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Two views on statistics

» Frequentist view
» Probabilities are long-run frequencies.
» We can talk about probabilities only for well defined
experiments with random outcomes.
» Emphasis is on objectivity: data must speak for itself.

» Bayesian view

» Probabilities are degrees of belief.

» Probabilities can be assigned to any statement.

> Inference is subjective (methods for somewhat objective
inference exists)
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Statistical Inference

» We collect a sample X from a population.

» We know (or assume) that X is according to a known
distribution that can be parametrized by 6

_ p(X[0)p(0)
p(0|X) :  posterior
p(X|6) : likelihood (L(0))
p(0) : prior
(X) : Marginal probability of data ([ p(X|6)p(6)d6))
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Statistical Inference: the two approaches

_ P(X[8)p(0)

x p(X|0)p(6)

» Frequentist approach:
> 0 is a fixed but unknown.
» Inference is done via Maximum Likelihood Estimate (MLE).
Prior information is never used.
» We need to assess the reliability of the estimate by significance
tests (p values, confidence intervals).

» Bayesian approach:

> 0 is is treated just like any other random variable.
» Posterior contains all the necessary ingredients for the
inference.
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A simple example

We toss a coin 10 times, the outcome is HHTHHHHTTH. Let 0
represent the chance that coin comes up ‘H’.

Frequentist Bayesian 1 Bayesian 2 ‘
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A simple example

We toss a coin 10 times, the outcome is HHTHHHHTTH. Let 0
represent the chance that coin comes up ‘H’.

Frequentist

Bayesian 1

Bayesian 2

No prior

Prior:

= eeman

Prior:

VAN
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A simple example

We toss a coin 10 times, the outcome is HHTHHHHTTH. Let 0
represent the chance that coin comes up ‘H’.

0=07 : :
p = 0.2059 , , j

Frequentist ‘ Bayesian 1 Bayesian 2 ‘
Posterior: Posterior:
0 = argmax L(6) =
0
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Bayesian Inference: summary

p(0]X) oc p(X|0)p(0)

Pros

» Allows complete inference: posterior distribution contains all
the information needed.

» Interpretation of the results are straightforward.

Cons

» Computationally expensive: calculation of posteriors are not
always easy.

» Choice of priors: it is sometimes difficult to justify the use of
(subjective) priors.
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Statistical Inference and Learning

» Statistical inference aims to draw conclusions about an
underlying population using a sample drawn from this
population.

» Learning can be viewed as making generalizations about the
target concept by looking at a sample of data consistent with
this concept.

» Statistical methods are most common learning methods in
machine learning.

» More and more psychological phenomena is explained by
sensitivity to statistical information in the environment.

» Language acquisition is no exception: children are known to
exploit statistical regularities in the input in language learning.
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(non-Bayesian) Statistical Learning

_ P(X[8)p(0)

x p(X|0)p(6)

We want to learn the parameter 6.
» Maximum Likelihood Estimate(MLE):

6 = argmax p(X|6)
0
» Maximum a posteriori (MAP) estimate:

f = argmax p(X|0)p(0)
0
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Bayesian Learning

p(01X) o< p(X|0)p(0)

» No point estimates.
» No maximization.
» A Bayesian learner learns the posterior distribution, p(6|X).

» If needed, point estimates can be made using,

E[0] = / 0p(0]X)d0

Note the difference from MAP estimate.
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Bayesian Learning: how?
p(X|0)p(0)

I p(X[0)p(6)d8

» Given the probability density (or distribution) functions for
prior and likelihood, we simply multiply, and normalize.

p(01X) =

» Note that likelihood and prior does not have to be proper.
Multiplication by a constant does not change the results.

Problem 1: computation

The computation involved is not always easy to carry out.
Approximate methods, such as MCMC, are frequently used.

Problem 2: priors
We need to choose a prior distribution.
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Choice of priors

Subjective priors: based on previous experience.
Non-informative priors: try to be as objective as possible.
Conjugate priors: for computational efficiency.

Empirical Bayes: priors from data.

vV v.v. v Y

Hierarchical priors: combining information from different
variables.
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Digression: Graphical models (or ‘Bayesian networks’)

» Often multiple random variables interact.

» Bayesian networks are a convenient way to visualize the
dependency relations between variables.
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Digression: Graphical models (or ‘Bayesian networks’)

» Often multiple random variables interact.

» Bayesian networks are a convenient way to visualize the
dependency relations between variables.

=D (p)
(o (X
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Hierarchical Bayesian Models

In our coin toss example we choose a Beta(a, 3) prior
with fixed a and (.

p(0]X) oc p(X[0)p(6) e
where,

X ~ Binomial(0), 6 ~ Beta(a, [3) °
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Hierarchical Bayesian Models

In our coin toss example we choose a Beta(a, 3) prior
with fixed « and (.

p(01X) o p(X|6)p(6)
where,

X ~ Binomial(0), 6 ~ Beta(c, 3)

We can further extend this if choice of a and 3 can be
guided by additional information.

p(0, c, BIX) o< p(X[0)p(0]cx, B)p(cr, B)
where, e.g.,
X ~ Binomial(#),0 ~ Beta(c, 3),a ~ N(pia, o), 3 ~ N(pg, o)
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A simple example: marbles in boxes

Boxes contain either white or black marbles:

* This example is adopted from a talk by J. Tenenbaum
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A simple example: marbles in boxes

Boxes contain either white or black marbles:

* This example is adopted from a talk by J. Tenenbaum
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A simple example: marbles in boxes

Boxes contain either white or black marbles:

Level 2: Boxes in general Color varies among boxes not much within boxes
. Mostly Mostl Mostly
Level 1: Box properties Black Whitey White

* This example is adopted from a talk by J. Tenenbaum
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HBM for marbles in boxes

> x; are the data

A
» 0#; models box proportions, |
x; ~ Binomial () o, B
» «, 0 models the boxes in general,
0; ~ Beta(a, 3) 61 62 O3 04
» )\ models prior expectations in boxes in
X1 X2 X3 X4
general

p(A, o, 8,0 | X) o< p(X | 0)p(0 | A, v, B)p(c, B | A)p(N)
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Summary: HBMs for Modeling Human Learning

» Bayesian Statistics provides complete inference: posterior
distribution contains all we need.

» Bayesian Learning is incremental: posterior can be used as
prior for the next step.

» Hierarchical models allow a way to include information from
different sources as prior knowledge.
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Overview

Using HBMs for Learning Grammar
Categorial Grammars
A Bayesian CG learner
A hierarchical extension
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Categorial Grammars

» Categorial Grammar (CG) encodes all the language specific
syntactic information in the lexicon.

» CG Lexicon contains lexical items of the form:

o :=0:pu

where ¢ is the phonological form, o is the syntactic category,
and p is the meaning of the lexical item.
» Syntactic categories in CG are,
» either a basic category, such as N, NP, S
» or, a complex category of the form X\Y or X/Y, where X and
Y are any (basic or complex) CG categories. Informally:
X/Y says: ‘| need a Y to my right to become X'
X\Y says: ‘I need a Y to my left to become X'
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Categorial Grammars (contd.)

» More formally, CG has two rules:
Forward Application: ~ X/Y Y = X (>)

Backward Application: Y X\Y = X (<)

» An example derivation:
Mary likes Peter

NP (S\NP)/NP NP
S\NP
S
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Categorial Grammars (contd.)

» More formally, CG has two rules:
Forward Application: ~ X/Y Y = X (>)

Backward Application: Y X\Y = X (<)
» An example derivation:
Mary likes Peter

S
NP (S\NP)/NP NP /\

SINP N‘P S\NP
S Mary (S\NPm P
Iik‘es Pe‘ter
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A simple CG learner for learning word-grammars

» Input is a set of words.

» We want to assign a probability, 8, to possible lexical items
((¢, o) pairs).

» Note: probability is the ‘system’s belief’ that the (¢, o) pair
at hand is a lexical item.

» Only 3 categories (known in advance):

» W : free morpheme (word, or stem)
» W/W
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A simple CG learner for learning word-grammars

» Input is a set of words.

» We want to assign a probability, 8, to possible lexical items
((¢, o) pairs).

» Note: probability is the ‘system’s belief’ that the (¢, o) pair
at hand is a lexical item.

» Only 3 categories (known in advance):

» W : free morpheme (word, or stem)
» W/W : prefix
» W\W :
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A simple CG learner for learning word-grammars

» Input is a set of words.
» We want to assign a probability, 8, to possible lexical items

((¢, o) pairs).
» Note: probability is the ‘system’s belief’ that the (¢, o) pair
at hand is a lexical item.
» Only 3 categories (known in advance):
» W : free morpheme (word, or stem)
» W/W : prefix
» W\W : suffix
» We adopt a Beta/Binomial model.
» We assume each input word provides evidence for the lexical
hypothesis in question, If hypothesis used in the interpretation
of the input.
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The CG learner: A simple algorithm

» Input is unsegmented words (and the lexicon).

» Output is the lexicalized grammar with probability

assignments.

For each input word w,

1.
2.

Try to segment the input using the current lexicon.

If there is no possible segmentation, assume that we have
found evidence for a lexical item w := W.

. If we can segment the input as w = ¢1 ... ¢, assume that we

have observed evidence for each tuple (¢;,0;) which yields a
correct parse of w.

We update the parameters of the Beta distribution associated
with the lexical hypotheses.
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An example

Lexicon {}

Input book
" Hypotheses

Parses

0.0 0.2 0.4 0.6 0.8 1.0
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An example

Lexicon {}
Input book

" Hypotheses book:=W
Parses

0.0 0.2 0.4 0.6 0.8 1.0
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An example

Lexicon {book:=W}
Input book
" Hypotheses book:=W
Parses book
w
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An example

Lexicon {book:=W}
Input pens

" Hypotheses
Parses

0.0 0.2 0.4 0.6 0.8 1.0
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An example

Lexicon {book:=W}
Input pens

" Hypotheses pens:=W
Parses

0.0 0.2 0.4 0.6 0.8 1.0

Hierarchical Bayesian Models 36/58



An example

Lexicon {book:=W,
pens:=W}
" Input pens
Hypotheses pens: =W
" Parses pens
w
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An example

Lexicon {book:=W,
pens:=W}
" Input books
Hypotheses
" Parses
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An example

Lexicon {book:=W,
pens:=W}
" Input books

Hypotheses book:=W,
books: =W, s:=W,
book:=W /W,
ss=W\W

Parses

0.0 0.2 0.4 0.6 0.8 1.0
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An example

Lexicon

Input
Hypotheses

Parses

0.0 0.2 0.4 0.6 0.8 1.0

Hierarchical Bayesian Models

{book:=W,
pens:=W, s:=W\W}
books

book:=W,

books: =W, s:=W,
book:=W /W,
ss=W\W

books

W
book s

W W\W
—_—<

w
book s

W/W W
W>
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An example

Lexicon {book:=W,
pens:=W, s:=W\W}
" Input pens
Hypotheses
" Parses

0.0 0.2 0.4 0.6 0.8 1.0
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An example

Lexicon {book:=W,
. pens:=W, s:=W\W}
’ Input pens

Hypotheses pen:=W, pens:=W,
s:=W, pen:=W/W,
ss=W\W

Parses
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An example

Lexicon {book:=W,
pens:=W, s:=W\W}

Input pens

Hypotheses pen:=W, pens:=W,
ss=W, pen:=W/W,
s:=W\W

Parses pens pen s

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 W/W W

Hierarchical Bayesian Models 43/58



A hierarchical extension

» Our current model assumes rather non-informative
values for o and §.

» We can extend this model to get more informative
priors
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A hierarchical extension

» Our current model assumes rather non-informative
values for o and §.

» We can extend this model to get more informative
priors

» We treat o and 3 as random variables.

» We make use of context predictability as another
source providing a hierarchical informative prior for
possible segments.
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Hierarchical extension: example

Lexicon {}

Input book
] Hypotheses

Parses

0.0 0.2 0.4 0.6 0.8 1.0
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Hierarchical extension: example

Lexicon {}
Input book

" Hypotheses book:=W
Parses

0.0 0.2 0.4 0.6 0.8 1.0
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Hierarchical extension: example

Lexicon {book:=W}
Input book
" Hypotheses book:=W
] Parses book
w

0.0 0.2 0.4 0.6 0.8 1.0
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Hierarchical extension: example

Lexicon {book:=W}
Input pens

] Hypotheses
Parses

0.0 0.2 0.4 0.6 0.8 1.0
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Hierarchical extension: example

Lexicon {book:=W}
Input pens

" Hypotheses pens:=W
Parses

0.0 0.2 0.4 0.6 0.8 1.0
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Hierarchical extension: example

Lexicon {book:=W,
pens:=W}
" Input pens
Hypotheses pens:=W
" Parses pens
w

0.0 0.2 0.4 0.6 0.8 1.0
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Hierarchical extension: example

Hierarchical Bayesian Models

Lexicon {book:=W,
pens:=W}

Input books

Hypotheses

Parses
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Hierarchical extension: example

Lexicon {book:=W,
. pens:=W}
Input books

Hypotheses book:=W,
books: =W, s:=W,
book:=W /W,
ss=W\W

Parses

0.0 0.2 0.4 0.6 0.8 1.0
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Hierarchical extension: example

Lexicon

{book:=W,
pens:=W, s:=W\W}

Input

books

Hypotheses

book:=W,

books: =W, s:=W,
book:=W /W,
ss=W\W

0.0 0.2 0.4 0.6 0.8 1.0

Hierarchical Bayesian Models

Parses

books

W
book s

W W\W
—7
book s
W/W W

W >
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Hierarchical extension: example

Lexicon {book:=W,
pens:=W, s:=W\W}
7 Input pens
Hypotheses
" Parses
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Hierarchical extension: example

Lexicon {book:=W,
. pens:=W, s:=W\W}
Input pens

Hypotheses pen:=W, pens:=W,
ss=W, pen:=W/W,
ss=W\W

Parses
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Hierarchical extension: example

Lexicon {book:=W,
pens:=W, s:=W\W,
1 pen:=W}
Input pens

Hypotheses pen:=W, pens:=W,

ss=W\W
] Parses pens pen s
W W wW\W
o w
0‘0 0‘2 0T4 0‘6 0‘8 1‘0 pﬂ %
W/W W
W >
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Summary

» Bayesian statistics provides a different approach to statistical
inference and learning.

» Use of (subjective) priors is not always bad: Modeling
cognitive processes is a good example.

» Hierarchical priors is a good way to combine information from
different sources.
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