university of

Statistiek I

Some Descriptive Basics

John Nerbonne

CLCG, Rijksuniversiteit Groningen

www.let.rug.nl/nerbonne/teach/Statistiek-I/

John Nerbonne Statistiek I 1/45

Overview

- Motivation, Approach of Course
- Basic Notions
- Measurement Scales, Distributions, Center, Spread
- Interpreting Scores

John Nerbonne Statistiek I 2/45

Statistiek I, for ATW, CIW, IK

http://www.let.rug.nl/nerbonne/teach/Statistiek-I

John Nerbonne, J. Nerbonne@rug.nl, spreekuur H1311.436, di. 11:15-12:00

Noortje Hemmen, n.hemmen.1@student.rug.nl

Anne Kingma, anneskingma@gmail.com

Jaap Nanninga, Jaap Nanninga@hotmail.com

Anna Pot, annapot123@gmail.com

John Nerbonne Statistiek I 3/45

Motivation, Approach of Course Basic Notions Measurement Scales, Distributions, Center, Spread Interpreting Scores

Lab Sessions

- You must enroll for a lab session via Nestor
- Lab leaders listed there, but also in handleiding.
- Turn in lab reports (all five) to lab leaders not to instructor.
- Lab reports due one week after lab. Late labs half credit; labs more than one week late count as zero.

Noortje Hemmen, n.hemmen.1@student.rug.nl Anne Kingma, anneskingma@gmail.com Jaap Nanninga, JaapNanninga@hotmail.com Anna Pot, annapot123@gmail.com

 If you cannot enroll via Nestor, please contact Ms. Alice Pomstra a.y.pomstra@rug.nl, secretariaat cluster Nederlands (4e verdieping)!

John Nerbonne Statistiek I 4/45

What? and Why?

Statistics—collecting, ordering, analyzing data Why in general?

- Wherever studies are empirical (involving data collection), and where that data is variable.
- Most areas of applied science require statistical analysis.
- General education e.g., political, economic discussion is statistical (see newspapers).

It's not mathematics, it's data analysis!

John Nerbonne Statistiek I 5/45

What? and Why?

Statistics—collecting, ordering, analyzing data Why in general?

- Wherever studies are empirical (involving data collection), and where that data is variable.
- Most areas of applied science require statistical analysis.
- General education e.g., political, economic discussion is statistical (see newspapers).

It's not mathematics, it's data analysis!

John Nerbonne Statistiek I 5/45

Motivation, Approach of Course Basic Notions Measurement Scales, Distributions, Center, Spread Interpreting Scores

Statistics in Language Studies

- Experiments, large empirical naturalistic studies inter alia in communications, information science, linguistics
- Characterizing geographical, social, sexual Δ's
- Processing uncertain input—speech, OCR, text(!)
- Evaluating intuitions (grammatical theory)
 - Bresnan article on dative shift
- Literature
 - Characteristics of authors, genres, epochs diction; sentence structure, length
 - Authorship studies (e.g. Federalist Papers)
 - Stemmata in philology (RuG diss, J.Brefeld)
- Link to cultural history, other humanities

Availability of online data increases opportunities for statistical analysis!

John Nerbonne Statistiek I 6/45

This course

- Practical approach
 - Emphasis on statistical reasoning
 - Understand uses (e.g. in research reports)
 - Conduct basic statistical analysis
- Look at data before and during stat. analysis
- De-emphasis on mathematics no prerequisite
- Use of software (SPSS)
 - Illustrates concepts, facilitates learning
 - Bridge to later use simpler
- Topics, examples from language and communications studies

John Nerbonne Statistiek I 7/45

- Weekly lecture (attendance required)
- Five exercises with SPSS (labs)
- Six weekly quizzes
- One exam (in het Nederlands)

Grades

- Lectures (5%)
 Attendance required at all lectures. Check based on at least five (of seven) times.
- Quizzes (5%)
 www.let.rug.nl/nerbonne/teach/Statistiek-I
- SPSS Labs (10%); Complete/Incomplete (50% if late less one week)
- Exam (80%)

John Nerbonne Statistiek I 8/45

Role of SPSS Labs

- "Walk through" case studies
- Think through what statistical software is demonstrating
- Acquire facility with SPSS
- Practice statistical reporting

How to approach labs

- Chance to try out ideas from lecture, book
- Ask whether your labs jibe with theory

How to waste time with labs

- Copy results from others
- Go through the motions without thinking

John Nerbonne Statistiek I 9/45

Role of SPSS Labs

- "Walk through" case studies
- Think through what statistical software is demonstrating
- Acquire facility with SPSS
- Practice statistical reporting

How to approach labs

- Chance to try out ideas from lecture, book
- Ask whether your labs jibe with theory

How to waste time with labs

- Copy results from others
- Go through the motions without thinking

John Nerbonne Statistiek I 9/45

Role of SPSS Labs

- "Walk through" case studies
- Think through what statistical software is demonstrating
- Acquire facility with SPSS
- Practice statistical reporting

How to approach labs

- Chance to try out ideas from lecture, book
- Ask whether your labs jibe with theory

How to waste time with labs

- Copy results from others
- Go through the motions without thinking

John Nerbonne Statistiek I 9/45

Descriptive vs. Inferential Statistics

Descriptive Statistics—describe data without drawing conclusions.

Example: identify average, high & low scores from a set of tests.

Purpose: characterizing data more briefly, insightfully.

Inferential Statistics—describe data, likely relation to a larger set.

Example: reason from **sample** of scores to general conclusions

Purpose: learn about large **population** from study of smaller **samples**, esp. where larger population is inaccessible or impractical to study.

Note 'sample' vs. 'population.'

John Nerbonne Statistiek I 10/45

Descriptive vs. Inferential Statistics

Descriptive Statistics—describe data without drawing conclusions.

Example: identify average, high & low scores from a set of tests.

Purpose: characterizing data more briefly, insightfully.

Inferential Statistics—describe data, likely relation to a larger set.

Example: reason from **sample** of scores to general conclusions.

Purpose: learn about large **population** from study of smaller **samples**, esp. where larger population is inaccessible or impractical to study.

Note 'sample' vs. 'population.'

John Nerbonne Statistiek I 10/45

Variables and values

We refer to a property or a measurement as a **variable**, which can take on different **values**.

Variable	Typical Values
height	170 cm, 171 cm, 183 cm, 197 cm,
sex	male, female
reaction time	305 ms, 376.2 ms, 497 ms, 503.9 ms,
language	Dutch, English, Urdu, Khosa,
corpus frequency	0.00205, 0.00017, 0.00018,
age	19, 20, 25,

Variables tell us the the properties of **individuals** or **cases**.

John Nerbonne Statistiek I 11/45

Motivation, Approach of Course Basic Notions Measurement Scales, Distributions, Center, Spread Interpreting Scores

Cases, variables, relations

Terminology: we speak of CASES, e.g., Joe, Sam, but also the FdL web site . . . and VARIABLES, e.g. height (h), native language (I), visitors (to site). Then each variable has a VALUE for each case, h_j is Joe's height, and I_s is Sam's native language.

When we examine RELATIONS, we always examine the realization of two variables on each of a group of cases.

- height vs. weight on each of a group of Dutch adults
- effectiveness vs. a design feature of group of web sites, e.g. use of menus, use of frames, use of banners
- pronunciation correctness vs. syntactic category for set of words
- phonetic vs. geographic distance on a group of pairs of Dutch towns

John Nerbonne Statistiek I 12/45

Cases, variables, relations

Terminology: we speak of CASES, e.g., Joe, Sam, but also the FdL web site . . . and VARIABLES, e.g. height (h), native language (I), visitors (to site). Then each variable has a VALUE for each case, h_j is Joe's height, and I_s is Sam's native language.

When we examine RELATIONS, we always examine the realization of two variables on each of a group of cases.

- height vs. weight on each of a group of Dutch adults
- effectiveness vs. a design feature of group of web sites, e.g. use of menus, use of frames, use of banners
- pronunciation correctness vs. syntactic category for set of words
- phonetic vs. geographic distance on a group of pairs of Dutch towns

John Nerbonne Statistiek I 12/45

Variable

Tabular Presentation

Example: A test is given to students of Dutch from non-Dutch countries. Variables:

Values

area of origin	EUrope, AMerica, AFrica, ASia						
test score	0-40						
sex	Male, Fen	Male, Female					
		area	score	sex			
		EU	22	М			
Here is part of t	AM	21	F				
		:	:	:			

Three variables, where score is numeric & each row CASE. Tables show *all* data, but large tables are not insightful.

John Nerbonne Statistiek I 13/45

Motivation, Approach of Course Basic Notions Measurement Scales, Distributions, Center, Spread Interpreting Scores

SPSS Coding

It is often advantageous to code information in a particular way for a particular software package.

In general, SPSS allows fewer manipulations and analyses for data coded in letters. Use numbers as a matter of course. We therefore recode 'area of origin' and 'sex' (into numbers).

	- 3	(,
area of origin	EUrope	A Merica	AFrica	ASia
	0	1	2	3
sex	Male	Female		
	1	2		

Notate bene: this is a weakness in SPSS. In general, it is good practice to use meaningful codings. But in SPSS, this will limit what you can do—use numbers!

John Nerbonne Statistiek I 14/45

Classifying

It is also sometimes useful to group numeric values into classes. We might group scores into 0-16 (beginner), 17-24 (advanced beginner), 25-32 (intermediate), and 33-40 (advanced).

area	score	sex	score class
0	22	1	1
1	21	2	1
2	15	2	0
3	26	1	2

Grouping numerical information into classes loses information. Care!

Reminder:

area of origin	EUrope 0	AMerica 1	AFrica	ASia	
sex	Male 1	Female	_	0	

John Nerbonne Statistiek I 15/45

Data/Measurement Scales

nl. meetniveau

categorical scales nominal, ordinal quantitative scales interval, ratio, etc.

Scale determines type of statistics possible, e.g. mean (average).

We can average quantitative data, but not categorical data. We speak of the average (mean) height of an individual (quantitative), but not his average native language (categorical).

16/45 John Nerbonne Statistiek I

Motivation, Approach of Course Basic Notions Measurement Scales, Distributions, Center, Spread Interpreting Scores

Non-Quantitative Measurement Scales

```
nominal/categorical - categorized, but not ordered:
```

- part of speech, POS in linguistics, e.g. noun, verb, . . .
- countries, languages, speech disorder, . . .

binary data is categorical, has only two values

sex, pass/fail, survival/nonsurvival, ...

We COUNT instances of categories in analysis.

ordinal – ordered (ranked), but Δ 's not comparable

- rank listing of job candidates
- satisfaction, agreement, etc. in LIKERT SCALES

```
Circle best answer. "Taxes must decline."

1 2 3 4 5

"strongly sqree" strongly disagree"
```

John Nerbonne Statistiek I 17/45

Quantitative/Numerical Scales

- interval ordered, Δ 's comparable, but no true zero (needed for multiplication)
 - temperature (in Celsius of Fahrenheit)
 - ratio like interval plus zero available
 - height, weight, age
 - elapsed time, reaction time
- "logarithmic" like ratio, but successive intervals multiply in size
 - Richter scale in earthquakes
 - loudness, pitch (auditory perception)
 - improvement (in error) rates (often)

Log. scales often result from TRANSFORMATIONS to data.

John Nerbonne Statistiek I 18/45

Measurement (and other) Error

Measurements, but also other records of variable values

- All measurements (records) risk error
 - reaction times; number of site visits, "click throughs", ...
 - judgments of "good" web sites, movies, products
 - ...
- All large data sets contain errors!

Two quality questions:

- VALIDITY: Do the var. values reflect what's intended?
 - 'Readability' often measured in sentence length, use of simple vocabulary
 - Free of errors? Grammatical simple? ...
- Reliability: Do tests give similar (consistent) results? Important in questionnaires.
 - Necessary condition (for validity)!

John Nerbonne Statistiek I 19/45

Distribution

We are often interested not in a particular value of a variable for a particular individual, but rather all the values of the variable and how often they occur.

The DISTRIBUTION of a variable shows its values and how often they occur.

The CENTER and SPREAD refer to the variable's distribution.

John Nerbonne Statistiek I 20/45

Visualizing Distributions

DISTRIBUTION is the pattern of variation of a variable Example: Number of health web-site visitors for 57 consecutive days.

279	244	318	262	335	321	165	180	201	252
145	192	217	179	182	210	271	302	169	192
156	181	156	125	166	248	198	220	134	189
141	142	211	196	169	237	136	203	184	224
178	279	201	173	252	149	229	300	217	203
148	220	175	188	160	176	128			

stem 'n leaf diagram sorts by most significant (leftmost) digit. As above, ignoring rightmost digit.

- 1 | 2233444445566666777778888889999
- 2 | 000011112222344556777
- 3 | 00123

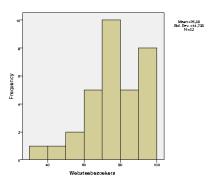
John Nerbonne Statistiek I 21/45

Visualizing Distributions

DISTRIBUTION is the pattern of variation of a variable Example: Number of health web-site visitors for 57 consecutive days.

279	244	318	262	335	321	165	180	201	252
145	192	217	179	182	210	271	302	169	192
156	181	156	125	166	248	198	220	134	189
141	142	211	196	169	237	136	203	184	224
178	279	201	173	252	149	229	300	217	203
148	220	175	188	160	176	128			

stem 'n leaf diagram sorts by most significant (leftmost) digit. As above, ignoring rightmost digit.

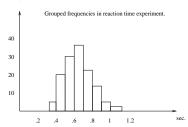

- 1 | 22334444455666667777788888889999
- 2 | 000011112222344556777
- 3 | 00123

John Nerbonne Statistiek I 21/45

Displaying Distributions via Histograms

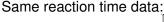
Histograms show how frequently **all** values appear, often require categorization into small number of ranges (≤ 10).

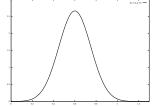
Look for general pattern, outliers, symmetry/skewness.


John Nerbonne Statistiek I 22/45

Distributions of Quantitative Variables

Most **quantitative variables** take any number of values. Variables that take more than about 7 values are often analysed as quantitative e.g., test scores. We often display their frequency distributions by **grouping** values.


Example: histogram of reaction times.

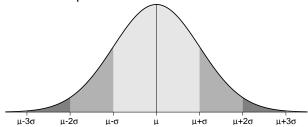


John Nerbonne Statistiek I 23/45

Density Curves

Smoothed curves also plot area proportional to relative frequency.

Most very close to 0.6 sec (600ms)


- $\neg \diamond$ (i.e., **don't!**) interpret as 'p% of reaction times = 600ms.' 700ms reaction time $\sim 25\%$
- -maybe **no** reaction time was exactly 600ms

John Nerbonne Statistiek I 24/45

Probability Density Curves

- assign (fractional) values to events, $0 \le P(e) \le 1$, where an event is a collection of (possible) occurrences
- sum to one (all possible events) $\int_{-\infty}^{\infty} P(x) dx = 1$

lots of possibilities, most famously "normal" distributions—"bell-shaped" curve

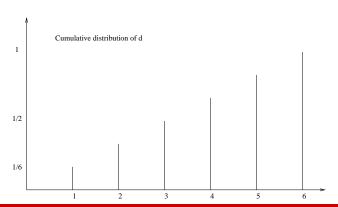
John Nerbonne Statistiek I 25/45

Frequency Distributions

Frequency distributions (*frequentieverdelingen*) show how **often** various values occur.

absolute frequency How many times values are seen, e.g., 16 *men*, 24 *women*

relative frequency What percentage or fraction of all occurrences, e.g., 40% (= 16/40) men, 60% (= 24/40) women


Example: relative frequency of an honest die (flat graph,with each rel. frequency $\approx 1/6$)

John Nerbonne Statistiek I 26/45

Frequency Distributions

cumulative frequency how often values **no larger than** a given value occur.

Example: cumulative relative frequency of an honest die.

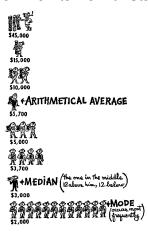
John Nerbonne Statistiek I 27/45

Central Tendency

mode most frequent element
the **only** meaningful measure for nominal data

median half of cases are above, half below the median available for ordinal data.

mean arithmetic average


$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$
$$\frac{1}{n} \sum_{i=1}^{n} x_i$$

 μ for populations, m (and \bar{x}) for samples

John Nerbonne Statistiek I 28/45

Measures Of "Center"

... need not coincide—from How to Lie with Statistics

John Nerbonne Statistiek I 29/45

x-ile's

Quartiles, quintiles, percentiles-divide a set of scores into equal-sized groups

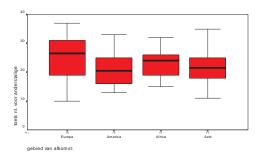
 q_1 1st quartile—-dividing pt between 1st & 2nd groups; q_2 —div. pt. 2nd & 3rd (= median!)

percentiles: divide into 100 groups—thus $q_1 = 25$ th percentile, median = 50th, ...

Score at nth percentile is better than n% of scores.

John Nerbonne Statistiek I 30/45

Measures of Spread/Variation


- none for nonnumeric data! why?
- minimum, maximum lowest, highest values
- range difference between minimum and maximum
- **interquartile range** $(q_3 q_1)$ —center where half of all scores lie
- semi-interquartile range $(q_3 q_1)/2$
- "box-n-whiskers" diagrams showing $q_2 \& q_3$, range, median

John Nerbonne Statistiek I 31/45

Visualizing Variation—Box Plots

"box-n-whiskers" plot w. q2, q3, range, median

Results "Dutch for Foreigners" for four groups of students. "Boxes" show q_3-q_1 , line is median. "Whiskers" show first and last quartiles.

John Nerbonne Statistiek I 32/45

Motivation, Approach of Course Basic Notions Measurement Scales, Distributions, Center, Spread Interpreting Scores

Spread of Quantitative Variables

deviation is difference between observation and mean variance average square of deviation

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

estimated in samples by dividing by n-1:

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

standard deviation square root of variance $\sigma = \sqrt{\sigma^2}$ σ^2 for population, σ^2 for sample

—square allows orthogonal sources of deviation (error) to be analyzed $e^2 = e_1^2 + e_2^2 + \cdots + e_n^2$

John Nerbonne Statistiek I 33/45

Motivation, Approach of Course Basic Notions Measurement Scales, Distributions, Center, Spread Interpreting Scores

Spread of Quantitative Variables

deviation is difference between observation and mean variance average square of deviation

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

estimated in samples by dividing by n-1:

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

standard deviation square root of variance $\sigma = \sqrt{\sigma^2}$ σ^2 for population, s^2 for sample

—square allows orthogonal sources of deviation (error) to be analyzed $e^2 = e_1^2 + e_2^2 + \cdots + e_n^2$

John Nerbonne Statistiek I 33/45

Motivation, Approach of Course Basic Notions Measurement Scales, Distributions, Center, Spread Interpreting Scores

Other Properties of Distributions

skew "scheefheid" measure of balance of distribution

$$= \left\{ \begin{array}{ll} - & \text{if more on left of mean} \\ 0 & \text{if balanced} \\ + & \text{if more on right} \end{array} \right.$$

-seen in SPSS, not used further in this course

John Nerbonne Statistiek I 34/45

Standardized Scores

"Tom got 112, and Sam only got 105"

—What do scores mean?

Knowing μ, σ one can **transform** raw scores into **standardized scores**, aka **z-scores**:

$$z = \frac{x - \mu}{\sigma} = \frac{\text{deviation}}{\text{standard deviation}}$$

John Nerbonne Statistiek I 35/45

Example

Suppose $\mu = 108$, $\sigma = 10$, then

$$Z_{112} = \frac{112 - 108}{10} = 0.4$$

$$z_{105} = \frac{105 - 108}{10} = -0.3$$

z shows distance from mean in number of standard deviations.

John Nerbonne Statistiek I 36/45

Standardized Variables' Distributions

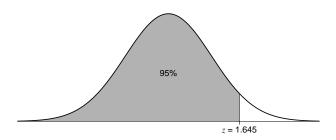
If we transform all raw scores into z-scores using:

$$z = \frac{x - \mu}{\sigma} = \frac{\text{deviation}}{\text{standard deviation}}$$

We obtain a **new** variable z, whose

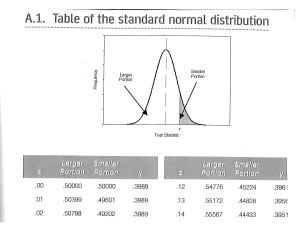
mean is 0 standard deviation is 1

z-score = distance from μ in σ 's


uses: interpretation, sampling, hypothesis testing

John Nerbonne Statistiek I 37/45

Interpretation via z-scores


Interpretation of **normal curve** for standardized variables (z):

In every normal curve, 95% of the mass is under the curve below 1.645 standard deviations above the mean.

John Nerbonne Statistiek I 38/45

Normal Curve Tables (based on z-scores)

From Field, Appendix A, pp.797-802

John Nerbonne Statistiek I 39/45

Normal Curve Tables (based on z-scores)

y	smaller portion	larger portion	Z
: : :3989	.5000	.5000	: 0
0584	: 0250	9750	1 96

Note that larger and smaller portions always sum to 1.0!

Note, too, that -z and +z would have the same larger and smaller portions (the curve is symmetric)

where z is the standardized variable:

$$z = \frac{x - \mu}{\sigma} = \frac{\text{deviation}}{\text{standard deviation}}$$

John Nerbonne Statistiek I 40/45

Interpretation via z-scores

If distribution is normal, then standardized scores correspond to percentiles

z	larger portion	smaller portion	У
:		:	:
0	.5000	.5000	.3989
:	:	:	:
1.96	.9750	.0250	.0584

Table specifies the correspondence (\div 100), containing the fraction of the frequency distribution less than the specified *z* value. Tables in other books give, e.g., $1 - (Percentile \div 100)$.

John Nerbonne Statistiek I 41/45

Interpretation via z-scores

Typical questions, where tables can be applied

- $P(\underline{z} > 1.5) = ?$ —What's the chance of a z value greater than 1.5?
- $P(\underline{z} \le 1.5) = ?$
- $P(\underline{z} \le -1.5) = ?$
- $P(-1 \le \underline{z} \le 1) = ?$

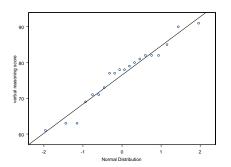
We assume normally distributed variables.

Exercises: "Interpretation of Normal Distribution"

John Nerbonne Statistiek I 42/45

Checking Normality Assumption

Some statistical techniques can only be applied if the data is (roughly) normally distributed, e.g., *t*-tests, ANOVA.


How can one check whether the data is normally distributed? **Normal Quantile Plots** show (roughly) straight lines if data is (roughly) normal.

- Sort data from smallest to largest—showing its organisation into quantiles
- Calculate the z-value that would be appropriate for the quantile value (normal-quantile value), e.g., z = 0 for 50^{th} percentile, z = -1 for 16^{th} , z = 2 for 97.5^{th} , etc.
- Plot data values against normal-quantile values.

John Nerbonne Statistiek I 43/45

Normal Quantile Plots

Example: Verbal reasoning scores of 20 children

Plot expected normal distribution quantiles (x axis) against quantiles in samples. If distribution is normal, the line is roughly straight. Here: distribution roughly normal.

To do

This week:

- Reading (see schedule);
- "Pencil and paper" exercise 1;
- Quiz 1

Next Week: Samples, Sample Means

John Nerbonne Statistiek I 45/45