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Abstract

This paper describes experiments on learning Dutch phonotactic
rules using Inductive Logic Programming, a machine learning approach
based on the notion of inverting resolution. Different ways of approach-
ing the problem are experimented with, and compared against each
other as well as with related work on the task. Further research is
outlined.

1 Introduction

The Phonotactics of a given language is the set of rules that identifies what
sequences of phonemes constitute a possible word in that language. The
problem can be broken down to the syllable structure (i.e. what sequences
of phonemes constitute a possible syllable) and the processes that take place
at the syllable boundaries (e.g. assimilation).

Previous work on the syllable structure of Dutch includes hand-crafted
models [9, 1], but also machine-learning approaches such as abduction [8]
and neural networks ([7] and [6, ch. 4]).

This paper describes experiments on the task of constructing from ex-
amples a model of Dutch monosyllabic words. The reason for restricting
the domain is to avoid the added complexity of handling syllable bound-
ary phonological processes. Furthermore by not using polysyllables no prior
commitment is made to any one particular syllabification (and thus syllable
structure) theory.

2 Inductive Logic Programming and Aleph

Inductive Logic Programming (ILP) is a machine learning discipline. It is
logic programming in the sense that the target concept to be learned is a
logic program, i.e. a set of Horn clauses. It is inductive because the core
operator used is that of induction.
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Induction can be seen as the inverse of deduction. For example from
the clauses ‘All humans die’ and ‘Socrates is human’ the fact that ‘Socrates
will die’ can be deduced. Inversely, induction uses background knowledge
(e.g. ‘Socrates is human’) and a set of observations (training data) (e.g.
‘Socrates died’) to search for a hypothesis that, in conjunction with the
background knowledge, can deduce the data. In more formal terms, given a
logic program B modelling the background knowledge and a set of ground
terms D representing the training data, ILP constructs a logic program H,
such that B ∧H � D .

If the deductive operator used is resolution (as defined by Robinson [4]),
then the inductive operator necessary to solve the equation above is the
inverse resolution operator, as defined by Muggleton and De Raedt [2].

Aleph [5] is an ILP system implementing the Progol algorithm [3]. This
algorithm allows for single-predicate learning only, without background the-
ory revision or predicate invention. It incrementally constructs the clauses
of a single-predicate hypothesis that describes the data, by iterating through
the following basic algorithm:

• Saturation: pick a positive example from the training data and con-
struct the most specific, non-ground clause that entails it. This is
done by repeated application of the inverse resolution operator on the
example, until all its ground terms have been replaced by variables
which are appropriately bound by the body of the clause, so that the
original ground positive and only that is covered by the bottom clause.
This minimally generalised clause is called the bottom clause.

• Reduction: search between the maximally general, empty-bodied clause
and the maximally specific bottom clause for a ‘good’ clause. The
space between the empty clause and the bottom clause is partially
ordered by θ-subsumption, and the search proceeds along the lattice
defined by this partial ordering. The ‘goodness’ of each clause en-
countered along the search path is evaluated by an evaluation func-
tion.

• Cover removal: add the new clause to the theory and remove all ex-
amples covered by it from the dataset.

• Repeat until all positive examples are covered.

The evaluation function quantifies the usefulness of each clause con-
structed during the search and should be chosen so that it balances between
overfitting (i.e. covering the data too tightly and making no generalisations
that will yield coverage over unseen data) and overgeneralising (i.e. covering
the data too loosely and accepting too many negatives.) It can be simple
coverage (number of positive minus number of negative examples covered by
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the clause) or the Bayes probability that the clause is correct given the data
(for learning from positive data only) or any function of the numbers of ex-
amples covered and the length of the clause (for implementing bias towards
shorter clauses.)

Syntactic bias is applied during reduction to either prune paths that are
already known to not yield a winning clause, or to enforce restrictions on the
constructed theory, for example, conformance to a theoretical framework.

3 Setting up the Experiments

As a starting point, a rough template matching all syllables is assumed. This
template is C3VC5, where Cn represents any consonant cluster of length up
to n and V any vowel or diphthong. The problem can now be reformu-
lated as a single-predicate learning task where the target theory is one of
acceptable prefixes to a given vowel and partial consonant cluster. The rules
for prevocalic and postvocalic affixing are induced in two separate learning
sessions.

The training data is derived from 5095 monosyllabic words taken from
the Dutch section of the CELEX Lexical Database, with an additional 597
reserved for evaluation.

The positive examples are constructed by breaking the phonetic tran-
scriptions down to three parts: a prevocalic and a postvocalic consonant
cluster (consisting of zero or more consonants) and a vowel or diphthong.
The consonant clusters are treated as ‘affixes’ to the vowel, so that syllables
are constructed by repeatedly affixing consonants, if the context (the vowel
and the pre- or post-vocalic material that has been already affixed) allows
it. So, for example, from the word /ma:kt/ the following positives would be
generated:

prefix( m, [], [a,:] ). suffix( k, [],[:,a] ).
prefix( ^, [m], [a,:] ). suffix( t, [k], [:,a] ).

suffix( ^, [tk], [:,a] ).

Note that the context lists in suffix rules is reversed, so that the two pro-
cesses are exactly symmetrical and can use the same background predicates.

The caret, ^, is used to mark the beginning and end of a word. The
reason that the affix termination needs to be explicitly licensed is so that
it is not assumed by the experiment’s setup that all partial sub-affixes of a
valid affix are necessarily valid as well.

In Dutch, for example, a monosyllable with a short vowel has to be
closed, which means that the null suffix is not valid. The end-of-word mark
allows for this to be expressable as a theory that does not have the following
clause: suffix( ^, [], [V] ).

The positives are, then, all the prefixes and suffixes that must be al-
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lowed in context, so that all the monosyllables in the training data can be
constructed: 11067 and 10969 instances of 1428 and 1653 unique examples,
respectively.

The negative data is randomly generated words that match the C3VC5

template and do not appear as positives. The random generator is designed
so that the number of examples at each affix length are balanced, in order to
avoid having the large numbers of long, uninteresting sequences overwhelm
the shorter, more interesting ones.

The negative data is also split into evaluation and training data, and
the negative examples are derived from the training negative data by the
following deductive algorithm:

1. For each example, find the maximal substring that is provable by the
positive prefix/3 and suffix/3 clauses in training data. So, for
example, for /mtratk/ it would be trat and for /mlat/, lat^.

2. Choose the clause that should be a negative example, so that this word
is not accepted by the target theory. Pick the inner-most one on each
side, i.e. the one immediately applicable to the maximal substring
computed above. For /mlat/ that would be suffix(m,[l],[a]).
/mtratk/, however, could be negative because either prefix(m,[tr],[a])
or suffix(k, [t], [a]) are unacceptable. In such cases, pick one at
random. This is bound to introduce false negatives, but no alternative
that does not presuppose at least part of the solution could be devised.

3. Iterate, until enough negative examples have been generated to dis-
prove all the words in the negative training data.

Since the problem is, in effect, that of identifying the sets of consonants
that may be prefixed or suffixed to a partially constructed monosyllable,
the clauses of the target predicate must have a means of referring to various
subsets of C and V in a meaningful and intuitive way. This is achieved by
defining a (possibly hierarchical,) linguistically motivated partitioning of C

and V. Each partition can then be referred to as a feature-value pair, for
example Lab+ to denote the set of the labials or Voic+ for the set of voiced
consonants. Intersections of these basic sets can then be easily referred to
by feature-value vectors; the intersection, for example, of the labials and
the voiced consonants (i.e. the voiced labials) is the feature-value vector
[Voic+,Lab+].

The background knowledge is, as seen in section 2, playing a decisive
role in the quality of the constructed theory, by implementing the theoretic
framework to which the search for a solution will be confined. In more
concrete terms, the background predicates are the building blocks that will
be used for the construction of the hypothesis’ clauses and they must be
defining all the relations necessary to discover an interesting hypothesis.
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For the purposes of this task, they have been defined as relations between
individual phones and feature values, e.g. labial(m,+) or voiced(m,+).
Feature-value vectors can then be expressed as conjunctions like, for ex-
ample, labial(C,+) ∧ voiced(C,+) to mean the voiced labials.

Except for the linguistic features predicates, the background knowledge
also contained the head/2 and rest/2 list access predicates. This approach
was chosen over direct list access with the nth/3 predicate, as bias towards
rules with more local context dependencies.

The experiments described in sections 3.1, 3.2 and 3.3 below, were con-
ducted with background knowledge that encodes increasingly more inform-
ation about Dutch phonology as well as Dutch phonotactics: for the ex-
periment in 3.1 the learner has access to the way the various symbols are
arranged in the IPA table, whereas for the experiment in 3.2 a classification
that is sensitive to Dutch phonological processes was chosen. And, finally,
in section 3.3 the sonority level feature is implemented, which has been pro-
posed with the explicit purpose of solving the problem of Dutch syllable
structure.

The quantitative evaluation shown for three experiments was done using
the 597 words and the part of the randomly generated negative data that
have been reserved for this purpose.

3.1 The IPA segment space

In this experiment the background knowledge reflects the way that the IPA
table is organised: the phonetic inventory of Dutch consists of two disjoint
spaces, one of consonants and one of vowels, with three and four orthogonal
dimensions of differentiation respectively.

The consonant space varies in place and manner of articulation, and
voicing. The manner of articulation can be plosive, nasal, lateral approx-
imant, trill, fricative or approximant. The place can be bilabial, alveolar,
velar, labiodental, postalveolar or palatal. Voicing can be present or not.

Similarly for vowels, where there are four dimensions: place (front,
centre, back) and manner of articulation (open, mid-open, mid-closed, closed),
length and roundedness.

The end-of-word mark has no phonological features whatsoever and it
does not belong to any of the partitions of either C or V.

This schema was implemented as one background predicate per dimen-
sion relating each phone with its value along that dimension, for example:

manner( plosive, p ). place( bilabial, p ).
manner( nasal, m ).

etc.
The evaluation function used was the Laplace function P+1

P+N+2 , where P
and N is the coverage of positive and negative examples, respectively.
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Since the randomly generated negatives must also contain false negatives,
it cannot be expected that even a good theory will fit it perfectly. In order to
avoid overfitting, the learning algorithm was set to only require an accuracy
of 85% over the training data.

The resulting hypothesis consisted of 199 prefix and 147 suffix clauses
and achieved a recall rate of 99.3% with 89.4% precision. All the false neg-
atives were rejected because they couldn’t get their onset licensed, typically
because it only appears in a handful of loan words. The /Ã/ onset necessary
to accept ‘jeep’ and ‘junk’, for example, was not permitted and so these two
words were rejected.

The most generic rules found were:

prevoc(A,B,C) :- A= ’^’.
prevoc(A,[],C).

postvoc(A,B,C) :- A= ’^’.
postvoc(A,[],C).

meaning that (a) the inner-most consonant can be anything, and (b) all
sub-prefixes (-suffixes) of a valid prefix (suffix) are also valid.

Other interesting rules include pairs like these two:

prevoc(A,B,C) :-
head(B,D), manner(trill,D), head(C,E), length(short,E),
manner(closed,E), manner(plosive,A).

prevoc(A,B,C) :-
head(B,D), manner(trill,D), head(C,E), length(short,E),
manner(open_mid,E), manner(plosive,A).

and

prevoc(A,B,C) :-
head(B,D), manner(approx,D), head(C,E), length(short,E),
place(front,E), voiced(minus,A).

prevoc(A,B,C) :-
head(B,D), manner(approx,D), head(C,E), length(short,E),
place(front,E), manner(plosive,A), place(alveolar,A).

that could have been collapsed if a richer feature system would include
features like ‘closed or mid-open vowel’ and ‘devoiced consonant or plosive
alveolar’, respectively. These particular disjunctions might be unintuitive
or even impossible to independently motivate, but they do suggest that a
redundant feature set might allow for more interesting theories than the
minimal, orthogonal one used for this experiment. This is particularly true
for a system like Aleph, that performs no predicate invention or background
theory revision.
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Figure 1: The feature geometry of Dutch

3.2 Feature Classes

For this experiment a richer (but more language-specific) background know-
ledge was made available to the inductive algorithm, by implementing the
feature hierarchy suggested by Booij [1, ch. 2] and replicated in figure 1.

The most generic features are the major class features (Consonant and
Sonorant) that are placed on the root node and divide the segment space in
vowels [Cons-,Son+], obstruents [Cons+,Son-] and sonorant consonants
[Cons+,Son+]. Since all vowels are sonorous, [Cons-,Son-] is an invalid
combination.

The features specifying the continuants, nasals and the lateral /l/ are
positioned directly under the root node, with the rest of the features bundled
together under two feature classes, those of the laryngeal and the place
features. These classes are chosen so that they collect together features
that behave as a unit in phonological processes of Dutch. The class of
laryngeal features is basically making the voiced-voiceless distinction, while
the Aspiration feature is only separating /h/ from the rest. The place class
bundles together three subclasses of place of articulation features, one for
each articulator. Furthermore some derived or redundant features such as
Glide, Approximant and Liquid are defined. The vowels do not include
the schwa, which is set apart and only specified as Schwa+.

Using the Laplace evaluation function and this background, the con-
structed theory consisted of 13 prefix and 93 suffix rules, accepting 94.2%
of the test positives and under 7.4% of the test negatives.

Among the rejected positives are loan words (‘jeep’ and ‘junk’ once
again), but also all the words starting with perfectly Dutch /s/ - obstruent
- liquid clusters.

The prefix rule with the widest coverage is:
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prefix(A,B,C) :-
head(C,D), sonorant(D,plu), rest(B,[]).

or, in other words, ‘prefix anything before a single consonant before a nucleus
other than the schwa’.

The suffix rules were less strict, with only 3 rejected positives, ‘branche’,
‘dumps’ and ‘krimpst’ (the first two of which are loan words) that failed to
suffix /S/, /s/ and /s/ respectively. Some achieve wide coverage (although
never quite as wide as that of the prefix rules,) but some are making reference
to individual phonemes and are of more restricted application. For example:

suffix(A,B,C) :-
rest(C,D), head(D,E), rest(B,[]), A=t.

or, ‘suffix a /t/ after exactly one consonant, if the nucleus is a long vowel or
a diphthong’.

Of some interest are also the end-of-word marking rules (see in section 3
above about the ^ mark), because of the fact that open, short monosyllables
are very rare in Dutch (there are four in CELEX: ‘schwa’, ‘ba’, ‘hè’, and
‘joh’). This would suggest that the best way to treat those is as exceptions,
and have the general rule disallow open, short monosyllables. What was
learned instead was a whole set of 29 rules for suffixing ^, the most general
of which is:

postvoc(A,B,C) :-
head(B,t), larynx(t,E), rest(B,F),
head(F,G), larynx(G,E), A= ’^’.

or ‘suffix an end-of-word mark after at least two consonants, if the outer-most
one is a /t/ and has the same values for all the features in the Laryngeal

feature class as the consonant immediately preceding it’.
A final note that needs to be made regarding this experiment, is one re-

garding its computational complexity. Overlapping and redundant features
might be offering the opportunity for more interesting hypotheses, but are
also making the search space bigger. The reason is that overlapping features
are diminishing the effectiveness of the inverse resolution operator at keep-
ing uninteresting predicates out of the bottom clause: the more background
predicates can be used to prove the positive example on which the bottom
clause is seeded, the longer the latter will get.

3.3 Sonority Scale

This experiment implements and tests the syllabic structure model suggested
by van der Hulst [9, ch. 3]. The Dutch syllable is there analysed as having
three prevocalic and 5 postvocalic positions, (some of which may be empty)
and constraints are placed on the set of consonants that can occupy each.
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phoneme obstruents m n l r glides vowels
sonority 1 2 2.25 2.5 2.75 3 4

Table 1: The Sonority Scale

The most prominent constraint is the one stipulating a high-to-low son-
ority progression from the nucleus outwards. Each phoneme is assigned
a sonority value (table 1) based not only on language-independent features
such as it being a Sonorant or an Obstruent, but also because of syllable
structure of Dutch itself. Especially the fine tuning done with respect to the
sonority values of the nasals and the liquids is explicitly justified on filtering
out impossible consonant clusters that would otherwise be predicted by the
simpler model. It must, therefore, be noted that the background knowledge
for this experiment is not only language-specific, but is also directly aimed
at solving the very problem that is being investigated.

In addition to the high-to-low sonority level progression from the nucleus
outwards, there are both filters and explicit licensing rules. The former are
restrictions referring to sonority (e.g. ‘the sonority of the three left-most
positions must be smaller than 4’) or other phonological features (e.g. the ‘no
voiced obstruents in coda’ filter in p. 92) and are applicable in conjunction to
the sonority rule. The latter are typically restricted in scope rules, that take
precedence over the sonority-related constraints mentioned so far. The left-
most position, for example, may be /s/ or empty, regardless of the contents
of the rest of the onset.

Implementing the basic sonority progression rule as well as the most
widely-applicable filters and rules1 yielded impressive compression rates
matched with results lying between those of the two previous experiments:
93.1% recall, 83.2% precision.

4 Conclusions and Further Work

The quantitative results from the machine learning experiments presented
above are collected in table 2, together with those of Tjong Kim Sang and
Nerbonne [8]2 and the results from the sonority scale experiment. Those
last ones in particular, are listed for comparison’s sake and as the logical
end-point of the progression towards more language- and task-specific prior
assumptions.

1Some were left out because they were too lengthy when translated from their fixed-
position framework to the affix licensing one used here, and were very specifically fine
tuning the theory to individual onsets or codas.

2From experiments on phonetic data in the ‘Experiments without Linguistic Con-
straints’ section.
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(Tjong 2000) IPA Feat. Classes Sonority
Recall 99.1% 99.3% 94.2% 93.1%

Precision 74.8% 79.8% 92.6% 83.2%
Num. Clauses 577 + 577 145 + 36 13 + 93 3+8

Table 2: Results

The first two columns are directly comparable, because they are both
only referring to phonetic primitives with no linguistically sophisticated
background knowledge. The fact that the C3VC5 template assumed in this
work is not taken for granted in [8], is compensated in terms of compactness
as well as performance. Compactness because the numbers of rules quoted
in the first column do not include the 41 extra rules (besides the 1154 prefix
and suffix rules) that describe the ”basic word” on which the affix rules oper-
ate. Performance because the precision given is measured on totally random
strings, whereas in this work only strings matching the C3VC5 template are
used.

As can be seen, then, the ILP-constructed rules compare favourably (in
both performance and hypothesis compactness) with those constructed by
the deductive approach employed in [8].

What can be also seen by comparing the two ILP results with each
other, is that the drop in recall between the the second and third column
is compensated by higher precision and compression, suggesting a direct
correspondence between the quality of the prior knowledge encoded in the
background theory and that of the constructed hypothesis.

One interesting follow-up to these experiments would be attempting to
expand their domain to that of syllables of multisyllabic words and, even-
tually, full word-forms. In the interest of keeping the problems of syllabic
structure and syllable-boundary phonology apart, a way must be devised to
derive from the positive data (i.e. a corpus of Dutch word-forms) examples
for a distinct machine learning session for each task.

Furthermore, it would be interesting to carry out the same (or rather the
equivalent) experiments on other parts of the CELEX corpus (e.g. English or
German) and see to which extend the results-to-background relation follows
the same patterns.

On the purely computational aspect of the problem, and as has already
been mentioned in section 3.2, including overlapping and redundant features
in the background might be interesting, but is also implying a very fast
growth of the search space. It would, therefore, be useful to employ the
search path pruning facilities of Aleph to avoid directions along the search
path that would yield inconsistent or unlikely feature combinations.
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