

Semitic Root extraction Semitic Root extraction
as a Classification Taskas a Classification Task

Lena Rampula

Introduction

● Following the work of Daya et al. (2008):

Identifying Semitic Roots: Machine Learning
with Linguistic Constraints.

● A different take on the same problem, using a
different data set and a different learning
environment.

● Work in progress.

Introduction

● Root extraction is an important task when dealing with
Semitic languages.

- Roots hold an abstract meaning component.

- Frequently, words with similar root are semantically
related, sometimes in a metaphorical sense

● Previous works on root extraction are dependent on
large-scale lexicons

● This work presents a machine learning approach in order
to identify the roots of Semitic words.

Why this is important?

● It was shown that same root words facilitate word
recognition, while phonetic, semantic or form
similarity do not (Frosts, 2000).

● Berman (2003) showed that children acquiring
Hebrew use root and pattern knowledge for word
formation.

● An important contribution to IR and other
computational tasks.

Hebrew Morphology

● As in English Hebrew words can have prefixes
and suffixes, usually for inflection.

● A lot of the stems in Hebrew can be broken down
to a root and a pattern (but not all).

● The root consists of consonants only, by default
three

● The pattern is a combination of vowels and
consonants, with non-consecutive “slots” into
which the root consonants are inserted.

Hebrew Morphology

h.š.v – root

m a _ _ e _ _ o _ e _

 m a h š e v h o š e v

 computer think

Orthographic representation of
Hebrew

● The orthographic representation is far too
complex to discuss here.

● The complexity leads to multiple possible
readings – each reading implies a different
root.

● In this work I used a transcribed text, avoiding
most of the ambiguous cases

What does a classifier do?

● For simplicity let's look at an intuitive example:

We have 3 classes – blue, red and green

and two features, one on the x and on the y.

What does a classifier do?

● Given a set of classes, we need to determine
which class a new case (the square) belongs
to.

● The classifier learns the probability that the
new case belongs to either red, blue or green,
given the features.

● What it has to do with root extraction?

Root extraction as
a classification task

● The roots are our classes.
● We need an annotated data set.
● And decide which features are going to help us

identify the correct root.
● Now all the classifier needs to do is to build a model

based on the seen data, so new cases could be
classified.

● How to build such a model?

Naive Bayes Classifier

● A simple probabilistic algorithm based on
applying Bayes' theorem with strong
independence assumptions.

● It assumes that the value of a particular
feature is unrelated to the presence or
absence of any other feature, given the class

Advantages

● Requires a small amount of training data.
● Naive Bayes can be applied to many different

learning problems, and is unlikely to produce
completely failing classifiers

● It can handle a lot of noise in input data.
● Deals well with a lot of features that can have

a lot of values.

Naive Bayes Classifier

● If you were wondering where are the statistics, here
they come...

● We want to calculate the probability of a new case
being in a class c given the feature values:

p(C|F
1
,....,F

n
)

● It is infeasible to calculate this probability when we
have a lot of features, with multiple values.

Naive Bayes Classifier

● The Bayes Theorem can help us here:

● And for the multiple features:

p(C∣F)=
p(C)(p(F)∣p (C))

p(F)

p(C∣F1 , ..., Fn)=
p (C) p(F1 ,... , Fn∣C)

p (F1 , ... ,Fn)

posterior=
prior∗likelihood

evidence

Naive Bayes Classifier

● Fortunately we do need to calculate the
denominator since it is constant, and does not
depend on the class.

● But, how to calculate the upper part of the
equation?

● The Chain Rule

The chain Rule

● We can rewrite the nominator:

● This still looks very hard, how did it help us?

p (C) p(F1 , ... ,Fn∣C)=p(C) p(F1∣C) p(F2 ,... , F n∣C ,F1)

¿ p(C) p(F1∣C) p (F2∣C , F1) p(F3 , ... ,F n∣C ,F1 ,F2)

¿ p(C) p(F1∣C) p (F2∣C , F1)... p(Fn∣C , F1, F2 , F3 ,... , Fn−1)

Back to Bayes

● Remember that Naive Bayes is naive? Assuming that the
features are independent of each other:

● This means to multiply the prior probability of the class by
all the probabilities of a feature given that class.

p(C) p(F1 ,... , Fn∣C)α p(C) p(F1∣C) p (F2∣C)...

α p (C)∏ p (F i∣C)

In Other Words

● Each probability p(F
i
|C) – the likelihood - is a weight

that indicates how good an indicator F
i
 is for class C.

● Similarly, the prior p(C) is a weight that indicates the
relative frequency of class C.

● More frequent classes are more likely to be the
correct class than infrequent classes.

● The product of the prior and the likelihood is a
measure of how much evidence there is for the new
case being in the class.

Back to the Roots

● The prior probability:

● The likelihood probability:

● For each word, we calculate the probability that it belongs to
each of the root classes, and choose the root with the highest
probability

number of occurrencesof a root
number of roots

number of occurrencesof a feature with aroot
number of occurrencesof a feature with all the roots

Data

CHILDES Corpus – Hebrew MOR annotated
transcribes (MacWhinney, 2000 ; Berman, 1990).
● Longitudinal study of four children (1;4 – 3;3)
● Child directed speech
● Extracted a list of words containing a root and

the context words around it.
● For this demonstration only a partial data set

was used.

features

● Location of characters
● Prefixes and suffixes
● Context words
● POS of the word
● POS of the context words
● Still working on more interesting features

Evaluation

● Building the classification model and testing it on the
same data is a methodological mistake.

● The model would just repeat the classes of the data that
it has just seen and but would fail to predict anything on
unseen data.

● To avoid it we divide the data into training data set and
test set.

● But, if you run a lot of tries and test each time on the test
set, you over-fit the test set.

● The test set should be tested only once.

Cross Validation

● The training set is split into k sets.
● A model is trained using k-1 of the sets as training

data.
● And the remaining set is used for testing.
● This is repeated for all the k sets.
● Each round is reporting the error of classification as

the classifier performance measure.
● Cross-validation measure is then the average of the

values computed for each set.

Full Feature Set Results

● === Stratified cross-validation ===
● === Summary ===
●

● Correctly Classified Instances 7341 79.4911 %
● Incorrectly Classified Instances 1894 20.5089 %
● Kappa statistic 0.7905
● Mean absolute error 0.0009
● Root mean squared error 0.0276
● Relative absolute error 21.1611 %
● Root relative squared error 58.7045 %
● Total Number of Instances 9235
●

No POS Results

=== Stratified cross-validation ===
● === Summary ===
●

● Correctly Classified Instances 7539 81.6351 %
● Incorrectly Classified Instances 1696 18.3649 %
● Kappa statistic 0.8125
● Mean absolute error 0.0009
● Root mean squared error 0.0259
● Relative absolute error 19.3179 %
● Root relative squared error 55.1739 %
● Total Number of Instances 9235

No Context Results

=== Stratified cross-validation ===
● === Summary ===
●

● Correctly Classified Instances 7595 82.2415 %
● Incorrectly Classified Instances 1640 17.7585 %
● Kappa statistic 0.8187
● Mean absolute error 0.0008
● Root mean squared error 0.0255
● Relative absolute error 18.8978 %
● Root relative squared error 54.1967 %
● Total Number of Instances 9235

References

Berman, R. A. (1990). Acquiring an (S)VO language: Subjectless sentences in
children's Hebrew. Linguistics, 28.

Berman, R. A. (2003). Children's lexical innovations. Language
Acquisition and Language Disorders, 28.

Daya, E., Roth, D., & Wintner, S. (2008). Identifying Semitic Roots: Machine
Learning with Linguistic Constraints Computational Linguistics 34(3).

Frost, R., Deutsch, A., Gilboa, O., Tannenbaum, M., & Marslen-Wilson, W.
(2000). Morphological priming: Dissociation of phonological, semantic, and
morphological factors. Memory & Cognition, 28.

MacWhinney, B. (2000). The CHILDES Project: Tools for analyzing talk. Third
Edition. Mahwah, NJ: Lawrence Erlbaum Associates.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

