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Course outline

1 One-way ANOVA.

2 Factorial ANOVA.

3 Repeated measures ANOVA.

4 Correlation and regression.

5 Multiple regression.

6 Logistic regression.

7 Hierarchical, or “mixed” models
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Lecture outline

Today: One-way ANOVA

1 General motivation

2 F -test and F -distribution

3 ANOVA example

4 The logic of ANOVA

Short break

5 ANOVA calculations

6 Post-hoc tests
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What’s ANalysis Of VAriance (ANOVA)?

I Most popular statistical test for numerical data

I Generalized t-test

I Compares means of more than two groups

I Fairly robust

I Based on F -distribution

I compares variances (between groups and within groups)
I Two basic versions:

a One-way (or single) ANOVA: compare groups along one
dimension, e.g., grade point average by school class

b N-way (or factorial) ANOVA: compare groups along ≥ 2
dimensions, e.g., grade point average by school class and
gender
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Typical applications

I One-way ANOVA:
Compare time needed for lexical recognition in

1. healthy adults
2. patients with Wernicke’s aphasia
3. patients with Broca’s aphasia

I Factorial ANOVA:
Compare lexical recognition time in male and female in the
same three groups
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Comparing multiple means

I For two groups: use t-test

I Note: testing for p-value of 0.05 shows significance 1 time in
20 if there is no difference in population mean (effect of
chance)

I But suppose there are 7 groups, i.e., we test
(7
2

)
= 21 pairs of

groups

I Caution: several tests (on the same data) run the risk of
finding significance through sheer chance
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Multiple comparison problem

Example: Suppose you run k = 3 tests, always seeking a result
significant at α = 0.05

⇒ probability of getting at least one false positive is given by:

αFW = 1− P(zero false positive results)

= 1− (1− α)k

= 1− (1− 0.05)3

= 1− (0.95)3

= 0.143

Hence, with only 3 pairwise tests, the chance of committing type I
error almost 15% (and 66% for 21 tests!)

αFW called Bonferroni family-wise α-level
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Bonferroni correction for multiple comparisons

To guarantee a family-wise α-level of 0.05, divide α by number of
tests.

Example: 0.05/3 (= α/# tests) = 0.017 (note: 0.9833 ≈ 0.95)
⇒ set α = 0.017 (= Bonferroni-corrected α-level)

I If p-value is less than the Bonferroni-corrected target α:
reject the null hypothesis.

I If p-value greater than the Bonferroni-corrected target α:
do not reject the null hypothesis.
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Analysis of variance

I ANOVA automatically corrects for looking at several
relationships (like Bonferroni correction)

I Based on F -distribution: Moore & McCabe, §7.3, pp.
435–445

I Measures the difference between two variances (variance σ2)

F =
s21
s22

I always positive since variances are positive

I two degrees of freedom interesting, one for s1, one for s2
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F -test vs. F -distribution

F -value: F =
s21
s22

I F -values used in F -test (Fisher’s test)
H0: samples are from same distribution (s1 = s2)
Ha: samples are from different distributions (s1 6= s2)

- value near 1 indicates same variance
- value near 0 or +∞ indicates difference in variance

I F -test very sensitive to deviations from normal

I ANOVA uses F -distribution, but is different: ANOVA 6=
F -test!
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F -distribution

Critical area for F -distribution at p = 0.05 (df: 12,10)
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F -test

Example: height

group sample mean standard
size deviation

boys 16 180cm 6cm
girls 9 168cm 4cm

Is the difference in standard deviation significant?

Examine F =
s2
boys
s2
girls

Degrees of freedom: dfboys = 16− 1
dfgirls = 9− 1
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F -test critical area (for two-tailed test with α = 0.05)

P(F (15, 8) > x) =
α

2
= 0.025

P(F (15, 8) < x) = 1− 0.025

P(F (15, 8) < 4.1) = 0.975 Moore & McCabe, Table E, p. 706

(no values directly for P(F (df1, df2) > x))

P(F (15, 8) < x) = 0.025

⇔ P(F (8, 15) > x ′) = 0.025 where x ′ =
1

x
⇔ P(F (8, 15) > 3.2) = 0.025 (tables)

⇔ P(F (15, 8) <
1

3.2
) = 0.025

⇔ P(F (15, 8) < 0.31) = 0.025

Reject H0 if F < 0.31 or F > 4.1

Here, F = 62

42 = 2.25 (hence no evidence of difference in distributions)
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ANOVA

Analysis of Variance (ANOVA) most popular statistical test for
numerical data

I several types

- single, “one-way”
- factorial, “two-, three-,. . ., n-way”
- single/factorial repeated measures

I examines variation

- “between-groups”—gender, age, etc.
- “within-groups”—overall

I automatically corrects for looking at several relationships (like
Bonferroni correction)

I uses F -distribution, where F (n,m) fixes n typically at the
number of groups (minus 1), m at the number of subjects,
i.e., data points (minus number of groups)
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Detailed example: one-way ANOVA

Question: Are exam grades of four groups of foreign students
“Nederlands voor anderstaligen” the same? More exactly, are the
four averages the same?

H0 : µ1 = µ2 = µ3 = µ4
Ha : µ1 6= µ2 or µ1 6= µ3 . . . or µ3 6= µ4

Alternative hypothesis: at least one group has a different mean

For the question of whether any particular pair is different, the
t-test is appropriate.

For testing whether all language groups are the same, pairwise
t-tests exaggerate differences (increase the chance of type I error)

We therefore want to apply one-way ANOVA
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Data: Dutch proficiency of foreigners

Four groups of ten students each:

Group

Europe America Africa Asia

10 33 26 26
19 21 25 21
...

...
...

...
31 20 15 21

Mean 25.0 21.9 23.1 21.3
Samp. SD 8.14 6.61 5.92 6.90
Samp. Variance 66.22 43.66 34.99 47.57
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ANOVA conditions

ANOVA assumptions:

I Normal distribution per subgroup

I Same variance in subgroups: least SD > one-half of largest SD

I independent observations: watch out for test-retest
situations!

Check differences in SD’s! (some SPSS computing)
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ANOVA conditions

Assumption: normal distribution per group, check with normal
quantile plot, e.g., for Europeans below (repeat for every group)

Normal Q-Q plot of toets.nl voor anderstalige
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Visualizing ANOVA data

Is there a significant difference in the means (of the groups being
contrasted)?

Take care that boxplots sketch medians not means.
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Sketch of ANOVA

Group
1 2 3 4
Eur. Amer. Africa Asia
...

...
...

...
x1j x2j x3j x4j
...

...
...

...
x1 x2 x3 x4

Notation:

Group index: i ∈ {1, 2, 3, 4}
Sample index: j ∈ Ni = size of group i
Data point xij : ith group, jth observation
Number of groups: I = 4
Total mean: x
Group mean: x i

For any data point xij :

(xij − x) = (x i − x) + (xij − x i )

total residue = group diff. + “error”

ANOVA question: does group membership influence the response variable?
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Two variances

Reminder of high school algebra: (a + b)2 = a2 + b2 + 2ab

b

aa2ab

abb2
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Two variances

Data point xij :

(xij − x) = (x i − x) + (xij − x i )

Want sum of squared deviates for each group:

(xij − x)2 = (x i − x)2 + (xij − x i )
2 + 2(x i − x)(xij − x i )

Sum over elements in ith group:

Ni∑
j=1

(xij − x)2 =

Ni∑
j=1

(x i − x)2 +

Ni∑
j=1

(xij − x i )
2 +

Ni∑
j=1

2(x i − x)(xij − x i )
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Two variances

Note that this term must be zero:

Ni∑
j=1

2(x i − x)(xij − x i )

Because:

(a)

Ni∑
j=1

2(x i − x)(xij − x i ) = 2(x i − x)

Ni∑
j=1

(xij − x i )︸ ︷︷ ︸
0

(b)

Ni∑
j=1

(xij − x i ) = 0 ⇔ x i =

∑Ni
j=1 xij

Ni
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Two variances

So we have:
Ni∑
j=1

(xij − x)2 =

Ni∑
j=1

(x i − x)2 +

Ni∑
j=1

(xij − x i )
2

(+

Ni∑
j=1

2(x i − x)(xij − x i ) = 0)

Therefore:
Ni∑
j=1

(xij − x)2 =

Ni∑
j=1

(x i − x)2 +

Ni∑
j=1

(xij − x i )
2

And finally we can sum over all groups:

I∑
i=1

Ni∑
j=1

(xij − x)2 =
I∑

i=1

Ni∑
j=1

(x i − x)2 +
I∑

i=1

Ni∑
j=1

(xij − x i )
2
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ANOVA terminology

(xij − x) = (x i − x) + (xij − x i )
total residue = group diff. + “error”

I∑
i=1

Ni∑
j=1

(xij − x)2 =
I∑

i=1

Ni (x i − x)2 +
I∑

i=1

Ni∑
j=1

(xij − x i )
2

SST SSG SSE
Total Sum of Squares = Group Sum of Squares + Error Sum of Squares

(n − 1) = (I − 1) + (n − I )
DFT DFG DFE

Total Degrees of Freedom = Group Degrees of Freedom + Error Degrees of Freedom
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Variances are mean squared differences to the mean

Note that

SST/DFT:
∑I

i=1

∑Ni
j=1(xij−x)2

n−1 is a variance, and likewise

SSG/DFG: labelled MSG (“Mean square between groups”), and

SSE/DFE: labelled MSE (“Mean square error” or sometimes
“Mean square within groups”)

In ANOVA, we compare MSG (variance between groups) and MSE
(variance within groups), i.e. we measure

F = MSG
MSE

If this F -value is large, differences between groups overshadow
differences within groups.
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Two variances

1) Estimate the pooled variance of the population (MSE):

MSE = SSE
DFE =

∑I
i=1

∑Ni
j=1(xij−x i )

2

n−I

equiv
=

∑I
i=1 DFi ·s2i∑I
i=1 DFi

In our example (Nederlands for anderstaligen):∑I
i=1 DFi · s2i∑I

i=1 DFi

=
(N1 − 1)s21 + (N3 − 1)s22 + (N3 − 1)s23 + (N4 − 1)s24

(N1 − 1) + (N3 − 1) + (N3 − 1) + (N4 − 1)

=
9 · 66.22 + 9 · 43.66 + 9 · 34.99 + 9 · 47.57

9 + 9 + 9 + 9

=
595.98 + 392.94 + 314.91 + 428.13

36
= 48.11

Estimates the variance in groups (using DF), aka within-groups
estimate of variance
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Two variances

2) Estimate the between-groups variance of the population (MSG):

MSG = SSG
DFG =

∑I
i=1 Ni (x i−x)2

I−1

In our example (Nederlands for anderstaligen):

We had 4 group means: 25.0, 21.9, 23.1, 21.3, grand mean: 22.8

MSG = 10·((25−22.8)2+(21.9−22.8)2+(23.1−22.8)2+(21.3−22.8)2)
4−1 = 26.6

The between-groups variance (MSG) is an aggregate estimate of
the degree to which the four sample means differ from one another
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Interpreting estimates with F -scores

If H0 is true, then we have two variances:

I Between-groups estimate: s2bg = 26.62 and

I Within-groups estimate: s2wg = 48.11

and their ratio
s2
bg

s2wg
follows an F -distribution with:

(# groups − 1) = 3 degrees of freedom for s2bg and

(# observations − # groups) = 36 degrees of freedom for s2wg

In our example: F (3, 36) = 26.62
48.11 = 0.55

P(F (3, 40) > 2.84) = 0.05 (see tables), so there is no evidence of
non-uniform behavior
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SPSS summary

No evidence of non-uniform behavior
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Other questions

ANOVA H0: µ1 = µ2 = . . . = µn

But sometimes particular contrasts are important—e.g., are
Europeans better (in learning Dutch)?

Distinguish (in reporting results):

I prior contrasts
questions asked before data is collected and analyzed

I post hoc (posterior) questions
questions asked after data collection and analysis
“data-snooping” is exploratory, cannot contribute to
hypothesis testing
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Prior contrasts

Questions asked before data collection and analysis—e.g., are
Europeans better (in learning Dutch)?

Another way of putting this:

H0 : µEur =
1

3
(µAm + µAfr + µAsia)

Ha : µEur 6=
1

3
(µAm + µAfr + µAsia)

Reformulation (SPSS requires this):

H0 : 0 = −µEur + 0.33µAm + 0.33µAfr + 0.33µAsia
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Prior contrasts in SPSS

I Mean of every group gets a coefficient

I Sum of coefficients is 0

I A t-test is carried out and two-tailed p-value is reported (as
usual):

No significant difference here (of course)

Note: prior contrasts are legitimate as hypothesis tests as long as
they are formulated before data collection and analysis
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Post-hoc questions

Assume H0 is rejected: which means are distinct?

Data-snooping problem: in a large set, some distinctions are likely
to be statistically significant

But we can still look (we just cannot claim to have tested the
hypothesis)

We are asking whether mi −mj is significantly larger, we apply a
variant of the t-test

The relevant sd is

√
MSE

n (differences among scores), but there is
a correction since we’re looking at a proportion of the scores in any
one comparison
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SD in post-hoc ANOVA questions

Standard deviation (among differences in groups i and j):

sd =
√

MSE× Ni+Nj

N =
√

48.1× 10+10
40 = 4.9

t =
x i−x j

sd·
√

1
Ni

+ 1
Nj

The critical t-value is calculated as p
c where p is the desired

significance level and c is the number of comparisons.

For pairwise comparisons: c =
(I
2

)
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Post-hoc questions in SPSS

SPSS post-hoc ‘Bonferroni’-searches among all groupings for
statistically significant ones

But in this case there are none (of course)
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How to win at ANOVA

Note the ways in which the F -ratio increases (i.e., becomes more
significant):

F = MSG
MSE

1. MSG increases: differences in means between groups grow
larger

2. MSE decreases: overall variation within groups grows smaller
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Two models for grouped data

xij = µ+ εij

xij = µ+ αi + εij

First model:

I no group effect

I each data point represents error (ε) around a mean (µ)

Second model:

I real group effect

I each data point represents error (ε) around an overall mean
(µ), combined with a group adjustment (αi )

ANOVA asks: is there sufficient evidence for αi?
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Fall backs?

Suppose some cells are non-normal, or some standard deviations
too large

I Kruskal-Wallis, non-parametric comparison of > 2 medians;

I apply (monotonic) transformation to reduce SD, perhaps
improve fit to normality;

I trim most extreme 1% (or 5%) of data

Always report transformations or “trimming”!
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Next week

Next week: factorial ANOVA
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