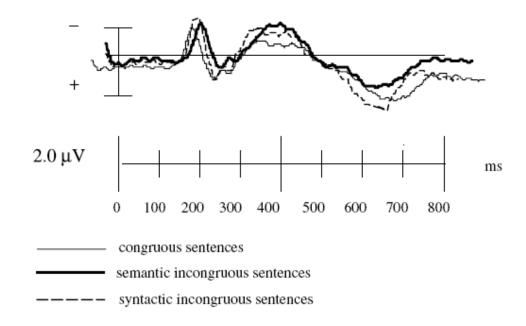
Using Repeated Measures Analysis of Variance (RM-ANOVA) to Analyse Event-Related Potential Data

Harwintha Y. Anjarningsih Statistics and Methodology Seminar 8 April 2009

Outline:


- What is ERP?
- The example experiment
- Why is RM-ANOVA used?
- Important issues in RM-ANOVA
- Results of the experiment
- My own future experiment

What is ERP?

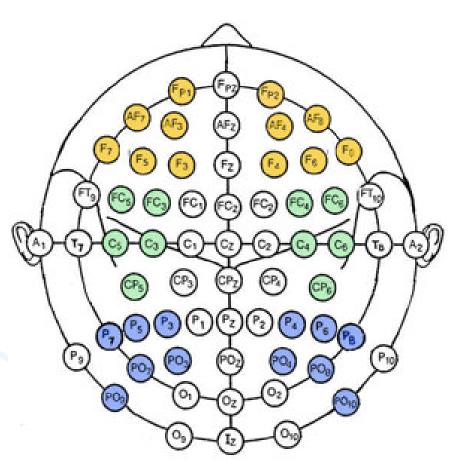
He often eats dinner with his bicycle.

He often eats dinner with his family.

The brain's electrical activity that results from specific sensory, cognitive, or motor events

Grand-average ERPs elicited by the congruous, semantic and syntactic incongruous sentences with visual stimuli.

The example experiment


- An EMCL thesis by Hua Dong
- Just the P600 part (syntactic violations)
- Stimuli:
- HG: De scheikundige begrijpt niets van de nieuwe weegschaal en hij roept zijn vrouw om hulp.
- HU: De scheikundige begrijpt niets van de nieuwe weegschaal en *hij roep zijn vrouw om hulp.
- **LG**: Marnix is keihard met zijn neus op de tafel geklapt en **hij stelpt** de bloeding met een papieren zakdoek.
- LU: Marnix is keihard met zijn neus op de tafel geklapt en *hij stelp de bloeding met een papieren zakdoek.

Independent variables (IV):

- 1. grammaticality
- 2. frequency
- 3. lateralization (left or right)
- 4. electrode position (anterior, middle, or posterior)
- 2 X 2 X 2 X 3

Dependent variable: amplitude of ERP component in the 500-700 ms window

Electrode position and lateralization ROIs

Participants: 36 college students

native speakers of Dutch right handed without any history of neurological trauma, language disorders, or alcohol abuse

Materials:

- 160 verbs (80 H, 80 L)
- Put in the second clause in compound sentences

Why is RM-ANOVA used?

- Within-subject or repeated measures design
- Compare more than two independent variables with one dependent var.
- Avoid inflated error rates and hence greater power to detect effects

Within-subject or repeated measures design

- The same people exposed to different experimental manipulations (HG, HU, LG, LU)
- Scores are not independent →
 cannot use between-group ANOVA →
 but check sphericity

Compare more than two IVs with one DV

- 1. grammaticality
- 2. frequency
- 3. lateralization (left or right)
- 4. electrode position (anterior, middle, or posterior)
- → cannot use t-test or independent/ between-subject ANOVA
- → cannot use MANOVA

Avoid inflated error rates

- Three groups to be compared using t-test→ 1 and 2, 1 and 3, and
 2 and 3
- Each uses 0.05 level of significance

 → overall probability of no Type I
 error is 0.95 * 3 = 0.875 →
 probability of making at least one
 Type I error is 1 (0.95 * 3) =
 0.143 or 14.3 %

Important issues in RM-ANOVA

- Sphericity
- Corrections

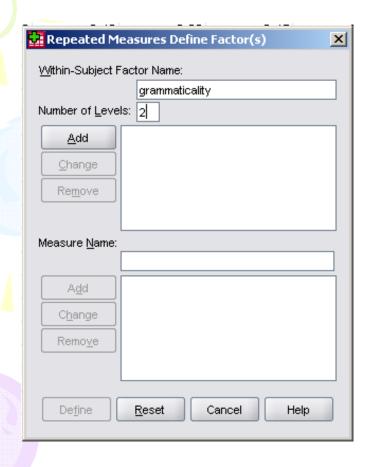
Sphericity

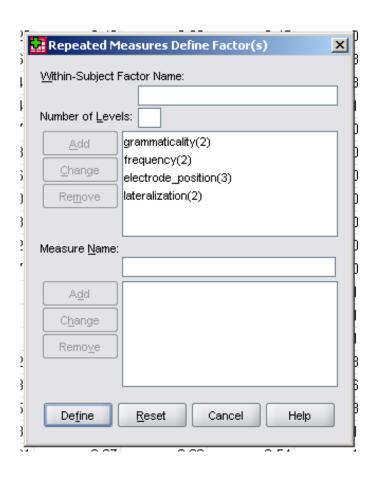
 Equality of the variances of the differences between treatment levels (ϵ)

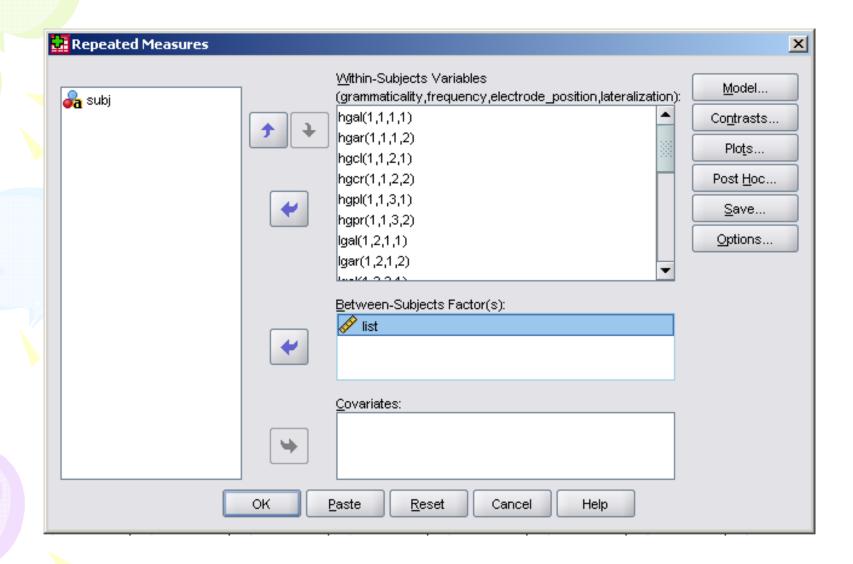
Group A	Group B	Group C	A-B	A-C	В-С
9	12	7	-3	2	5
15	15	12	0	3	3
25	30	20	-5	5	10
35	30	28	5	7	2
30	27 /	20	3	10	7

Variance

17.0 10.3


10.3


 In SPSS → check Mauchly's test → if test statistic is significant (e.g. 0.05)
 we need to do corrections


Corrections

- Greenhouse-Geisser
- Huynh-Feldt

Results of the experiment

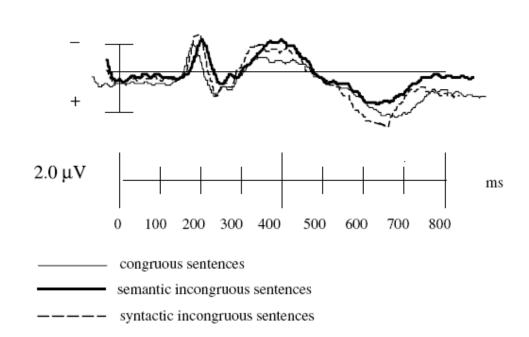
${\bf Mauchly's\ Test\ of\ Sphericity}^b$

Measure:MEASURE 1								
							Epsilon ^a	
	Within Subjects Effect	Mauchly's W	Approx. Chi- Square	df	Sig.	Greenhouse- Geisser	Huynh-Feldt	Lower-bound
	grammaticality	1,000	,000	0		1,000	1,000	1,000
	frequency	1,000	,000	0		1,000	1,000	1,000
	electrode_position	,309	36,415	2	,000	,591	,658	,500
	lateralization	1,000	,000	0		1,000	1,000	1,000
	grammaticality * frequency	1,000	,000	0		1,000	1,000	1,000
	grammaticality * electrode_position	,340	33,434	2	,000	,602	,672	,500
	frequency * electrode_position	,440	25,485	2	,000	,641	,718	,500
	grammaticality * frequency * electrode_position	,262	41,479	2	,000	,575	,639	,500
	grammaticality * lateralization	1,000	,000	0		1,000	1,000	1,000
	frequency * lateralization	1,000	,000	0		1,000	1,000	1,000
	grammaticality * frequency * lateralization	1,000	,000	0		1,000	1,000	1,000
	electrode_position * lateralization	,803	6,785	2	,034	,836	,959	,500
	grammaticality * electrode_position * lateralization	,755	8,703	2	,013	,803	,919	,500
	frequency * electrode_position * lateralization	,846	5,197	2	,074	,866	,997	,500
	grammaticality * frequency * electrode_position * lateralization	,938	1,972	2	,373	,942	1,000	,500

- Main effect of grammaticality (p=.000, partial η².367)
- Main effect of lateralization (p=.012, partial η² 0.183)
- Marginal main effect of electrode position (p=.058 GG, .052 HF, partial η²=.102)
- Interaction between grammaticality and electrode position (p=.000, partial η².526)
- Interaction between grammaticality and lateralization (p=.000, partial η².435)

Main effect of grammaticality

Estimates


Measure:MEASURE 1

Measal	~	1 12 2 1 1					
gram					95% Confidence Interval		
matic ality	M	lean	Std. Error	Lower Bound	Upper Bound		
1		,766	,190	,380	1,152		
2		1,519	,184	1,143	1,895		

Pairwise Comparisons							
Measur	re:MEASU						
(D	(D				95% Confider Differ		
(I) gram matic	(J) gram matic	Mean Difference (I-					
ality	ality	J)	Std. Error	Sig.a	Lower Bound	Upper Bound	
1	2	-,753*	,175	,000	-1,109	-,397	
2	1	,753*	,175	,000	,397	1,109	

Based on estimated marginal means

- *. The mean difference is significant at the ,05 level.
- a. Adjustment for multiple comparisons: Bonferroni.

Grand-average ERPs elicited by the congruous, semantic and syntactic incongruous

sentences with visual stimuli.

Main effect of lateralization

Estimates

Measure:MEASURE 1

later	E.WIEASONE		95% Confide	ence Interval
alizat ion	Mean	Std. Error	Lower Bound	Upper Bound
1	1,011	,168	,669	1,353
2	1,274	,177	,913	1,634

Pairwise Comparisons

Measure:MEASURE 1

(1)	/ D				95% Confidence Interval for Difference ^a	
(l) later alizat ion	(J) later alizat ion	Mean Difference (I- J)	Std. Error	Sig.ª	Lower Bound	Upper Bound
1	2	-,263*	,098	,012	-,463	-,063
2	1	,263 [*]	,098	,012	,063	,463

Based on estimated marginal means

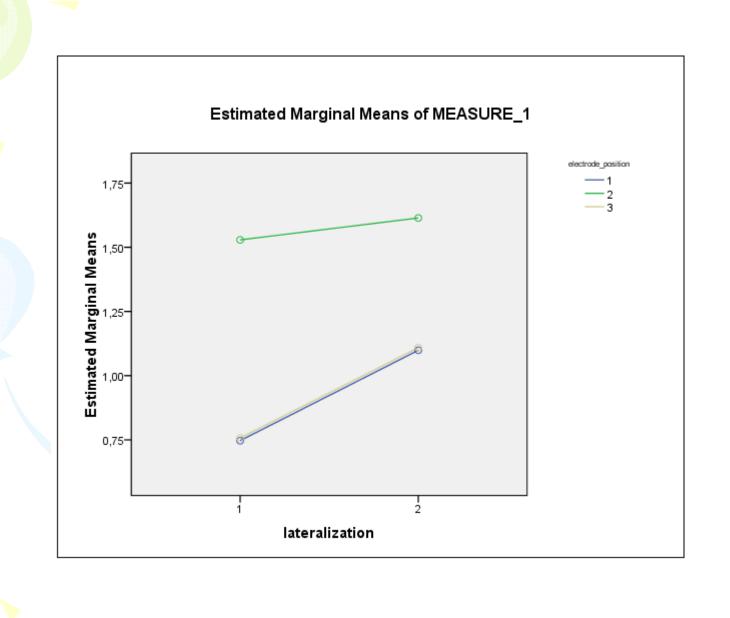
- *. The mean difference is significant at the ,05 level.
- a. Adjustment for multiple comparisons: Bonferroni.

Marginal main effect of electrode position

Estimates

Measure:MEASURE

MOGOGI	6.IVILAUVINE			
electr			95% Confide	ence Interval
ode_ po	Mean	Std. Error	Lower Bound	Upper Bound
1	,923	,253	,407	1,438
2	1,571	,197	1,171	1,972
3	,933	,235	,454	1,412


Pairwise	

Measure:	MEASU	JRE 1

Measa	MEASUIE.MEASORE						
(l) electr	(J) electr					95% Confidence Interval for Difference ^a	
ode_ positi	ode_ positi	Mean Difference (I-					
on	on	J)	Std. Error		Sig.a	Lower Bound	Upper Bound
1	2	-,648*	,194		,006	-1,139	-,158
	3	-,010	,372		1,000	-,951	,930
2	1	,648 [*]	,194		,006	,158	1,139
	3	,638*	,227		,025	,065	1,212
3	1	,010	,372		1,000	-,930	,951
	2	-,638 [*]	,227		,025	-1,212	-,065

Based on estimated marginal means

- *. The mean difference is significant at the ,05 level.
- a. Adjustment for multiple comparisons: Bonferroni.

Conclusion of the example exp.

- Subject-verb violations in Dutch elicited the P600 component in the 500-700 ms. window.
- This seems to be independent of frequency of the verbs.
- The component is right-lateralized with more activation in the middle electrodes.

My future experiment

- Time reference in Indonesian → temporal adverbs & aspectual adverbs
- Processing difference
 semantic violations to lexical adverbs,
 syntactic violations to aspectual
 adverbs

Ayah saya sudah membaca koran. Father my already read a newspaper.

Baru saja ayah saya membaca koran. Just now father my read a newspaper.