Repeated Measures ANOVA

Processing syntactic ambiguity & working memory capacity

Arina Banga & Tam Ho, Methodology & Statistics, 14/03/07

Research questions

• Temporary syntactic ambiguity

De krant publiceerde een column over een voetbalploeg uit de randgemeente en **een over een basketploeg uit de hoofdstad...**

- An article or a pronoun?
- If *een* is a pronoun which noun phrase does it refer to?

een column? (High attachment) *een voetbalploeg*? (Middle attachment)

• What decision do readers make? Why? And when?

Tuning hypothesis

• Tuning or exposure-based hypothesis

"[T]he most frequently occuring resolution of an ambiguity is the resolution that people prefer." (Gibson & Schütze, 1999)

- Corpus analysis (English) by Desmet & Gibson (2003):
 - Pronoun "one" occurs more frequent in conjoined noun phrase constructions with *high* than middle attachment
 - In the absence of "one", *middle* atttachments are more frequent than high attachment

Desmet & Gibson (2003)

- Tested the hypothesis online
 - Experiment 1: English word-by-word self-paced reading experiment
 - Experiment 2: Dutch eye-tracking self-paced reading experiment (replicated)
- Prediction: readers' preference should reflect corpus frequency
 - Pronoun \rightarrow high attachment
 - No pronoun \rightarrow middle attachment

Experiment Design

• Crossed factors

	Attachment			
	High Middle			
Parallel NP	Cond1	Cond2		
Pronoun	Cond3	Cond4		

- 24 set of sentences; each set contained four versions
- Latin square: Participants saw only one of the four possible versions

Example

	Region 1	Region 2	n 2 Region 3 Regio		Region 5	Region 6	Rest
	Subj + V	NP1	Prep + NP2	Prep + NP3	en + een/NP	Prep + NP	
High- NP	De krant publiceerde	een column	over een voetbalploeg	uit de randgemeente	en een artikel	over een basketploeg	
High- Pro	De krant publiceerde	een column	over een voetbalploeg	uit de randgemeente	en een	over een basketploeg	
Middle- NP	De krant publiceerde	een column	over een voetbalploeg	uit de randgemeente	en een basketploeg	uit de hoofdstad	
Middle- Pro	De krant publiceerde	een column	over een voetbalploeg	uit de randgemeente	en een	uit de hoofdstad	

Results for Region 5

- No main effect of *disambiguation type* or *attachment site*
- Significant interaction between disambiguation type and attachment site (*F*(1, 31) = 4.60, *p* < .05)
 - *NP condition*: No difference in reading times for high and middle attachment (F(1, 31) = 1.76, p = .20)
 - *Pronoun condition*: Reading times for high and middle attachment differed significantly (F(1, 31) = 9.59, p < .01)

	High attachment	Middle attachment		
Mean (ms)	282	329		

Pronoun resolution

 Hemforth et al.'s (2000) anaphoric binding hypothesis: Parsers prefer to coindex pronouns with elements which belong to the main assertion of a sentence.

De krant publiceerde **een column over een voetbalploeg** uit de randgemeente en **een** over een basketploeg uit de hoofdstad...

While NP1 is the object of the verb, NP2 belongs only to the modifying PP.

• Also *predicate proximity hypothesis* (Gibson et al. 1996): Attachments that are structurally closer to verbs are favored

Locality constraint

- An interpretation associated with a local attachment is preferred over an interpretation with a less local attachment (Gibson & Pearlmutter, 1998)
 - Integration cost:

The greater the distance between an incoming word and the dependent to which it attaches, the greater the integration cost

• Memory cost

The longer a predicted category must be kept in memory before being encountered, the greater is the cost for maintaining that prediction

Working memory

- From a *working memory* perspective,
 - attaching the pronoun to the higher NP involves more processing resources than attaching it to the middle NP
 - unless a high amount of processing resources is available (e.g. in readers with high working memory span)
- Desmet & Gibson did not control for working memory differences between their participants
- Introducing a *between-subject factor*
 - → High vs. low working memory span
 - → Will readers with *low working memory span* also show a high-attachment preference in the pronoun condition?

Repeated measures design

• Latin square design

	High-NP	High-Pro	Middle-NP	Middle-Pro	
	Cond a	Cond b	Cond c	Cond d	
List1	Sent _{1a}	Sent _{2b}	Sent _{3c}	Sent _{4d}	
List2	Sent _{2a}	Sent _{3b}	Sent _{4c}	Sent _{1d}	
List3	Sent _{3a}	Sent _{4b}	Sent _{1c}	Sent _{2d}	
List4	Sent _{4a}	Sent _{1b}	Sent _{2c}	Sent _{3d}	

- The four lists were distributed evenly over the two groups
- Why not testing four different groups?
 - → Great variability in individual reading times

Determining span type

- Reading span task (Danemann & Carpenter 1980; Van den Noort & Haverkort (unpublished)
 - Participants had to read several sentences out loud & remember the final words
 - When signaled, the participants had to recall the memorized words in the order they appeared
 - The number of sentences (& words to be memorised) increased up to 6
 - Scores: Low span 2.0 2.5, Middle span 3.0 3.5, High span 4.0 6.0
- Participants
 - 11 high spanners and 9 low spanners
 - All native speakers of Dutch
 - 18-28 years

Method & Procedure

- Word-by-word self-paced reading experiment
 - Each run started with a fixation point: +
 - The sentences appeared word by word in the middle of a computer screen
 - The participants pressed a key after finishing reading a word
 - The times between the key presses were recorded as the participants' reading times
 - Questions to some sentences were included to make sure that the participants read for comprehension
- For stimulus presentation & data collection the *E-prime* software was used

Results for Region 5

- Significant main effect in attachment site condition, *F*(1, 17) = 4.55, *p* < .05
- Non-significant interaction of attachment site and disambiguation type, *F*(1, 17) = 2.52, *p* = .13
- Desmet & Gibson (2003)
 Significant interaction between disambiguation type and attachment site (*F*(1, 31) = 4.60, *p* < .05) but no main effects

Region 5: high vs. low span readers

- No significant interaction with span
- The two groups show different patterns
- An analysis in terms of regions may be inadequate
- Reanalysis of region 5
 - 1. Conjunction *en* excluded
 - 2. Article and Pronoun compared
 - 3. Site of ambiguity resolution
 - 4. Two words after

Een - article vs. pronoun

- Significant interaction between disambiguation type and span, F(1, 18) = 4.34, p < .05
- Post-hoc analyses
 look at the two groups individually
 - High spanners

 significant main effect of
 disambiguation type, *F* (1, 10) =
 7.00, *p* < .05 ⇒ sensitive to
 article/pronoun distinction
 - Low spanners
 no effects ⇒ article/pronoun
 distinction seems to be ignored

Ambiguity resolution

- Site of ambiguity resolution
 - Noun \rightarrow *een* is an article
 - Preposition \rightarrow *een* is a pronoun
 - Noun in the *parallel condition* and preposition in the *pronoun condition* compared
- A near significant interaction between span and the noun vs. preposition condition, F(1, 18) = 3.90, p = .065
 - Higher reading times for *noun* than preposition in both groups ⇒ perhaps een was expected to be a pronoun
 - No main effect of attachment site but pattern for the two groups is noticeably reverse

SPSS output

• High span readers

Tests of Within-Subjects Contrasts

Source	hm	nounprep	Type III Sum of Squares	df	Mean Square	F	Sig.
hm	Linear		4908,067	1	4908,067	1,192	,300
Error(hm)	Linear		41159,676	10	4115,968		
nounprep		Linear	14086,450	1	14086,450	2,354	,156
Error(nounprep)		Linear	59847,471	10	5984,747		
hm * nounprep	Linear	Linear	639,601	1	639,601	,920	,360
Error(hm*nounprep)	Linear	Linear	6949,056	10	694,906		

• Low span readers

Tests of Within-Subjects Contrasts

Source	hm	nounprep	Type III Sum of Squares	df	Mean Square	F	Sig.
hm	Linear		1474,439	1	1474,439	,788	,404
Error(hm)	Linear		13092,169	7	1870,310		
nounprep		Linear	4321,733	1	4321,733	2,885	,133
Error(nounprep)		Linear	10487,027	7	1498,147		
hm * nounprep	Linear	Linear	1,181	1	1,181	,001	,978
Error(hm*nounprep)	Linear	Linear	10196,882	7	1456,697		

1st word after

- An interaction between attachment site and disambiguation type, *F*(1, 18) = 2.05, *p* = .171 (not significant)
 - NP condition: higher reading times for high attachment ⇒ reflects corpus frequency: middle attachment preference in the absence of a pronoun
 - Pronoun condition: reading times for high and middle attachment do not differ ⇒ no preference in terms of attachment yet

2nd word after

- Significant main effect of attachment site, *F*(1, 18) = 13.33, *p* < .05
 - Higher reading times for middle attachment in both groups ⇒ predicate proximity constraint
- A non-significant main effect of disambiguation type, F(1, 18), p = .141
 - Higher reading times for pronoun condition in both groups ⇒ attaching pronoun requires additional processing recourses
- No interaction with Span

Language as a random effect

- *Random factor* : "If the number of possible levels of that factor greatly exceeds that of the number of levels included in the experiment" (Rietveld & van Hout 2005)
- For example: "Randomly" selected words from a dictionary or lexical data-base do not constitute the whole population of possible words
- Item variance can be controlled by experimental procedures such as *matching items* (Raaijmakers 1999)
- To make sure that the differences found in the experiment are due to the different conditions and not due to the differences between the test items themselves better do *item statistics*

Item statistics

- 24 items in each condition; 2 items were excluded
- Region 5
 - Desmet & Gibson (2003) found a significant interaction between attachment site and disambiguation type, F(1, 23) = 4.76, p < .05
 - Main effect of attachment site, F(1, 21) = 3.11, p = .92 (not significant)
 - No other effects were found when looking at the words individually
- Number of participants perhaps too low

Conclusion

- When analysing the sentences in terms of regions, experimental finding reflected corpus frequency
- But when the regions (region 5) were analysed word by word, an interaction with other constraints can be seen
 - Span: high spanners were sensitive to article/pronoun distinction ⇒ perhaps an indication that they make use of both representations, while low spanners only use a single representation
 - *Predicate proximity*: decisions related to attachment site seems to depend on the distance of the NP or pronoun to the predicate as well

References

- 1. Clarck, H. H. (1973). The Language-as-Fixed-Effect Fallacy: A Critique of Language Statistics in Psychological Research. *Journal of Verbal Learning and Verbal Behavior, 12:4, 335-359.*
- 2. Daneman, M. & Carpenter P. A. (1980). Individual Differences in Working Memory and Reading. *Journal* of Verbal Learning and Verbal Behavior, 19:4, 450-465.
- 3. Desmet, T. & Gibson, E. (2003). Disambiguation preferences and corpus frequencies in noun phrase conjunction. *Journal of Memory and Language 49, 353-374*.
- 4. Gibson, E. & Pearlmutter, N. J. (1998). Constraints on sentence comprehension. *Trends in Cognitive Science 2:7, 262-268.*
- 5. Just, M.A. & Carpenter, P. A. (1992). A Capacity Theory of Comprehension: Individual Differences in Working Memory. *Psychological Review 99:1, 122-149.*
- 6. MacDonald, M. C. & Christiansen, M. H. (2002). Reassessing Working Memory: Comment on Just and Carpenter (1992) and Waters and Caplan (1996). *Psychological Review 109:1, 35-54*.
- 7. Raaijmakers, J. G. W., Schrijnemakers, J. M. C. & Gremmen, F. (1999). How to Deal with "The Language-as-Fixed-Effect Fallacy": Common Misconceptions and Alternative Solutions. *Journal of Memory and Language 41, 416-426.*
- 8. Rietveld, T. & Van Hout, R. (2005). *Statistics in Language Research: Analysis of Variance.* Mouton, The Hague.
- 9. Waters, G. S. & Caplan, D. (1996). The Capacity Theory of Sentence Comprehension: Critique of Just and Carpenter (1992). *Psychological Review 103:4, 761-772.*