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Two views on statistics

◮ Frequentist view
◮ Probabilities are long-run frequencies.
◮ We can talk about probabilities only for well defined

experiments with random outcomes.
◮ Emphasis is on objectivity: data must speak for itself.

◮ Bayesian view
◮ Probabilities are degrees of belief.
◮ Probabilities can be assigned to any statement.
◮ Inference is subjective (methods for somewhat objective

inference exists)
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Statistical Inference

◮ We collect a sample X from a population.

◮ We know (or assume) that X is according to a known
distribution that can be parametrized by θ

p(θ|X) =
p(X|θ)p(θ)

p(X)

p(θ|X) : posterior
p(X|θ) : likelihood (L(θ))
p(θ) : prior
p(X) : Marginal probability of data (

∫
p(X|θ)p(θ)dθ))
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Statistical Inference: the two approaches

p(θ|X) =
p(X|θ)p(θ)

p(X)

∝ p(X|θ)p(θ)

◮ Frequentist approach:
◮ θ is a fixed but unknown.
◮ Inference is done via Maximum Likelihood Estimate (MLE).

Prior information is never used.
◮ We need to assess the reliability of the estimate by significance

tests (p values, confidence intervals).

◮ Bayesian approach:
◮ θ is is treated just like any other random variable.
◮ Posterior contains all the necessary ingredients for the

inference.
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A simple example

We toss a coin 10 times, the outcome is HHTHHHHTTH. Let θ

represent the chance that coin comes up ‘H’.

Frequentist Bayesian 1 Bayesian 2
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A simple example

We toss a coin 10 times, the outcome is HHTHHHHTTH. Let θ

represent the chance that coin comes up ‘H’.

Frequentist Bayesian 1 Bayesian 2
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A simple example

We toss a coin 10 times, the outcome is HHTHHHHTTH. Let θ

represent the chance that coin comes up ‘H’.

Frequentist Bayesian 1 Bayesian 2

θ̂ = argmax
θ

L(θ)

θ̂ = 0.7
p = 0.2059

Posterior:
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Posterior:

0.0 0.2 0.4 0.6 0.8 1.0
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4 Beta(5,5)

Beta(12,8)
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Bayesian Inference: summary

p(θ|X) ∝ p(X|θ)p(θ)

Pros

◮ Allows complete inference: posterior distribution contains all
the information needed.

◮ Interpretation of the results are straightforward.

Cons

◮ Computationally expensive: calculation of posteriors are not
always easy.

◮ Choice of priors: it is sometimes difficult to justify the use of
(subjective) priors.
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Statistical Inference and Learning

◮ Statistical inference aims to draw conclusions about an
underlying population using a sample drawn from this
population.

◮ Learning can be viewed as making generalizations about the
target concept by looking at a sample of data consistent with
this concept.

◮ Statistical methods are most common learning methods in
machine learning.

◮ More and more psychological phenomena is explained by
sensitivity to statistical information in the environment.

◮ Language acquisition is no exception: children are known to
exploit statistical regularities in the input in language learning.
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(non-Bayesian) Statistical Learning

p(θ|X) =
p(X|θ)p(θ)

p(X)

∝ p(X|θ)p(θ)

We want to learn the parameter θ.

◮ Maximum Likelihood Estimate(MLE):

θ̂ = argmax
θ

p(X|θ)

◮ Maximum a posteriori (MAP) estimate:

θ̂ = argmax
θ

p(X|θ)p(θ)
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Bayesian Learning

p(θ|X) ∝ p(X|θ)p(θ)

◮ No point estimates.

◮ No maximization.

◮ A Bayesian learner learns the posterior distribution, p(θ|X).

◮ If needed, point estimates can be made using,

E [θ] =

∫
θp(θ|X)dθ

Note the difference from MAP estimate.
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Bayesian Learning: how?

p(θ|X) =
p(X|θ)p(θ)∫
p(X|θ)p(θ)dθ

◮ Given the probability density (or distribution) functions for
prior and likelihood, we simply multiply, and normalize.

◮ Note that likelihood and prior does not have to be proper.
Multiplication by a constant does not change the results.

Problem 1: computation

The computation involved is not always easy to carry out.
Approximate methods, such as MCMC, are frequently used.

Problem 2: priors

We need to choose a prior distribution.
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Choice of priors

◮ Subjective priors: based on previous experience.

◮ Non-informative priors: try to be as objective as possible.

◮ Conjugate priors: for computational efficiency.

◮ Empirical Bayes: priors from data.

◮ Hierarchical priors: combining information from different
variables.
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Digression: Graphical models (or ‘Bayesian networks’)

◮ Often multiple random variables interact.

◮ Bayesian networks are a convenient way to visualize the
dependency relations between variables.
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Digression: Graphical models (or ‘Bayesian networks’)

◮ Often multiple random variables interact.

◮ Bayesian networks are a convenient way to visualize the
dependency relations between variables.

X

θ
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Hierarchical Bayesian Models

In our coin toss example we choose a Beta(α, β) prior
with fixed α and β.

p(θ|X) ∝ p(X|θ)p(θ)

where,

X ∼ Binomial(θ), θ ∼ Beta(α, β)
X

θ
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Hierarchical Bayesian Models

In our coin toss example we choose a Beta(α, β) prior
with fixed α and β.

p(θ|X) ∝ p(X|θ)p(θ)

where,

X ∼ Binomial(θ), θ ∼ Beta(α, β)

We can further extend this if choice of α and β can be
guided by additional information.

p(θ, α, β|X) ∝ p(X|θ)p(θ|α, β)p(α, β)

where, e.g.,

X ∼ Binomial(θ), θ ∼ Beta(α, β), α ∼ N(µα, σ), β ∼ N(µβ, σ)

X

θ

α, β
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A simple example: marbles in boxes

Boxes contain either white or black marbles:

?
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A simple example: marbles in boxes

Boxes contain either white or black marbles:

?

Hierarchical Bayesian Models 20/58

∗ This example is adopted from a talk by J. Tenenbaum

http://web.mit.edu/cocosci/josh.html


A simple example: marbles in boxes

Boxes contain either white or black marbles:

?

Level 2: Boxes in general

Level 1: Box properties

Color varies among boxes not much within boxes

Mostly
Black

Mostly
White

Mostly
White
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HBM for marbles in boxes

◮ xi are the data

◮ θi models box proportions,
xi ∼ Binomial(θ)

◮ α, β models the boxes in general,
θi ∼ Beta(α, β)

◮ λ models prior expectations in boxes in
general

λ

α, β

θ1

x1

θ2

x2

θ3

x3

θ4

x4

p(λ, α, β, θ | X) ∝ p(X | θ)p(θ | λ, α, β)p(α, β | λ)p(λ)
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Summary: HBMs for Modeling Human Learning

◮ Bayesian Statistics provides complete inference: posterior
distribution contains all we need.

◮ Bayesian Learning is incremental: posterior can be used as
prior for the next step.

◮ Hierarchical models allow a way to include information from
different sources as prior knowledge.
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Categorial Grammars

◮ Categorial Grammar (CG) encodes all the language specific
syntactic information in the lexicon.

◮ CG Lexicon contains lexical items of the form:

φ := σ : µ

where φ is the phonological form, σ is the syntactic category,
and µ is the meaning of the lexical item.

◮ Syntactic categories in CG are,
◮ either a basic category, such as N, NP, S
◮ or, a complex category of the form X\Y or X/Y, where X and

Y are any (basic or complex) CG categories. Informally:
X/Y says: ‘I need a Y to my right to become X’
X\Y says: ‘I need a Y to my left to become X’
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Categorial Grammars (contd.)

◮ More formally, CG has two rules:
Forward Application: X/Y Y ⇒ X (>)
Backward Application: Y X\Y ⇒ X (<)

◮ An example derivation:
Mary likes Peter

NP (S\NP)/NP NP
>

S\NP
<

S
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Categorial Grammars (contd.)

◮ More formally, CG has two rules:
Forward Application: X/Y Y ⇒ X (>)
Backward Application: Y X\Y ⇒ X (<)

◮ An example derivation:
Mary likes Peter

NP (S\NP)/NP NP
>

S\NP
<

S

S

NP

Mary

S\NP

(S\NP)/NP

likes

NP

Peter

Hierarchical Bayesian Models 27/58



A simple CG learner for learning word-grammars

◮ Input is a set of words.

◮ We want to assign a probability, θ, to possible lexical items
(〈φ, σ〉 pairs).

◮ Note: probability is the ‘system’s belief’ that the 〈φ, σ〉 pair
at hand is a lexical item.

◮ Only 3 categories (known in advance):
◮ W : free morpheme (word, or stem)
◮ W/W :
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A simple CG learner for learning word-grammars

◮ Input is a set of words.

◮ We want to assign a probability, θ, to possible lexical items
(〈φ, σ〉 pairs).

◮ Note: probability is the ‘system’s belief’ that the 〈φ, σ〉 pair
at hand is a lexical item.

◮ Only 3 categories (known in advance):
◮ W : free morpheme (word, or stem)
◮ W/W : prefix
◮ W\W :
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A simple CG learner for learning word-grammars

◮ Input is a set of words.

◮ We want to assign a probability, θ, to possible lexical items
(〈φ, σ〉 pairs).

◮ Note: probability is the ‘system’s belief’ that the 〈φ, σ〉 pair
at hand is a lexical item.

◮ Only 3 categories (known in advance):
◮ W : free morpheme (word, or stem)
◮ W/W : prefix
◮ W\W : suffix

◮ We adopt a Beta/Binomial model.

◮ We assume each input word provides evidence for the lexical
hypothesis in question, If hypothesis used in the interpretation
of the input.
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The CG learner: A simple algorithm

◮ Input is unsegmented words (and the lexicon).

◮ Output is the lexicalized grammar with probability
assignments.

For each input word w ,

1. Try to segment the input using the current lexicon.

2. If there is no possible segmentation, assume that we have
found evidence for a lexical item w := W .

3. If we can segment the input as w = φ1 . . . φN , assume that we
have observed evidence for each tuple 〈φi , σj〉 which yields a
correct parse of w .

4. We update the parameters of the Beta distribution associated
with the lexical hypotheses.
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An example

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4 book:=W

pens:=W

books:=W

s:=W\W

Lexicon {}
Input book
Hypotheses
Parses
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An example
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Lexicon {}
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An example

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4 book:=W

pens:=W

books:=W

s:=W\W

Lexicon {book:=W}
Input book
Hypotheses book:=W
Parses book

W
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An example

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4 book:=W

pens:=W

books:=W

s:=W\W

Lexicon {book:=W}
Input pens
Hypotheses
Parses
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An example

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4 book:=W

pens:=W

books:=W

s:=W\W

Lexicon {book:=W}
Input pens
Hypotheses pens:=W
Parses
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An example

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4 book:=W

pens:=W

books:=W

s:=W\W

Lexicon {book:=W,
pens:=W}

Input pens
Hypotheses pens:=W
Parses pens

W
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An example
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pens:=W

books:=W
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Input books
Hypotheses
Parses
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An example
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4 book:=W

pens:=W

books:=W

s:=W\W

Lexicon {book:=W,
pens:=W}

Input books
Hypotheses book:=W,

books:=W, s:=W,
book:=W/W,
s:=W\W

Parses
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An example

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
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4 book:=W

pens:=W

books:=W

s:=W\W

Lexicon {book:=W,
pens:=W, s:=W\W}

Input books
Hypotheses book:=W,

books:=W, s:=W,
book:=W/W,
s:=W\W

Parses books

W
book s

W W \W
<

W
book s

W/W W
>

W
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An example
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4 book:=W
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books:=W

s:=W\W

Lexicon {book:=W,
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Parses
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An example

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4 book:=W

pens:=W

books:=W

s:=W\W

Lexicon {book:=W,
pens:=W, s:=W\W}

Input pens
Hypotheses pen:=W, pens:=W,

s:=W, pen:=W/W,
s:=W\W

Parses
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An example

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4 book:=W

pens:=W

books:=W

s:=W\W

Lexicon {book:=W,
pens:=W, s:=W\W}

Input pens
Hypotheses pen:=W, pens:=W,

s:=W, pen:=W/W,
s:=W\W

Parses pens

W

pen s

W W \W
<

W
pen s

W/W W
>

W
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A hierarchical extension

◮ Our current model assumes rather non-informative
values for α and β.

◮ We can extend this model to get more informative
priors

X

θ
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A hierarchical extension

◮ Our current model assumes rather non-informative
values for α and β.

◮ We can extend this model to get more informative
priors

◮ We treat α and β as random variables.

◮ We make use of context predictability as another
source providing a hierarchical informative prior for
possible segments.

X

θ

α, β
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Hierarchical extension: example
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4 book:=W
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books:=W
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Lexicon {}

Input book
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Parses
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Hierarchical extension: example
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Hierarchical extension: example
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Hierarchical extension: example
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Hierarchical extension: example
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Hierarchical extension: example
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Hierarchical extension: example
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Hierarchical extension: example
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Hierarchical extension: example
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Hierarchical extension: example
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books:=W
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Hierarchical extension: example

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4 book:=W

pens:=W

books:=W

s:=W\W

Lexicon {book:=W,
pens:=W, s:=W\W,
pen:=W}

Input pens

Hypotheses pen:=W, pens:=W,
s:=W, pen:=W/W,
s:=W\W

Parses pens

W

pen s

W W \W
<

W
pen s

W/W W
>

W
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Summary

◮ Bayesian statistics provides a different approach to statistical
inference and learning.

◮ Use of (subjective) priors is not always bad: Modeling
cognitive processes is a good example.

◮ Hierarchical priors is a good way to combine information from
different sources.
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