Conservativity, Distraction or Bi-conditional?

QUANTIFIER INTERPRETATION IN DUTCH

ISOLDE VAN DORST

Quantifier interpretation in Dutch

- Paper by Anna de Koster, Petra Hendriks, Bart Hollebrandse and Jennifer Spenader (in press)
- "Conservativity, Distraction or the Bi-conditional?: An investigation into children's errors with *only* and *all*"
- First ones to test this in Dutch with children

Quantifiers in Dutch

- All: Alle
- Only: Alleen

(enkel)

• Whereas *all* is conservative, *only* is not

Conservativity

- All bears are furry
- Set A: set of bears
- Set B: things that are furry
- Conversative: We only have to consider the intersection between Set A and Set B
 - Thus, "fewer members have to be considered to determine the truth of a quantified sentence"

Bi-conditional

• In short, *all* could be interpreted as *all-and-only*

Overexhaustive response

- Example:
- "All children are riding an elephant"
- Incorrect rejection based on the riderless elephant

Experiment 1 & 2

- Experiment 1: all the / only the → includes determiner
 - All the bunnies are dancing
- Experiment 2: all / only \rightarrow excludes determiner
- AND used fictional monsters instead of animals
 All kroepies are dancing
- 2 x 2 design:
 - Picture
 - Quantifier

Design: Pictures

• All-participant condition:

• Two non-participant condition:

Experiment 2: Changes

- Only + Two non-participants condition was not completely neutral, could be interpreted to suggest that the entire set of bunnies had to dance in order to be true, which is not what was intended.
- Fictional monsters (e.g. kroepies) were used here instead to avoid real world interference ("Panda's can't ice skate")

Expectations & Results

Picture	Quantifier	Expectation
All Participants	All	True
All Particpants	Only	False
Two non-participants	All	False
Two non-participants	Only	True

Picture	Quantifier	Result
All participants	All	Overexhaustive response
All participants	Only	Adult-like performance
Two non-participants	All	Overexhaustive response
Two non-participants	Only	Incorrect rejection

Experiment 3

• Distraction caused by the additional characters in the pictures?

- "All bunnies are dancing"
- "No because this panda is also dancing"

• Bi-conditional (overexhaustive)?

- "All bunnies are dancing" \rightarrow All-and-only bunnies are dancing
- "No because this panda is also dancing"

Experiment 3

• Extra-character condition

• Non-participant condition:

	Expectations	
Extra character	Distraction?	Bi-conditional?
All	False	True
Only	False	True

Non-participant	Distraction?	Bi-conditional?
All	False	False
Only	False	False

• Bi-conditional: *all-and-only*

- Mixed-effects regression
- Fixed factors: Quantifier, Picture
- Random factors: Item, Participant, Age

First outcome

```
Linear mixed model fit by REML ['lmerMod']
Formula:
Answer ~ Picture + Sentence + (1 | Item) + (1 | Subject_Nr) +
   (1 | Age_Group)
   Data: dataset
REML criterion at convergence: 271.7
Scaled residuals:
        1Q Median 3Q
   Min
                                  Max
-3.3224 -0.4826 -0.1298 0.3834 3.2232
Random effects:
                       Variance Std.Dev.
Groups
           Name
Subject_Nr (Intercept) 1.790e-02 1.338e-01
      (Intercept) 3.555e-17 5.962e-09
Item
Age_Group (Intercept) 0.000e+00 0.000e+00
Residual
                       8.863e-02 2.977e-01
Number of obs: 512, groups:
Subject_Nr, 32; Item, 16; Age_Group, 2
Fixed effects:
              Estimate Std. Error t value
(Intercept) 0.191406 0.032843 5.828
Pictureplus 0.750000 0.026315 28.501
Sentencezalle -0.007813
                         0.026315 -0.297
Correlation of Fixed Effects:
           (Intr) Pctrpl
Pictureplus -0.401
Sentencez]] -0.401 0.000
```

Note:

Picturemin=Non-participant Pictureplus=Extra participant Sentence=Quantifier Subject_Nr=Participant

Comparison

```
> anova(Model1,Model2)
refitting model(s) with ML (instead of REML)
Data: dataset
Models:
Model1: Answer ~ Picture + Sentence + (1 | Item) + (1 | Subject_Nr) +
Model1: (1 | Age_Group)
Model2: Answer ~ Picture * Sentence + (1 | Item) + (1 | Subject_Nr) +
Model2: (1 | Age_Group)
Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
Model1 7 269.43 299.10 -127.72 255.43
Model2 8 270.64 304.54 -127.32 254.64 0.7973 1 0.3719
```

Since the AIC of Model 1 is lower than that of Model 2, we continue with this model.

Model 3

- Left out Participant \rightarrow No improvement
- Left out Age \rightarrow Better model + simpler!

```
> anova(Model1,Model3)
refitting model(s) with ML (instead of REML)
Data: dataset
Models:
Model3: Answer ~ Picture + Sentence + (1 | Item) + (1 | Subject_Nr)
Model1: Answer ~ Picture + Sentence + (1 | Item) + (1 | Subject_Nr) +
Model1:
           (1 | Age_Group)
       Df AIC BIC logLik deviance Chisq Chi Df
Model3 6 267.43 292.86 -127.72 255.43
Modell / 269.43 299.10 -127.72 255.43
                                                   1
                                            0
       Pr(>Chisq)
Model3
Model1
               1
```

Model 4

Left out Item → Again better and simpler model!

Model 5

- I also tried a model which left out either Picture or Quantifier (Sentence) as a predicting factor:
 Leaving out Picture gave no improvement
 Small improvement when leaving out Quantifier
- Even though there was a slightly lower AIC when leaving out the Quantifier as a factor, there was no improvement of at least 2, so not a better model than Model 4.

Finally

- Model 4 is best:
- Response ~ Picture + Quantifier + (1|Participant)
 - Effect of both fixed factors Picture and Quantifier
 - As well as the random factor Participant

Extra character	Distraction?	Bi-conditional
All	False	True
Only	False	True

- Outcome:
- Children are affected by their interpretation of *all* and *only* on the basis of the bi-conditional and thus prefer overexhaustive responses which take into account the larger set (all furry things as well as all bears)