

Binomial Logistic Regression Applied to Gradability in Dutch

- > Nick Ruiz (with Edgar Weiffenbach)
- > Statistics Seminar, Spring 2010

Slide 1

RUG1 To set the date: * >Insert >Date and Time * At Fixed: fill the date in format mm-dd-yy * >Apply to All RUG; 30-8-2007

Contents

- > Review of Linear Regression
- > Logistic Regression
- > Application to Gradability Analysis in Dutch
- > Conclusion

Why Regression?

- > Regression is used to understand how a dependent variable relies on a series of independent factors.
- > Typically used in prediction and forecasting.

Review: Linear Regression

> Formula:

$$y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n + \epsilon_i$$

- > Assumptions:
 - Linear relationships between independent variables and dependent variable
 - Normality of residuals
 - Dependent variable is unbound

Logistic Regression

- > Used to predict a categorical variable based on one or more independent factors
- Analyze the dependency of categorical variables on other factors
- Predicts the likelihood (probability) of a categorical value's occurrence within data.

Why not use normal regression?

> In normal regression models, the dependent variable is unbound.

 $-\infty \le v \le \infty$

> In our analysis, we wish to develop a regression model to predict the occurrence of a categorical variable.

 $0 \le P(event) \le 1$

- > How do we model a constrained variable with regression?
 - Logistic regression expresses the equation in logarithmic terms, overcoming the linearity constraint.

> Source: http://faculty.chass.ncsu.edu/garson/PA765/logistic.htm

Logit function

- > Odds $odds_{event} = \frac{P(event)}{1 - P(event)}$
- > Log odds

$$logit(p) = ln \, odds_{event} = ln \, \frac{P(event)}{1 - P(event)}$$

> Bounds of logit function:

 $-\infty \le \operatorname{logit}(p) \le \infty$

Predicting logit values

- > Use regression to find the optimal coefficients. $logit(p) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$
- > The logit function is a similar equation to linear regression.

Applying logit to regression

- Recall that we wish to predict the likelihood (probability) of a dependent variable.
- Logistic regression seeks to predict the likelihood of a logit value.
- > Logarithmic function:

$$\mathcal{P}(v) = \frac{1}{1 + e^{-v}}$$

Applying logit to regression

> Plugging logit into the logistic function:

$$P(logit(v)) = \frac{1}{1 + e^{-logit(v)}} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n)}}$$

Maximal Likelihood Estimation

- Recall that Ordinary Least Squares (OLS) regression seeks to minimize the squared differences of the data points to the regression line.
 - Also known as minimizing the least squared error
- Logistic regression uses Maximal Likelihood Estimation
 - Maximizing the odds that the observed values of the dependent variable are predicted from the independent variables

Maximum Likelihood Estimation

- Dependent variables in binomial regression have 2 possible values.
 - Follows a binomial distribution

$$p^k(1-p)^{n-k}$$

> Goal: Maximize the log likelihood (*L*) of an event by estimating the parameters in the model. $L = \ln n^k (1 - n)^{n-k} = h \ln n + (n - h) \ln(1 - n)$

$$L = \ln p^k (1-p)^{n-k} = k \ln p + (n-k) \ln(1-p)$$

Log Probabilities

Significance tests

- > To determine the "goodness of fit", several methods are possible:
 - e.g. Hosmer and Lemeshow's Chi-Square test
 - *-2L* has approximately a Chi-Square distribution with *n-1* degrees of freedom

Application to Gradability Analysis in Dutch

- > Gradability examples in English:
 - "Some day I'm going to be a big star."
- > Non-gradable examples in English:
 - "The big basketball player"

Analysis

- > Extract adjective-noun pairs for the following Dutch adjectives:
 - Gigantisch
 - Reusachtig
 - Kolossaal
- Goal: Try to predict the occurrence of a gradable reading of these adjectives, given the sentence context.
- Statistical technique: Binomal logistic regression

Variables in the analysis

- > Dependent Variable:
 - Gradable Reading (binary)
- > Independent Variables:
 - Semantic Role {Subject, Object, Predicative}
 - Adjective
 - Article of Preceding Determiner {Definite, Indefinite}
 - e.g. "die gigantisch boom"
 - Less important features:
 - Following Preposition (binary)

Analysis

- Extracted adjective-noun pairs from the Lassy Dutch Corpus
 - http://www.let.rug.nl/~vannoord/Lassy/
 - Newspaper
- Over 8,000 examples with gigantisch, reusachtig, and kolossaal.
 - Edgar manually annotated each reading with a gradable/non-gradable interpretation.

Sample analysis in R (using Design package)

> adjfreq3.lrm = lrm(GradableReading ~ SemanticRole + Adj + DefiniteArticle +
FollowingPP, data = adjfreq3, x = T, y = T)

Frequencies of Responses n y 381 197

Obs	Max Deriv Mo	del L.R.	d.f.	Р	С	Dxy
578	2e-11	92.24	5	0	0.718	0.437
Gamma	Tau-a	R2	Brier			
0.484	0.197	0.204	0.192			

	Coef	S.E.	Wald Z	P
Intercept	-0.55674	0.2021	-2.76	0.0059
SemanticRole=predc	1.10901	0.3199	3.47	0.0005
SemanticRole=su	-0.07674	0.2266	-0.34	0.7349
Adj=reusachtig	-1.88641	0.2710	-6.96	0.0000
DefiniteArticle=indefinite	0.24457	0.2087	1.17	0.2411
FollowingPP=yes	0.25775	0.2235	1.15	0.2487

Evaluation

- > R^2 measures the accuracy of the predictions
- > *C*: Index of concordance between the predicted probability and the observed response
 - C = 0.5 implies that the predictions are random
 - C = 1.0 implies that the predictions are perfect
 - Our *C*: 0.718

Evaluation

- > Somers' D_{xy} provides a rank correlation between the predicted probability and the observed responses $0 \le D_{xy} \le 1$
- > In our analysis:

$$D_{xy} = 2(C - 0.5) = 0.437$$

Conclusion

- > We have attempted a simple logistic regression model with a subset of data; the results are not yet promising.
- > After analyzing all of the data, we will determine if there are any interactions between the independent variables.

Thank you