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Introduction

● Following the work of Daya et al. (2008):

Identifying Semitic Roots: Machine Learning 
with Linguistic Constraints. 

● A different take on the same problem, using a 
different data set and a different learning 
environment.

● Work in progress.



  

Introduction

● Root extraction is an important task when dealing with 
Semitic languages.

- Roots hold an abstract meaning component.

- Frequently, words with similar root are semantically 
related, sometimes in a metaphorical sense  

● Previous works on root extraction are dependent on 
large-scale lexicons

● This work presents a machine learning approach in order 
to identify the roots of Semitic words.



  

Why this is important?

● It was shown that same root words facilitate word 
recognition, while phonetic, semantic or form 
similarity do not (Frosts, 2000).

● Berman (2003) showed that children acquiring 
Hebrew use root and pattern knowledge for word 
formation.

● An important contribution to IR and other 
computational tasks.  



  

Hebrew Morphology

● As in English Hebrew words can have prefixes 
and suffixes, usually for inflection.

● A lot of the stems in Hebrew can be broken down 
to a root and a pattern (but not all).

●  The root consists of consonants only, by default 
three

● The pattern is a combination of vowels and 
consonants, with non-consecutive “slots” into 
which the root consonants are inserted. 



  

Hebrew Morphology

h.š.v – root

m a _ _ e _         _ o _ e _

   m a h š e v          h o š e v    
     

      computer                       think



  

Orthographic representation of 
Hebrew

● The orthographic representation is far too 
complex to discuss here.

● The complexity leads to multiple possible 
readings – each reading implies a different 
root.  

● In this work I used a transcribed text, avoiding 
most of the ambiguous cases 



  

What does a classifier do?

● For simplicity let's look at an intuitive example:

We have 3 classes – blue, red and green

and two features, one on the x and on the y.



  

What does a classifier do?

● Given a set of classes, we need to determine 
which class a new case (the square) belongs 
to.

● The classifier learns the probability that the 
new case belongs to either red, blue or green, 
given the features.

● What it has to do with root extraction?  



  

Root extraction as 
a classification task

● The roots are our classes.
● We need an annotated data set.
● And decide which features are going to help us 

identify the correct root.
● Now all the classifier needs to do is to build a model 

based on the seen data, so new cases could be 
classified.

● How to build such a model?  



  

Naive Bayes Classifier

● A simple probabilistic algorithm based on 
applying Bayes' theorem with strong 
independence assumptions.

● It assumes that the value of a particular 
feature is unrelated to the presence or 
absence of any other feature, given the class



  

Advantages

● Requires a small amount of training data.
● Naive Bayes can be applied to many different 

learning problems, and is unlikely to produce 
completely failing classifiers

● It can handle a lot of noise in input data.
● Deals well with a lot of features that can have 

a lot of values.    



  

Naive Bayes Classifier

● If you were wondering where are the statistics, here 
they come...

● We want to calculate the probability of a new case 
being in a class c given the feature values:

p(C|F
1
,....,F

n
)

● It is infeasible to calculate this probability when we 
have a lot of features, with multiple values.   



  

Naive Bayes Classifier

● The Bayes Theorem can help us here:

  

● And for the multiple features:

p(C∣F)=
p(C )( p(F )∣p (C))

p(F )

p(C∣F1 , ..., Fn)=
p (C) p(F1 ,... , Fn∣C )

p (F1 , ... ,Fn)

posterior=
prior∗likelihood

evidence



  

Naive Bayes Classifier

● Fortunately we do need to calculate the 
denominator since it is constant, and does not 
depend on the class.

● But, how to calculate the upper part of the 
equation?

● The Chain Rule      



  

The chain Rule

● We can rewrite the nominator:

  

● This still looks very hard, how did it help us?

p (C) p(F1 , ... ,Fn∣C )=p(C ) p(F1∣C) p(F2 ,... , F n∣C ,F1)

¿ p(C ) p(F1∣C) p (F2∣C , F1) p(F3 , ... ,F n∣C ,F1 ,F2)

¿ p(C ) p(F1∣C) p (F2∣C , F1)... p(Fn∣C , F1, F2 , F3 ,... , Fn−1)



  

Back to Bayes

● Remember that Naive Bayes is naive? Assuming that the 
features are independent of each other:

  

● This means to multiply the prior probability of the class by 
all the probabilities of a feature given that class. 

p(C) p(F1 ,... , Fn∣C )α p(C) p(F1∣C) p (F2∣C )...

α p (C)∏ p (F i∣C )



  

In Other Words 

● Each probability p(F
i
|C) – the likelihood - is a weight 

that indicates how good an indicator F
i
 is for class C. 

● Similarly, the prior p(C) is a weight that indicates the 
relative frequency of class C. 

● More frequent classes are more likely to be the 
correct class than infrequent classes. 

● The product of the prior and the likelihood is a 
measure of how much evidence there is for the new 
case being in the class.



  

Back to the Roots

● The prior probability:

  

● The likelihood probability:

 

● For each word, we calculate the probability that it belongs to 
each of the root classes, and choose the root with the highest 
probability

number of occurrencesof a root
number of roots

number of occurrencesof a feature with aroot
number of occurrencesof a feature with all the roots



  

Data

CHILDES Corpus – Hebrew MOR annotated 
transcribes (MacWhinney, 2000 ; Berman, 1990).
● Longitudinal study of four children (1;4 – 3;3) 
● Child directed speech
● Extracted a list of words containing a root and 

the context words around it.
● For this demonstration only a partial data set 

was used.  



  

features

● Location of characters
● Prefixes and suffixes
● Context words
● POS of the word
● POS of the context words
● Still working on more interesting features 



  

Evaluation

● Building the classification model and testing it on the 
same data is a methodological mistake.

● The model would just repeat the classes of the data that 
it has just seen and but would fail to predict anything on 
unseen data. 

● To avoid it we divide the data into training data set and 
test set.

● But, if you run a lot of tries and test each time on the test 
set, you over-fit the test set.

● The test set should be tested only once.  



  

Cross Validation

● The training set is split into k sets.
● A model is trained using k-1 of the sets as training 

data.
● And the remaining set is used for testing.
● This is repeated for all the k sets.
● Each round is reporting the error of classification as 

the classifier performance measure.
● Cross-validation measure is then the average of the 

values computed for each set.



  

Full Feature Set Results

● === Stratified cross-validation ===
● === Summary ===
●

● Correctly Classified Instances        7341               79.4911 %
● Incorrectly Classified Instances      1894               20.5089 %
● Kappa statistic                          0.7905
● Mean absolute error                      0.0009
● Root mean squared error                  0.0276
● Relative absolute error                 21.1611 %
● Root relative squared error             58.7045 %
● Total Number of Instances             9235     
●



  

No POS Results

=== Stratified cross-validation ===
● === Summary ===
●

● Correctly Classified Instances        7539               81.6351 %
● Incorrectly Classified Instances      1696               18.3649 %
● Kappa statistic                          0.8125
● Mean absolute error                      0.0009
● Root mean squared error                  0.0259
● Relative absolute error                 19.3179 %
● Root relative squared error             55.1739 %
● Total Number of Instances             9235     



  

No Context Results

=== Stratified cross-validation ===
● === Summary ===
●

● Correctly Classified Instances        7595               82.2415 %
● Incorrectly Classified Instances      1640               17.7585 %
● Kappa statistic                          0.8187
● Mean absolute error                      0.0008
● Root mean squared error                  0.0255
● Relative absolute error                 18.8978 %
● Root relative squared error             54.1967 %
● Total Number of Instances             9235     
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