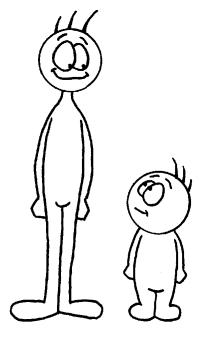


Introduction to (log) Odds Ratio

Statistics and Methodology

Anna Lobanova: a.lobanova@ai.rug.nl

Who is more likely to drink beer on Queen's Day - students or teachers?



Example: Who is more likely to drink beer on Queen's Day - students or teachers?

	Drink	Don't drink	Total
Students	90	10	100
Teachers	20	80	100
Total	110	90	200

Group 1 = students, group 2 = teachers

Event – drinking beer at Queen's Day

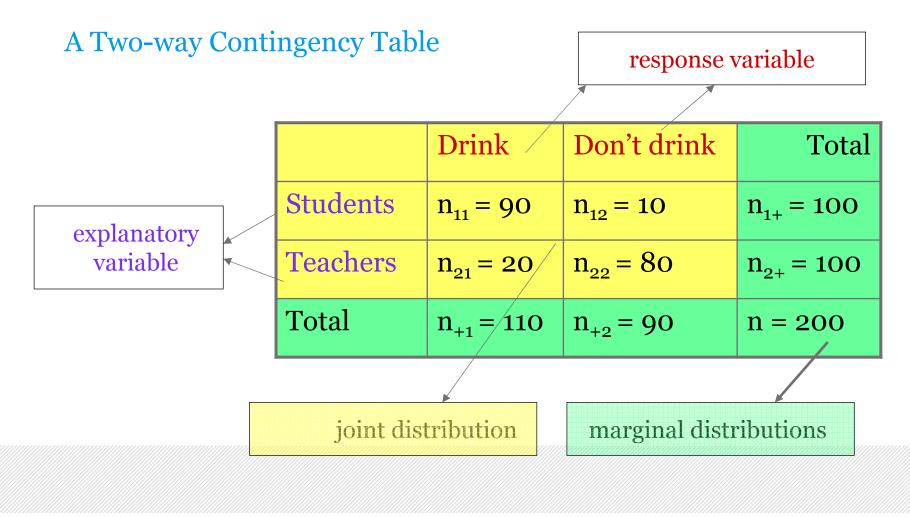
Question: Is one group more likely to drink beer on Queen's Day than the other group? Or is this event independent of professional status?

Terminology & Notation:

A Two-way Contingency Table

	Drink	Don't drink	Total
Students	n ₁₁	n ₁₂	n ₁₊
Teachers	n ₂₁	n ₂₂	n ₂₊
Total	n ₊₁	n ₊₂	n

Terminology & Notation:



Example 1: Let's use **odds ratio** to find out!

	Drink	Don't drink	Total
Students	n ₁₁ = 90	n ₁₂ = 10	n ₁₊ = 100
Teachers	n ₂₁ = 20	n ₂₂ = 80	n ₂₊ = 100
Total	n ₊₁ = 110	n ₊₂ =90	n = 200

Step 1: the odds of a student drinking beer is 90 to 10 or 9/1 and the odds of a teacher drinking beer is 20 to 80 or 1/4 = 0.25:1

Step 2: the probability of success for every cell is

 $\pi_{11} = n_{11}/n_{1+} = 90/100 = 0.9 \qquad \pi_{12} = n_{12}/n_{1+} = 10/100 = 0.1$ $\pi_{21} = n_{21}/n_{2+} = 20/100 = 0.2 \qquad \pi_{22} = n_{22}/n_{2+} = 80/100 = 0.8$ Step 3: Odds Ratio (θ) = $\frac{0.9/0.1}{0.2/0.8} = \frac{0.72}{0.02} = 36$

Odds Ratio (θ) = $\pi_{11}\pi_{22}$

 $\pi_{21}\pi_{12}$

Inference from odds ratio:

If	Then	
	odds ratio = 1	the event is equally likely in both groups
	odds ratio > 1	the event is more likely in Group 1
	odds ratio < 1	the event is more likely in Group 2
⇔	the greater the number	the stronger the association
⇔	is never a negative number	
In exam	pple 1:	

odds ratio = 36

students are much more likely to drink beer than teachers!

Inference from odds ratio:

If	Then	
	odds ratio = 1	the event is equally likely in both groups
	odds ratio > 1	the event is more likely in Group 1
	odds ratio < 1	the event is more likely in Group 2
⇔	the greater the number	the stronger the association
In exan	pple 1:	
	odds ratio = <mark>36</mark>	students are much more likely to drink beer than teachers!

Odds Ratio:

- > is suitable for categorical data;
- usually deals with associations between 2 categorical variables;
- a change of values (in rows with columns) does not play a role;
- > unlike chi-square, odds ratio gives us a direction of association!

BUT

> for small to moderate sample sizes, the sampling distribution of the odds ratio is highly skewed!

WHY?

BUT

- > for small to moderate sample sizes, the sampling distribution of the odds ratio is highly skewed!
- To overcome this problem, one can use an alternative but equivalent measure – Log Odds Ratio

Log Odds Ratio log(θ)

Odd Ratio	Log Odds Ratio
$\theta = 1$	$Log(\theta) = 0$
$\theta = 2$	$Log(\theta) = 0.7$
$\theta = 0.5$	$Log(\theta) = -0.7$
θ = 36	$Log(\theta) = 3.6$

Log Odds Ratio $log(\theta)$

The formula for the standard error of $log(\theta)$ is very simple:

(1) SE(log θ) = square-root($1/n_{11} + 1/n_{12} + 1/n_{21} + 1/n_{22}$).

Knowing this standard error, one can test (2) the significance of $\log(\theta)$ and/or construct (3) confidence intervals:

- (2) $z = \log(\theta) / SE\log(\theta)$
- (3) $\log(\theta) \pm z_{\alpha/2} \times SElog(\theta)$

 $z_{\alpha/2}$ is the z value defining the confidence limits

Summary:

- > (Log) Odds Ratio is meant for categorical data;
- > Mostly used in two by two tables;
- Unlike chi-square it provides info about the direction of association;
- When the sample is small/moderate, it is better to use Log Odds Ratio;
- > It is a good tool for finding associations between variables!