the NPBRACKETING task, the goal is to find
all noun phrases in a sentence. Data sets for this
task were defined for CoNLL-992. The data con-
sist of the same segments of the Penn Treebank as

1Detailed information about chunking, the CoNLL-
2000 shared task, is also available at http://lcg-
www.uia.ac.be/conll2000/chunking/

2Information about NP bracketing can be found at
http://lcg-www.uia.ac.be/conll99/npb/

the previous two tasks (sections 15-18) as train-
ing material and section 20 as test material. This
material was extracted directly from the Treebank
and therefore the NP boundaries at base levels are
different from those in the previous two tasks.

In the evaluation of all three tasks, the accu-
racy of the learners is measured with three rates.
We compare the constituents postulated by the
learners with those marked as correct by experts
(gold standard). First, the percentage of detected
constituents that are correct (precision). Second,
the percentage of correct constituents that are de-
tected (recall). And third, a combination of pre-
cision and recall, the F�=1 rate which is equal to
(2*precision*recall)/(precision+recall).

2.2 Machine Learning Techniques

This section introduces the ten learning meth-
ods that have been applied by the project
members to the three tasks: LSCGs, ALLiS,
LSOMMBL, Maximum Entropy, Aleph, MDL-
based DCG learners, Finite State Transducers,
IB1IG, IGTREE and C5.0.

Local Structural Context Grammars
(LSCGs) (Belz, 2001) are situated between
conventional probabilistic context-free produc-
tion rule grammars andDOP-Grammars (e.g.,
Bod and Scha (1997)).LSCGs outperform the
former because they do not share their inher-
ent independence assumptions, and are more
computationally efficient than the latter, because
they incorporate only subsets of the context
included in DOP-Grammars. Local Structural
Context (LSC) is (partial) information about the
immediate neighbourhood of a phrase in a parse.
By conditioning bracketing probabilities onLSC,
more fine-grained probability distributions can be
achieved, and parsing performance increased.

Given corpora of parsed text such as theWSJ,
LSCGs are used in automatic grammar construc-
tion as follows. AnLSCG is derived from the cor-
pus by extracting production rules from bracket-
ings and annotating the rules with the type(s) of
LSC to be incorporated in theLSCG (e.g. parent
category information, depth of embedding, etc.).
Rule probabilities are derived from rule frequen-
cies (currently by Maximum Likelihood Estima-
tion). In a separate optimisation step, the resulting
LSCGs are optimised in terms of size and pars-



ing performance for a given parsing task by an
automatic method (currently a version of beam
search) that searches the space of partitions of a
grammar’s set of nonterminals.

The LSCG research efforts differ from other
approaches reported in this paper in two respects.
Firstly, no lexical information is used at any point,
as the aim is to investigate the upper limit of pars-
ing performance without lexicalisation. Secondly,
grammars are optimised for parsing performance
and size, the aim being to improve performance
but not at the price of arbitrary increases in gram-
mar complexity (hence the cost of parsing). The
automatic optimisation of corpus-derivedLSCGs
is the subject of ongoing research and the results
reported here for this method are therefore pre-
liminary.

Theory Refinement (ALLiS). ALLiS
((Déjean, 2000b), (Déjean, 2000c)) is a in-
ductive rule-based system using a traditional
general-to-specific approach (Mitchell, 1997).
After generating a default classification rule
(equivalent to the n-gram model), ALLiS tries
to refine it since the accuracy of these rules is
usually not high enough. Refinement is done
by adding more premises (contextual elements).
ALLiS uses data encoded in XML, and also
learns rules in XML. From the perspective of the
XML formalism, the initial rule can be viewed
as a tree with only one leaf, and refinement is
done by adding adjacent leaves until the accuracy
of the rule is high enough (a tuning threshold
is used). These additional leaves correspond to
more precise contextual elements. Using the
hierarchical structure of an XML document,
refinement begins with the highest available
hierarchical level and goes down in the hierarchy
(for example, starting at the chunk level and then
word level). Adding new low level elements
makes the rules more specific, increasing their
accuracy but decreasing their coverage. After
the learning is completed, the set of rules is
transformed into a proper formalism used by a
given parser.

Labelled SOM and Memory Based Learn-
ing (LSOMMBL) is a neurally inspired technique
which incorporates a modified self-organising
map (SOM, also known as a ‘Kohonen Map’) in
memory-based learning to select a subset of the

training data for comparison with novel items.
The SOM is trained with labelled inputs. Dur-
ing training, each unit in the map acquires a la-
bel. When an input is presented, the node in the
map with the highest activation (the ‘winner’) is
identified. If the winner is unlabelled, then it ac-
quires the label from its input. Labelled units
only respond to similarly labelled inputs. Other-
wise training proceeds as with the normal SOM.
When training ends, all inputs are presented to
the SOM, and the winning units for the inputs
are noted. Any unused units are then discarded.
Thus each remaining unit in the SOM is associ-
ated with the set of training inputs that are closest
to it. This is used in MBL as follows. The labelled
SOM is trained with inputs labelled with the out-
put categories. When a novel item is presented,
the winning unit for each category is found, the
training items associated with the winning units
are searched for the closest item to the novel item
and the most frequent classification of that item is
used as the classification for the novel item.

Maximum Entropy When building a classi-
fier, one must gather evidence for predicting the
correct class of an item from its context. The
Maximum Entropy (MaxEnt) framework is espe-
cially suited for integrating evidence from var-
ious information sources. Frequencies of evi-
dence/class combinations (called features) are ex-
tracted from a sample corpus and considered to be
properties of the classification process. Attention
is constrained to models with these properties.
The MaxEnt principle now demands that among
all the probability distributions that obey these
constraints, the most uniform is chosen. During
training, features are assigned weights in such a
way that, given the MaxEnt principle, the train-
ing data is matched as well as possible. During
evaluation it is tested which features areactive
(i.e., a feature is active when the context meets
the requirements given by the feature). For every
class the weights of the active features are com-
bined and the best scoring class is chosen (Berger
et al., 1996). For the classifier built here we use
as evidence the surrounding words, their POS tags
and baseNP tags predicted for the previous words.
A mixture of simple features (consisting of one
of the mentioned information sources) and com-
plex features (combinations thereof) were used.



The left context never exceeded 3 words, the
right context was maximally 2 words. The model
was calculated using existing software (Dehaspe,
1997).

Inductive Logic Programming (ILP) Aleph
is an ILP machine learning system that searches
for a hypothesis, given positive (and, if avail-
able, negative) data in the form of ground Prolog
terms and background knowledge (prior knowl-
edge made available to the learning algorithm)
in the form of Prolog predicates. The system,
then, constructs a set of hypothesis clauses that
fit the data and background as well as possible.
In order to approach the problem of NP chunk-
ing in this context of single-predicate learning, it
was reformulated as a tagging task where each
word was tagged as being ‘inside’ or ‘outside’ a
baseNP (consecutive NPs were treated appropri-
ately). Then, the target theory is a Prolog program
that correctly predicts a word’s tag given its con-
text. The context consisted of PoS tagged words
and syntactically tagged words to the left and PoS
tagged words to the right, so that the resulting tag-
ger can be applied in the left-to-right pass over
PoS-tagged text.

Minimum Description Length (MDL) Esti-
mation using the minimum description length
principle involves finding a model which not only
‘explains’ the training material well, but also is
compact. The basic idea is to balance the gener-
ality of a model (roughly speaking, the more com-
pact the model, the more general it is) with its spe-
cialisation to the training material. We have ap-
plied MDL to the task of learning broad-covering
definite-clause grammars from either raw text, or
else from parsed corpora (Osborne, 1999a). Pre-
liminary results have shown that learning using
just raw text is worse than learning with parsed
corpora, and that learning using both parsed cor-
pora and a compression-based prior is better than
when learning using parsed corpora and a uniform
prior. Furthermore, we have noted that our in-
stantiation of MDL does not capture dependen-
cies which exist either in the grammar or else in
preferred parses. Ongoing work has focused on
applying random field technology (maximum en-
tropy) to MDL-based grammar learning (see Os-
borne (2000a) for some of the issues involved).

Finite State Transducers are built by inter-

preting probabilistic automata as transducers. We
use a probabilistic grammatical algorithm, the
DDSM algorithm (Thollard, 2001), for learning
automata that provide the probability of an item
given the previous ones. The items are described
by bigrams of the format feature:class. In the re-
sulting automata we consider a transition labeled
feature:class as the transducer transition that takes
as input the first part (feature) of the bigram and
outputs the second part (class). By applying the
Viterbi algorithm on such a model, we can find
out the most probable set of class values given an
input set of feature values. As the DDSM algo-
rithm has a tuning parameter, it can provide many
different automata. We apply a majority vote over
the propositions made by the so computed au-
tomata/transducers for obtaining the results men-
tioned in this paper.

Memory-based learning methods store all
training data and classify test data items by giving
them the classification of the training data items
which are most similar. We have used three differ-
ent algorithms: the nearest neighbour algorithm
IB1IG, which is part of the Timbl software pack-
age (Daelemans et al., 1999), the decision tree
learner IGTREE, also from Timbl, and C5.0, a
commercial version of the decision tree learner
C4.5 (Quinlan, 1993). They are classifiers which
means that they assign phrase classes such as I
(inside a phrase), B (at the beginning of a phrase)
and O (outside a phrase) to words. In order to
improve the classification process we provide the
systems with extra information about the words
such as the previousn words, the nextn words,
their part-of-speech tags and chunk tags estimated
by an earlier classification process. We use the de-
fault settings of the software except for the num-
ber of examined nearest neighbourhood regions
for IB1IG (k, default is 1) which we set to 3.

2.3 Combination techniques

When different systems are applied to the same
problem, a clever combination of their results will
outperform all of the individual results (Diette-
rich, 1997). The reason for this is that the systems
often make different errors and some of these er-
rors can be eliminated by examining the classifi-
cations of the others. The most simple combina-
tion method isMAJORITY VOTING. It examines



the classifications of the test data item and for
each item chooses the most frequently predicted
classification. Despite its simplicity, majority vot-
ing has found to be quite useful for boosting per-
formance on the tasks that we are interested in.

We have applied majority voting and nine other
combination methods to the output of the learning
systems that were applied to the three tasks. Nine
combination methods were originally suggested
by Van Halteren et al. (1998). Five of them,
including majority voting, are so-called voting
methods. Apart from majority voting, all assign
weights to the predictions of the different systems
based on their performance on non-used train-
ing data, the tuning data. TOTPRECISION uses
classifier weights based on their accuracy. TAG-
PRECISION applies classification weights based
on the accuracy of the classifier for that classi-
fication. PRECISION-RECALL uses classification
weights that combine the precision of the classi-
fication with the recall of the competitors. And
finally, TAGPAIR uses classification pair weights
based on the probability of a classification for
some predicted classification pair (van Halteren
et al., 1998).

The remaining four combination methods are
so-calledSTACKED CLASSIFIERS. The idea is to
make a classifier process the output of the indi-
vidual systems. We used the two memory-based
learnersIB1IG and IGTREEas stacked classifiers.
Like Van Halteren et al. (1998), we evaluated two
features combinations. The first consisted of the
predictions of the individual systems and the sec-
ond of the predictions plus one feature that de-
scribed the data item. We used the feature that,
according to the memory-based learning metrics,
was most relevant to the tasks: the part-of-speech
tag of the data item.

In the course of this project we have evalu-
ated another combination method:BEST-N MA -
JORITY VOTING (Tjong Kim Sang et al., 2000).
This is similar to majority voting except that in-
stead of using the predictions of all systems, it
uses only predictions from some of the systems
for determining the most probable classifications.
We have experienced that for different reasons
some systems perform worse than others and in-
cluding their results in the majority vote decreases
the combined performance. Therefore it is a good

idea to evaluate majority voting on subsets of all
systems rather than only on the combination of all
systems.

Apart from standard majority voting, all com-
bination methods require extra data for measur-
ing their performance which is required for de-
termining their weights, the tuning data. This
data can be extracted from the training data or the
training data can be processed in an n-fold cross-
validation process after which the performance on
the complete training data can be measured. Al-
though some work with individual systems in the
project has been done with the goal of combining
the results with other systems, tuning data is not
always available for all results. Therefore it will
not always be possible to apply all ten combina-
tion methods to the results. In some cases we have
to restrict ourselves to evaluating majority voting
only.

3 Results

This sections presents the results of the different
systems applied to the three tasks which were cen-
tral to this this project: chunking, NP chunking
and NP bracketing.

3.1 Chunking

Chunking was the shared task of CoNLL-2000,
the workshop on Computational Natural Lan-
guage Learning, held in Lisbon, Portugal in 2000
(Tjong Kim Sang and Buchholz, 2000). Six
members of the project have performed this task.
The results of the six systems (precision, recall
and F�=1 can be found in table 1. Belz (2001)
used Local Structural Context Grammars for find-
ing chunks. Déjean (2000a) applied the the-
ory refinement system ALLiS to the shared task
data. Koeling (2000) evaluated a maximum en-
tropy learner while using different feature com-
binations (ME). Osborne (2000b) used a maxi-
mum entropy-based part-of-speech tagger for as-
signing chunk tags to words (ME Tag). Thollard
(2001) identified chunks with Finite State Trans-
ducers generated by a probabilistic grammar algo-
rithm (FST). Tjong Kim Sang (2000b) tested dif-
ferent configurations of combined memory-based
learners (MBL). The FST and the LSCG results
are lower than those of the other systems because
they were obtained without using lexical informa-



precision recall F�=1
MBL 94.04% 91.00% 92.50
ALLiS 91.87% 92.31% 92.09
ME 92.08% 91.86% 91.97
ME Tag 91.65% 92.23% 91.94
LSCG 87.97% 88.17% 88.07
FST 84.92% 86.75% 85.82
combination 93.68% 92.98% 93.33
best 93.45% 93.51% 93.48
baseline 72.58% 82.14% 77.07

Table 1: The chunking results for the six systems
associated with the project (shared task CoNLL-
2000). The baseline results have been obtained
by selecting the most frequent chunk tag associ-
ated with each part-of-speech tag. The best results
at CoNLL-2000 were obtained by Support Vector
Machines. A majority vote of the six LCG sys-
tems does not perform much worse than this best
result. A majority vote of the five best systems
outperforms the best result slightly (5% error re-
duction).

tion. The best result at the workshop was obtained
with Support Vector Machines (Kudoh and Mat-
sumoto, 2000).

Because there was no tuning data available for
the systems, the only combination technique we
could apply to the six project results was majority
voting. We applied majority voting to the output
of the six systems while using the same approach
as Tjong Kim Sang (2000b): combining start and
end positions of chunks separately and restoring
the chunks from these results. The combined per-
formance (F�=1=93.33) was close to the best re-
sult published at CoNLL-2000 (93.48).

3.2 NP chunking

The NP chunking task is the specialisation of the
chunking task in which only base noun phrases
need to be detected. Standard data sets for ma-
chine learning approaches to this task were put
forward by Ramshaw and Marcus (1995). Six
project members have applied a total of seven
different systems to this task, most of them in
the context of the combination paper Tjong Kim
Sang et al. (2000). Daelemans applied the de-
cision tree learner C5.0 to the task. Déjean used
the theory refinement system ALLiS for finding

precision recall F�=1
MBL 93.63% 92.88% 93.25
ME 93.20% 93.00% 93.10
ALLiS 92.49% 92.69% 92.59
IGTree 92.28% 91.65% 91.96
C5.0 89.59% 90.66% 90.12
SOM 89.29% 89.73% 89.51
combination 93.78% 93.52% 93.65
best 94.18% 93.55% 93.86
baseline 78.20% 81.87% 79.99

Table 2: The NP chunking results for six sys-
tems associated with the project. The baseline
results have been obtained by selecting the most
frequent chunk tag associated with each part-of-
speech tag. The best results for this task have
been obtained with a combination of seven learn-
ers, five of which were operated by project mem-
bers. The combination of these five performances
is not far off these best results.

noun phrases in the data. Hammerton (2001) pre-
dicted NP chunks with the connectionist methods
based on self-organising maps (SOM). Koeling
detected noun phrases with a maximum entropy-
based learner (ME). Konstantopoulos (2000) used
Inductive Logic Programming (ILP) techniques
for finding NP chunks in unseen texts3. Tjong
Kim Sang applied combinations ofIB1IG systems
(MBL) and combinations of IGTREE learners to
this task. The results of the six of the seven sys-
tems can be found in table 2. The results of C5.0
and SOM are lower than the others because nei-
ther of these systems used lexical information.

For all of the systems except SOM we had tun-
ing data and an extra development data set avail-
able. We tested all ten combination methods on
the development set and best-3 majority voting
came out as the best (F�=1 = 93.30; it used the
MBL, ME and ALLiS results). When we applied
best-3 majority voting to the standard test set, we
obtained F�=1 = 93.65 which is close to the best
result we know for this data set (F�=1 = 93.86)
(Tjong Kim Sang et al., 2000). The latter result
was obtained by a combination of seven learning
systems, five of which were operated by members
of this project.

3Results are unavailable for the ILP approach.



precision recall F�=1
MBL 90.00% 78.38% 83.79
LSCG 80.04% 80.25% 80.15
MDL 53.2% 68.7% 59.9
best 91.28% 76.06% 82.98
baseline 77.57% 59.85% 67.56

Table 3: The results for three systems associ-
ated with the project for the NP bracketing task,
the shared task at CoNLL-99. The baseline re-
sults have been obtained by finding NP chunks in
the text with an algorithm which selects the most
frequent chunk tag associated with each part-of-
speech tag. The best results at CoNLL-99 was
obtained with a bottom-up memory-based learner.
An improved version of that system (MBL) deliv-
ered the best project result. The MDL results have
been obtained on a different data set and therefore
combination of the three systems was not feasible.

The original Ramshaw and Marcus (1995) pub-
lication evaluated their NP chunker on two data
sets, the second holding a larger amount of train-
ing data (Penn Treebank sections 02-21) while us-
ing 00 as test data. Tjong Kim Sang (2000a) has
applied a combination of memory-based learners
to this data set and obtained F�=1 = 94.90, an im-
provement on Ramshaw and Marcus’s 93.3.

3.3 NP bracketing

Finding arbitrary noun phrases was the shared
task of CoNLL-99, held in Bergen, Norway in
1999. Three project members have performed this
task. Belz (2001) extracted noun phrases with
Local Structural Context Grammars, a variant of
Data-Oriented Parsing (LSCG). Osborne (1999b)
used a Definite Clause Grammar learner based on
Minimum Description Length for finding noun
phrases in samples of Penn Treebank material
(MDL). Tjong Kim Sang (2000a) detected noun
phrases with a bottom-up cascade of combina-
tions of memory-based classifiers (MBL). The
performance of the three systems can be found in
table 3. For this task it was not possible to apply
system combination to the output of the system.
The MDL results have been obtained on a differ-
ent data set and this left us with two remaining
systems. A majority vote of the two will not im-
prove on the best system and since there was no

tuning data or development data available, other
combination methods could not be applied.

4 Prospects

The project has proven to be successful in its re-
sults for applying machine learning techniques
to all three of its selected tasks: chunking, NP
chunking and NP bracketing. We are looking for-
ward to applying these techniques to other NLP
tasks. Three of our project members will take part
in the CoNLL-2001 shared task, ‘clausing’, hope-
fully with good results. Two more have started
working on the challenging task of full parsing,
in particular by starting with a chunker and build-
ing a bottom-up arbitrary phrase recogniser on top
of that. The preliminary results are encouraging
though not as good as advanced statistical parsers
like those of Charniak (2000) and Collins (2000).

It is fair to characterise LCG’s goals as pri-
marily technical in the sense that we sought to
maximise performance rates, esp. the recognition
of different levels of NP structure. Our view in
the project is certainly broader, and most project
members would include learning as one of the
language processes one ought to study from a
computational perspective—like parsing or gen-
eration. This suggest several further avenues, e.g.,
one might compare the learning progress of sim-
ulations to humans (mastery as a function of ex-
perience). One might also be interested in the
exact role of supervision, in the behaviour (and
availability) of incremental learning algorithms,
and also in comparing the simulation’s error func-
tions to those of human learners (wrt to phrase
length or construction frequency or similarity).
This would add an interesting cognitive perspec-
tive to the work, along the lines begun by Brent
(1997), but we note it here only as a prospect for
future work.

Acknowledgement

LCG’s work has been supported by a grant from
the European Union’s programmeTraining and
Mobility of Researchers, ERBFMRXCT980237.

References
Anja Belz. 2001. Optimisation of corpus-derived proba-

bilistic grammars. InProceedings of Corpus Linguistics
2001, pages 46–57. Lancaster, UK.



Adam L. Berger, Stephen A. DellaPietra, and Vincent J. Del-
laPietra. 1996. A Maximum Entropy Approach to Nat-
ural Language Processing.Computational Linguistics,
22(1).

R. Bod and R. Scha. 1997. Data-Oriented Language Pro-
cessing. In S. Young and G. Bloothooft, editors,Corpus-
Based Methods in Language and Speech Processing,
pages 137–173. Kluwer Academic Publishers, Boston.

Michael Brent, editor. 1997.Computational Approaches to
Language Acquisition. MIT Press, Cambridge.

Nicola Cancedda and Christer Samuelsson. 2000. Corpus-
based Grammar Specialization. InProceedings of the
Fourth Conference on Computational Natural Language
Learning (CoNLL’2000), Lisbon, Portugal.

Eugene Charniak. 2000. A Maximum-Entropy-Inspired
Parser. InProceedings of the ANLP-NAACL 2000. Seat-
tle, WA, USA. Morgan Kaufman Publishers.

Kenneth Ward Church. 1988. A Stochastic Parts Program
and Noun Phrase Parser for Unrestricted Text. InSec-
ond Conference on Applied Natural Language Process-
ing. Austin, Texas.

Michael Collins. 2000. Discriminative Reranking for Natu-
ral Language Processing. InProceedings of ICML-2000.
Stanford University, CA, USA. Morgan Kaufmann Pub-
lishers.

Walter Daelemans, Antal van den Bosch, and Jakub Zavrel.
1999. Forgetting Exceptions is Harmful in Language
Learning.Machine Learning, 34(1).

Luc Dehaspe. 1997. Maximum entropy modeling with
clausal constraints. InProceedings of the 7th Interna-
tional Workshop on Inductive Logic Programming.

Hervé Déjean. 2000a. Learning Syntactic Structures with
XML. In Proceedings of CoNLL-2000 and LLL-2000.
Lisbon, Portugal.

Hervé Déjean. 2000b. Theory Refinement and Natural Lan-
guage Learning. InCOLING’2000, Saarbrücken.

Hervé Déjean. 2000c. A Use of XML for Machine Learn-
ing. In Proceeding of the workshop on Computational
Natural Language Learning, CoNLL’2000.

T.G. Dietterich. 1997. Machine Learning Research: Four
Current Directions.AI Magazine, 18(4).

James Hammerton and Erik Tjong Kim Sang. 2001. Com-
bining a self-organising map with memory-based learn-
ing. In Proceedings of CoNLL-2001. Toulouse, France.

Rob Koeling. 2000. Chunking with Maximum Entropy
Models. InProceedings of CoNLL-2000 and LLL-2000.
Lisbon, Portugal.

Stasinos Konstantopoulos. 2000. NP Chunking using ILP.
In Computational Linguistics in the Netherlands 1999.
Utrecht, The Netherlands.

Taku Kudoh and Yuji Matsumoto. 2000. Use of Support
Vector Learning for Chunk Identification. InProceedings
of CoNLL-2000 and LLL-2000. Lisbon, Portugal.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated corpus
of English: the Penn Treebank.Computational Linguis-
tics, 19(2).

Tom Mitchell. 1997.Machine Learning. Mc Graw Hill.

Miles Osborne. 1999a. DCG Induction using MDL and
Parsed Corpora. In James Cussens, editor,Learning Lan-
guage in Logic, pages 63–71, Bled,Slovenia, June.

Miles Osborne. 1999b. MDL-based DCG Induction for NP
Identification. In Miles Osborne and Erik Tjong Kim
Sang, editors,CoNLL-99 Computational Natural Lan-
guage Learning. Bergen, Norway.

Miles Osborne. 2000a. Estimation of Stochastic Attribute-
Value Grammars using an Informative Sample. InThe18th International Conference on Computational Lin-
guistics, Saarbrücken, August.

Miles Osborne. 2000b. Shallow Parsing as Part-of-Speech
Tagging. InProceedings of CoNLL-2000 and LLL-2000.
Lisbon, Portugal.

J. Ross Quinlan. 1993.c4.5: Programs for Machine Learn-
ing. Morgan Kaufmann.

Lance A. Ramshaw and Mitchell P. Marcus. 1995. Text
Chunking Using Transformation-Based Learning. In
Proceedings of the Third ACL Workshop on Very Large
Corpora. Cambridge, MA, USA.

Franck Thollard. 2001. Improving Probabilistic Gram-
matical Inference Core Algorithms with Post-processing
Techniques. In8th Intl. Conf. on Machine Learning,
Williamson, July. Morgan Kaufmann.

Erik F. Tjong Kim Sang and Sabine Buchholz. 2000. Intro-
duction to the CoNLL-2000 Shared Task: Chunking. In
Proceedings of the CoNLL-2000 and LLL-2000. Lisbon,
Portugal.

Erik F. Tjong Kim Sang, Walter Daelemans, Hervé Déjean,
Rob Koeling, Yuval Krymolowski, Vasin Punyakanok,
and Dan Roth. 2000. Applying System Combination
to Base Noun Phrase Identification. InProceedings of
the 18th International Conference on Computational Lin-
guistics (COLING 2000). Saarbruecken, Germany.

Erik F. Tjong Kim Sang. 2000a. Noun Phrase Recognition
by System Combination. InProceedings of the ANLP-
NAACL 2000. Seattle, Washington, USA. Morgan Kauf-
man Publishers.

Erik F. Tjong Kim Sang. 2000b. Text Chunking by System
Combination. InProceedings of CoNLL-2000 and LLL-
2000. Lisbon, Portugal.

Hans van Halteren, Jakub Zavrel, and Walter Daelemans.
1998. Improving data driven wordclass tagging by sys-
tem combination. InProceedings of COLING-ACL ’98.
Montreal, Canada.


