Statistiek II

John Nerbonne

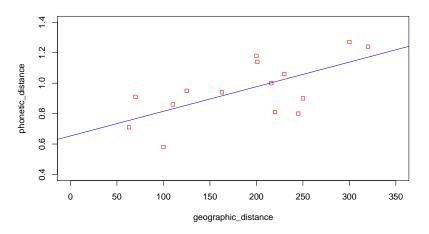
Dept of Information Science j.nerbonne@rug.nl incl. important reworkings by Harmut Fitz

March 17, 2015

Review: regression

- compares result on two distinct tests, e.g., geographic and phonetic distance of dialects
- regression for numerical variables only
- fits a straight line on the data
- is there an explanatory relationship between these variables?
- answer: hypothesis tests for regression coefficients
- regression is asymmetric (explanatory direction)
- regression fallacy: seeing causation in regression
- regression towards the mean (inevitable)

Review: regression



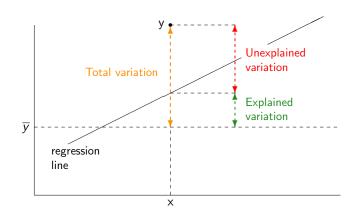
Regression line y = a + bx minimizes the sum of squared residuals

Review: correlation

- only for numeric variables x and y
- measures strength and direction of a linear relation between x and y
- $r_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} z_{x_i} \cdot z_{y_i}$
- correlation coefficient symmetric: $r_{xy} = r_{yx}$
- ▶ $-1 \le r_{xy} \le 1$ pure number, no scale
- related to the slope of the regression line: y = a + bx has slope

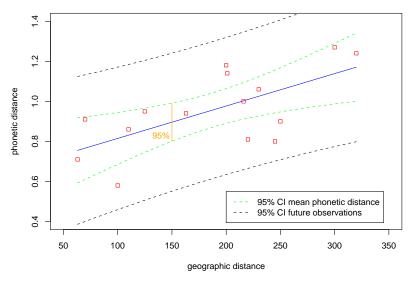
$$b = r \cdot \frac{\sigma_y}{\sigma_x}$$

Review: correlation and regression



Coefficient of determination: $r^2 = \frac{\text{Explained variation}}{\text{Total variation}}$

Review: prediction with regression



Today: multiple regression

Idea: Predict numerical variable using several independent variables

Examples:

- university performance dependent on general intelligence, high school grades, education of parents,...
- income dependent on years of schooling, school performance, general intelligence, income of parents,...
- level of language ability of immigrants depending on
 - leisure contact with natives
 - age at immigration
 - employment-related contact with natives
 - professional qualification
 - duration of stay
 - accommodation

Regression techniques attractive

- allows prediction of one variable value based on one or more others
- allows an estimation of the importance of various independent factors (cf. ANOVA)

$$y = \epsilon$$

$$y = \alpha + \epsilon$$

$$y = \alpha + \beta_1 x_1 + \epsilon$$

$$y = \alpha + \beta_2 x_2 + \epsilon$$

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

which independent factors, taken together or separately, explain the dependent variable the best?

Multiple regression data

One dependent variable y, but **several** predictor variables x_1, \ldots, x_p

N cases c_i with $i \in \{1, \ldots, N\}$

Each case c_i has the form $c_i = (x_{i1}, \dots, x_{ip}, y_i)$

Data: Case 1:
$$c_1 = (x_{11}, \dots, x_{1p}, y_1)$$

Case 2: $c_2 = (x_{21}, \dots, x_{2p}, y_2)$
 \vdots \vdots
Case N: $c_N = (x_{N1}, \dots, x_{Np}, y_N)$

Example: do geographic (x_1) and phonetic distance (x_2) predict people's intuitions about dialect distance (y)? (see Bezooijen and Heeringa, 2006)

Statistical **model** of multiple linear regression:

$$y_1 = \alpha + \beta_1 x_{11} + \beta_2 x_{12} + \ldots + \beta_p x_{1p} + \epsilon_1$$

$$\vdots$$

$$y_N = \alpha + \beta_1 x_{N1} + \beta_2 x_{N2} + \ldots + \beta_p x_{Np} + \epsilon_N$$

Mean response μ_y is linear combination of predictor variables:

$$\mu_{y} = \alpha + \beta_{1}x_{1} + \beta_{2}x_{2} + \ldots + \beta_{p}x_{p}$$

Deviations ϵ_i are independent and normally distributed with mean 0 and standard deviation σ

Need to **estimate** p + 1 model parameters a, b_1, \ldots, b_p :

$$y = a + b_1 x_1 + b_2 x_2 + \dots + b_p x_p$$

Need to **estimate** p + 1 model parameters a, b_1, \ldots, b_p :

$$y = a + b_1 x_1 + b_2 x_2 + \dots + b_p x_p$$

simple linear
regression

Need to **estimate** p + 1 model parameters a, b_1, \ldots, b_p :

$$y = a + b_1 x_1 + b_2 x_2 + \dots + b_p x_p$$

Predicted response for case *i*:

$$\hat{y}_i = a + b_1 x_{i1} + b_2 x_{i2} + \dots + b_p x_{ip}$$

Residual of case *i*:

$$e_i$$
 = observed response – predicted response
= $y_i - \hat{y}_i$
= $y_i - a - b_1 x_{i1} - b_2 x_{i2} - \dots - b_p x_{ip}$

Least squares regression

Find parameters that minimize sum of squared residuals (SSE):

$$\sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} (y_i - a - b_1 x_{i1} - b_2 x_{i2} - \dots - b_p x_{ip})^2$$

But this time, let software do it for you...

As usual, we partition the variance:

$$\begin{array}{rcl} \mathsf{SST} &=& \mathsf{SSM} + \mathsf{SSE} \\ \sum_{i=1}^N (y_i - \overline{y})^2 &=& \sum_{i=1}^N (\hat{y}_i - \overline{y})^2 + \sum_{i=1}^N (y_i - \hat{y}_i)^2 \\ \mathsf{Total \ variance} &=& \mathsf{Explained \ variance} + \mathsf{Error \ variance} \end{array}$$

Degrees of freedom in multiple regression

Multiple linear regression model has p+1 parameters

Hence, **model** degrees of freedom (DFM): (p+1)-1=p

Total degrees of freedom (DFT): (number of cases) -1 = N - 1

Error degrees of freedom (DFE): N - p - 1

As usual, DFT = DFM + DFE

Mean square model: MSM = SSM/DFM

Mean square error: MSE = SSE/DFE

Multiple regression: example

Grade point average (GPA) of first-year computer science majors is measured (A = 4.0, B = 3.0,...)

Questions:

- (a) do high school grades predict university grades?
 - Mathematics
 - English
 - Science
- (b) do 'scholastic aptitude test' (SAT) scores predict university grades?
 - Mathematics
 - Verbal
- (c) do both sets of scores predict GPA?

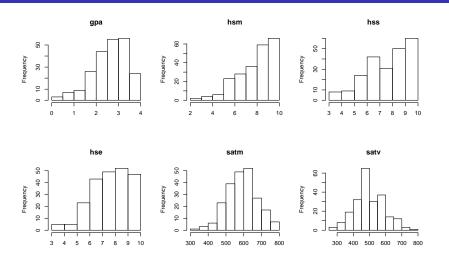
Multiple regression: example

Obs	HS-M	HS-S	HS-E	SAT-M	SAT-V	GPA
1	10	10	10	670	600	3.32
2	6	8	5	700	640	2.26
3	8	6	8	640	530	2.35
4	9	10	7	670	600	2.08
5	8	9	8	540	580	3.38
:	:	:	:	:	:	:
224	9	8	9	559	488	2.28

HS-M/S/E: high school grades mathematics/science/English SAT-M/V: 'scholastic aptitude test' scores mathematics/verbal

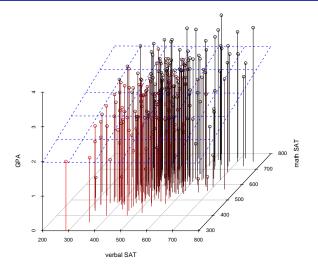
GPA: grade point average

Distribution of scores



Regression does not require that variables be normally distributed!

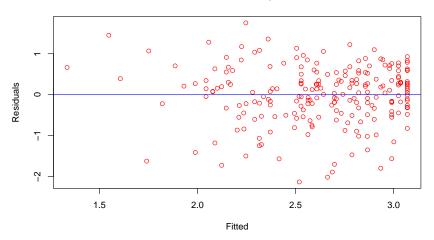
Multiple regression: predicted vs observed values



Scatterplot of GPA against SAT scores with regression plane fitted

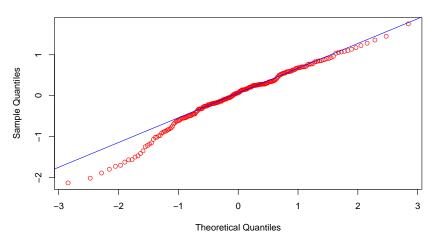
Visualizing residuals

Residual-Fitted plot



No indication of non-linear relationship between variables

Check normality of residuals



No indication that residuals are distributed non-normal

(a) do high school grades (HS-M, HS-S, HS-E) predict GPA?

Call: $lm(formula = gpa \sim hse + hsm + hss, data = gpa_data)$

Coefficients:					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	0.58988	0.29424	2.005	0.0462 *	
hse	0.04510	0.03870	1.166	0.2451	
hsm	0.16857	0.03549	4.749	3.68e-06 ***	
hss	0.03432	0.03756	0.914	0.3619	
_					
Signif. codes:	0 ***	0.001 **	0.01 *	0.05 .	
Residual standard error:	0.6998 on 220 degrees of freedom				
Multiple R-Squared:	0.2046,	, Adjusted R-squared: 0.1937			
F-statistic:	18.86 on 3	3 and 220 DF,	p-value:	6.359e-11	

(a) do high school grades (HS-M, HS-S, HS-E) predict GPA?

Call: $lm(formula = gpa \sim hse + hsm + hss, data = gpa_data)$

Coefficients:					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	0.58988	0.29424	2.005	0.0462 *	
hse	0.04510	0.03870	1.166	0.2451	
hsm	0.16857	0.03549	4.749	3.68e-06 ***	
hss	0.03432	0.03756	0.914	0.3619	
_					
Signif. codes:	0 ***	0.001 **	0.01 *	0.05 .	
Residual standard error:	0.6998 on 220 degrees of freedom				
Multiple R-Squared:	0.2046, Adjusted R-squared: 0.1937			1937	
F-statistic: 18.86 on 3 and 220 DF, p-value: 6.359e-11			6.359e-11		

Regression equation: $y = 0.59 + 0.04x_1 + 0.17x_2 + 0.03x_3$

(a) do high school grades (HS-M, HS-S, HS-E) predict GPA?

Call: $lm(formula = gpa \sim hse + hsm + hss, data = gpa_data)$

Coefficients:					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	0.58988	0.29424	2.005	0.0462 *	
hse	0.04510	0.03870	1.166	0.2451	
hsm	0.16857	0.03549	4.749	3.68e-06 ***	
hss	0.03432	0.03756	0.914	0.3619	
_					
Signif. codes:	0 ***	0.001 **	0.01 *	0.05 .	
Residual standard error:	0.6998 on 220 degrees of freedom				
Multiple R-Squared:	0.2046, Adjusted R-squared: 0.1937		1937		
F-statistic:	18.86 on 3	3 and 220 DF,	p-value:	6.359e-11	

Regression equation: $y = 0.59 + 0.04x_1 + 0.17x_2 + 0.03x_3$

F-statistics for multiple regression

F-statistics tests:

$$H_0$$
: $b_1=b_2=\ldots=b_p=0$ against H_a : at least one of the $b_i \neq 0$

ANOVA table:

Source	Degrees of freedom	Sum of squares	Mean square	F
Model	р	$\sum (\hat{y}_i - \overline{y})^2$	SSM/DFM	MSM/MSE
Error	N-p-1	$\sum (y_i - \hat{y}_i)^2$	SSE/DFE	
Total	N-1	$\sum (y_i - \overline{y})^2$	SST/DFT	

In the example: F(3,220) = 18.86 and p < 0.001

Hence, we reject H_0 , at least one regression coefficient $b_i \neq 0$ (but we don't know which one)

(a) do high school grades (HS-M, HS-S, HS-E) predict GPA?

Call: $Im(formula = gpa \sim hse + hsm + hss, data = gpa_data)$

Coefficients:					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	0.58988	0.29424	2.005	0.0462 *	
hse	0.04510	0.03870	1.166	0.2451	
hsm	0.16857	0.03549	4.749	3.68e-06 ***	
hss	0.03432	0.03756	0.914	0.3619	
_					
Signif. codes:	0 ***	0.001 **	0.01 *	0.05 .	
Residual standard error:	0.6998 on 220 degrees of freedom				
Multiple R-Squared:	0.2046, Adjusted R-squared: 0.1937			1937	
F-statistic:	18.86 on 3	3 and 220 DF,	p-value:	6.359e-11	

Regression equation: $y = 0.59 + 0.04x_1 + 0.17x_2 + 0.03x_3$

Which of the high school grades significantly contributes to predicting GPA?

For each coefficient b_1, b_2, b_3 we test: H_0 : $b_i = 0$ vs H_a : $b_i \neq 0$

Under H_0 : $t^* = \frac{b_i}{\mathsf{SE}_i}$

follows t-distribution with N-p-1 degrees of freedom, where

 SE_i = standard error of the estimated b_i

If $t^* \ge |t(N-p-1)|$ at $\alpha = 0.05$, reject H_0

Which of the high school grades significantly contributes to predicting GPA?

```
Coefficients:
              Estimate
                         Std. Error
                                    t value
                                             Pr(>|t|)
              0.04510
                         0.03870
                                             0.2451
hse
                                    1.166
hsm
              0.16857
                         0.03549 4.749 3.68e-06 ***
              0.03432
                         0.03756
                                    0.914
                                             0.3619
hss
Signif. codes:
              0 ***
                         0.001 **
                                    0.01 *
                                             0.05 .
```

In $\underline{\text{this}}$ regression model, only high school grades in Mathematics (HS-M) are significant

BUT...

...if we regress Science grades (HS-S) **only** on GPA:

Call: $lm(formula = gpa \sim hss, data = gpa_data)$

```
Coefficients:
                      Estimate Std. Error t value
                                                    Pr(>|t|)
                      1.41325 0.24017
                                             5.884 1.46e-08 ***
(Intercept)
                                            5.198 4.55e-07 ***
                      0.15106
                               0.02906
hss
                      O ***
Signif. codes:
                                0.001 ** 0.01 *
                                                     0.05
Residual standard error: 0.7375 on 222 degrees of freedom
Multiple R-Squared: 0.1085, Adjusted R-squared: 0.1045
F-statistic:
                      27.02 on 1 and 222 DF, p-value: 4.552e-07
```

We find that HS-S is a significant predictor of GPA!

Explanation: look at correlation between explanatory variables

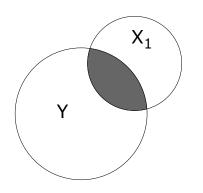
$$r_{\text{HSM,HSE}} = 0.47$$

$$r_{\text{HSM,HSS}} = 0.58$$

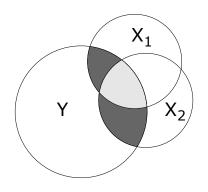
$$r_{\text{HSE,HSS}} = 0.58$$

Hence, Maths and Science grades strongly correlated

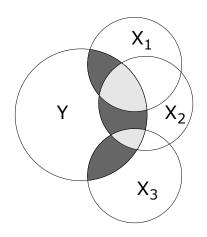
- HSS does not add to explanatory power of HSM and HSE (in full model)
- ► HSS alone, though, predicts GPA (to some extent)
- be careful: always compare several multiple regression models and determine correlation before drawing conclusions



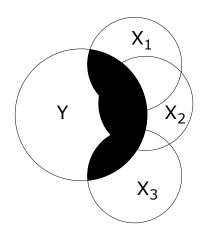
- regress Y on X₁ (simple linear regression)
- shaded area r² (squared Pearson correlation coefficient)
- r² measures amount of variation in Y explained by X₁



- regress Y on X₁ and X₂ (multiple linear regression)
- dark grey areas: uniquely explained variance ("squared semi-partial correlation")
- light grey area: commonly explained variance (due to correlation of X₁ and X₂)



- regress Y on X₁ and X₂ and X₃ (multiple linear regression)
- dark grey areas: uniquely explained variance ("squared semi-partial correlation")
- light grey area: commonly explained variance (due to correlation of X₁ and X₂)
- ▶ note: X₁ and X₃ uncorrelated



- regress Y on X₁ and X₂ and X₃ (multiple linear regression)
- black area R²: "squared multiple correlation coefficient"
- R² measures total proportion of variance in Y accounted for by X₁, X₂ and X₃

Squared multiple correlation

$$R^{2} = \frac{SSM}{SST} = \frac{\sum_{i=1}^{N} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{N} (y_{i} - \overline{y})^{2}}$$

Regression of GPA on HS-S, HS-M and HS-E:

Residual standard error: 0.6998 on 220 degrees of freedom

Multiple R-Squared: 0.2046, Adjusted R-squared: 0.1937

F-statistic: 18.86 on 3 and 220 DF, p-value: 6.359e-11

- ► High school grades explain 20.5% of variance in GPA
- Not a whole lot, despite highly significant p-value for HS-M coefficient
- ▶ Once again, small *p*-values do not entail a large effect!

Squared multiple correlation

$$R^{2} = \frac{SSM}{SST} = \frac{\sum_{i=1}^{N} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{N} (y_{i} - \overline{y})^{2}}$$

Regression of GPA on HS-S only:

Residual standard error: 0.7375 on 222 degrees of freedom

Multiple R-Squared: 0.1085, Adjusted R-squared: 0.1045

F-statistic: 27.02 on 1 and 222 DF, p-value: 4.552e-07

- p-values in both models comparable, but
- ► High school grades in Science explain only 10.8% of variance in GPA
- Adding more variables (HS-M, HS-E) to model adds explanatory power

Refining the model

In full model (HS-S/E/M), HS-S had largest p-value (0.3619); drop HS-S from model:

```
Coefficients:
                                Std Error
                       Estimate
                                              t value
                                                      Pr(>|t|)
(Intercept)
                                              2.140
                                                      0.0335 *
                       0.62423
                                 0.29172
                       0.06067
                                 0.03473
                                              1.747
                                                      0.0820
hse
hsm
                       0.18265
                                0.03196
                                              5.716
                                                      3.51e-08 ***
Signif. codes:
                      0 ***
                                 0.001 ** 0.01 *
                                                      0.05 .
Residual standard error: 0.6996 on 221 degrees of freedom
Multiple R-Squared: 0.2016, Adjusted R-squared: 0.1943
F-statistic:
                       27.89 on 2 and 221 DF, p-value: 1.577e-11
```

- $R^2 = 0.2016$ versus $R^2 = 0.2046$ in the bigger model
- ▶ In this (precise) sense HS-S does not add to explanatory power

What about SAT scores?

Question (b) do SAT scores predict GPA?

Call: $lm(formula = gpa \sim satm + satv, data = gpa_data)$

```
Std Error t value
Coefficients:
                       Estimate
                                                        Pr(>|t|)
                                                        0.000728 ***
(Intercept)
                                   3.760e-01 3.427
                       1.289e+00
                                                        0.000687 ***
                       2.283e-03
                                   6.629e-04 3.444
satm
                                              -0.040
                       -2.456e-05
                                   6.185e-04
                                                       0.968357
satv
Signif. codes:
                       0 ***
                                   0.001 ** 0.01 *
                                                       0.05 .
Residual standard error: 0.7577 on 221 degrees of freedom
Multiple R-Squared:
                       0.06337.
                                   Adjusted R-squared: 0.05498
F-statistic:
                       7.476 on 2 and 221 DF, p-value: 0.0007218
```

Regression on SAT scores also significant, but less explanatory power than high school grades

What about adding SAT scores?

Question (c) do high school grades and SAT scores predict GPA?

Call: $lm(formula = gpa \sim hse + hsm + hss + satm + satv, data = gpa_data)$

```
Coefficients:
                       Estimate
                                  Std. Error
                                              t value
                                                      Pr(>|t|)
                                                      0.414932
(Intercept)
                      0.3267187
                                  0.3999964
                                              0.817
hse
                      0.0552926
                                  0.0395687 1.397
                                                      0.163719
                      0.1459611
                                  0.0392610 3.718
                                                      0.000256 ***
hsm
                      0.0359053
                                  0.0377984 0.950
                                                      0.343207
hss
                      0.0009436
                                  0.0006857 1.376 0.170176
satm
                      -0.0004078
                                  0.0005919
                                              -0.689
                                                      0.491518
satv
                      O ***
Signif. codes:
                                  0.001 ** 0.01 *
                                                     0.05
Residual standard error:
                      0.7 on 218 degrees of freedom
Multiple R-Squared:
                      0.2115.
                                  Adjusted R-squared: 0.1934
F-statistic:
                       11.69 on 5 and 218 DF, p-value: 5.058e-10
```

ANOVA for multiple regression

- ▶ How do we formally compare different regression models?
- ► For example, do SAT scores significantly add to explanatory power of high school grades?

Compare

 $Im(formula = gpa \sim hse + hsm + hss, data = gpa_data)$

with

 $\mathsf{Im}(\mathsf{formula} = \mathsf{gpa} \sim \mathsf{hse} + \mathsf{hsm} + \mathsf{hss} + \mathsf{satm} + \mathsf{satv}, \, \mathsf{data} = \mathsf{gpa_data})$

Use ANOVA to test:

 H_0 : $b_{satm} = b_{satv} = 0$ versus H_a : at least one of these $b's \neq 0$

ANOVA for multiple regression

ANOVA F-score:

$$F = [(\mathsf{SSE}_{\mathsf{shorter}} - \mathsf{SSE}_{\mathsf{longer}}) / \#\mathsf{new} \ \mathsf{variables}] / \mathsf{MSE}_{\mathsf{longer}}$$

In the example:

Analysis of Variance Table

Model 1: gpa \sim hse $+$ hsm $+$ hss							
М	Model 2: gpa \sim hse $+$ hsm $+$ hss $+$ satm $+$ satv						
	Res.Df	SSE	Df	Sum of Sq	F	Pr(>F)	
1	220	107.750					
2	218	106.819	2	0.931	0.9503	0.3882	

Hence, SAT scores not significant predictors of GPA in regression model which already contains high school scores

Analyses summary

What can we conclude from all these analyses?

- ▶ High school grades in Maths are a significant predictor of GPA
- High school grades in Science are a significant predictor of GPA
- High school grades in Science and English do not add to the explanatory power of Math grades
- SAT scores do not add explanatory power to the model either

Can we ignore SAT scores and Science/English grades then?

- ▶ No, because we only looked at GPA of computer science majors
- at one university

Problems with multiple regression

- ▶ Overfitting: The more variables, the higher the amount of variance you can explain. Even if each variable doesn't explain much, adding large number of variables can result in high values of R²
- ► Interaction: Multiple regression is logically more complicated than simple regression applied several times for different variables
- Collinearity: Independent variables may correlate themselves, competing in their explanation
 - Consider "cleaning" one indep. variable of another by using residuals of regression analysis.
- ► Suppression: An independent variable may appear not to be explanatory, but becomes significant in combined model

Summary multiple regression

- generalization of simple linear regression
- allows prediction of one variable value based on one or more others
- ► test hypotheses about the predictive power of variables (*t*-test for coefficients)
- measure the proportion of variance in dependent variable explained by predictors (R²)
- allows an estimation of the importance of various independent factors (model comparison with ANOVA)
- which independent factors, taken together or separately, explain the dependent variable the **best**?

Next week

Next week: logistic regression