

Predicting Grammatical Roles – Does Word Order Matter?

Statistics and Methodology

Anna Lobanova: a.lobanova@ai.rug.nl

The Goals:

- To present a study where I looked at the correlation between grammatical roles and such properties of NPs as (1) animacy and (2) referential form;
- To show that contrary to previous research these features can help to predict the position of an NP in a sentence rather than its grammatical role;
- > To discuss what went wrong statistically!

Prototypicality (Aissen 2003):

> **Subjects** – Animate

Objects – Inanimate

- > Subjects Definite
- > **Subjects** Agent
- > **Subjects** Pronouns

Objects - Indefinite

Objects – Patients

Objects – full NPs

A study on English and Swedish (Zeevat&Jäger 2002)

- *Corpus Study*: disharmonic elements (e.g., pronominal human objects).
- English (the Wall Street Journal: ~250,000 NP's)
- Swedish (Conversations in Gothenburg)
- *Expectations*: disharmonic combinations have lower frequencies than the frequency of the either element in the combination:
 - p(OBJ|HUM) < p(OBJ|NP)

and

p(HUMIOBJ) < p(HUMINP)

A study on English and Swedish (Zeevat&Jäger 2002)

- *Corpus Study*: disharmonic elements (e.g., pronominal human objects).
- English (the Wall Street Journal: ~250,000 NP's)
- Swedish (Conversations in Gothenburg)
- *Expectations*: disharmonic combinations have lower frequencies than the frequency of the either element in the combination:

p(OBJ|HUM) = 42% < p(OBJ|NP) = 75%

and

p(HUM|OBJ) = 10% < p(HUM|NP) = 13%

A study on English and Swedish (Zeevat&Jäger 2002)

⇒ Given the features of an NP, it is possible to predict its grammatical role (abstract category).

but

The word order in English and Swedish is relatively strict!

Are these results valid for free word order languages?

Word Order in Russian:

'Mary loves Kostja.'

SVO - default

Marija(NOM) ljubit Kostju(ACC).

Mary loves Kostja.

or

OVS

Kostju(ACC) ljubit Marija(NOM).

Mary loves Kostja.

or ...

SOV, OSV, VSO, VOS

What can influence the order of constituents?

- > Information structure: given before new
- > Thematic roles: agent before patient
- Animacy of NP's: animate NPs precede inanimate (Dahl 2000, Zeevat&Jäger 2002, Øvrelid 2004)
- Definiteness of NP's: definite NPs precede indefinite (Zeevat&Jäger 2002, Weber&Müller 2004)
- Length of NPs: shorter constituents precede longer c. (Heylen 2005)

⇒ Given properties of NPs, it is possible to predict their order in a sentence!

Part I: Preliminary Study (Russian)

300 transitive sentences from a novel were divided according to the word order:

88% (or 265 clauses)	were SVO ,
6% (or 17 clauses)	were OVS ,
4% (or 11 clauses)	were OSV,
1,5% (or 5 clauses)	were SOV,
0,5% (2 clauses)	were VOS.

Part II: Main Study (Russian)

150 SVO & 150 OVS sentences from the novel;150 SVO & 150 OVS sentences from the newspaper.

All nouns were annotated as:

- Animate/Inanimate Abstract/Inanimate Concrete;
- Pronoun/Proper Name/NP.

Results 1.1.

(Animacy)

<i>SVO</i> (novel)	Subject	Object
Animate	73% (109)	28% (42)
Inan Abst	21% (32)	50% (75)
Inan Conc	6% (9)	22% (33)

OVS (novel)	Subject	Object
Animate	50% (75)	54% (81)
Inan Abst	44% (66)	39% (58)
Inan Conc	6% (9)	7% (11)

 $\chi^2 = 60.723$

 $\chi^2 = 0.947 \text{ p} = 0.62$

<i>SVO</i> (news)	Subject	Object	<i>OVS</i> (news)	Subject	Object
Animate	52% (78)	15% (23)	Animate	46% (69)	33% (50)
Inan Abst	43% (65)	72%(108)	Inan Abst	47% (71)	59% (89)
Inan Conc	5% (7)	13% (19)	Inan Conc	7% (10)	7% (11)

 $\chi^2 = 46.177$

χ² = 5.106 p= 0.077

Results 1.2.

	SVO	OVS
Novel	P(Obj Anim) = 28% < $P(Obj NP) = 63%$	P(Obj Anim) = 52% > P(Obj NP) = 37%
		P(Obj InanAbs) = 47% > P(Obj NP) = 37%
News	News $P(Obj Anim) = 23\% < P(Obj NP) = 60\%$	P(Obj Anim) = 43% < P(Obj NP) = 50%
		P(Obj InanAbs) = 55% > P(Obj NP) = 50%

Results 2.1.

(Referential Form)

SVO (novel)	Subject	Object
Pronoun	19% (29)	18% (27)
Proper Name	37% (55)	5% (7)
NP	44% (66)	77% (116)

 $\chi^2 = 50.969$

OVS (novel)	Subject	Object
Pronoun	2% (3)	34% (51)
Proper Name	33% (49)	15% (22)
NP	65% (98)	38% (57)

 $\chi^2 = 62.671$

SVO (news)	Subject	Object	OVS (news)	Subject	Object
Pronoun	20% (30)	5% (8)	Pronoun	0	18% (27)
Proper Name	19% (28)	5% (7)	Proper Name	24% (36)	7% (10)
NP	61% (92)	90% (135)	 NP	76% (114)	75% (113)

 $\chi^2 = 33.482$

 $X^2 = 41.7$

Results 2.2.

(Referential Form)

	SVO	OVS
Novel	Novel $P(Obj Pro) = 49\% < P(Obj NP) = 63\%$	P(Obj Pro) = 94% > P(Obj NP) = 37%
		P(Obj PN) = 30% < P(Obj NP) = 37%
News	News $P(Obj Pro) = 22\% < P(Obj NP) = 60\%$	P(Obj Pro) = 100% > P(Obj NP) = 50%
		P(Obj PN) = 21% < P(Obj NP) = 50%

Conclusions:

•There is a correlation between animacy/referential form of NP and their grammatical function given a certain word order;

•Given animacy and referential form of NPs, it is possible to predict their position in a sentence;

•Consequently, in languages where the word order is fixed, predicting position will also "tell" the grammatical role of NPs.