Seminar in Statistics and methodology

Wednesday, 12 March 2008

Summary Hypothesis testing T-statistics

> Eleonora Rossi e.rossi@rug.nl

THE STANDARD DEVIATION S

The variance s^2 of a set of observations is the average of the squares of the deviations of the observations from their mean. In symbols, the variance of *n* observations X_1, X_2, \ldots, X_n is

$$s^{2} = \frac{(x_{1} - \overline{x})^{2} + (x_{2} - \overline{x})^{2} + \dots + (x_{n} - \overline{x})^{2}}{n - 1}$$

or, in more compact notation,

$$S^{2} = \frac{1}{n-1} \sum_{(X_{i} - \overline{X})^{2}}$$

The **standard deviation** *s* is the square root of the variance S^2 :

$$S = \sqrt{\frac{1}{n-1} \sum (X_i - \overline{X})^2}$$

Definition, pg 49 Introduction to the Practice of Statistics, Fifth Edition © 2005 W.H. Freeman and Company

The normal distribution

- The density curve of a normal distribution is
 - Symmetric
 - Unimodal
 - Bell-shaped

The flatness of the curve will depend on the SD

THE 68-95-99.7 RULE

In the normal distribution with mean μ and standard deviation σ :

- Approximately **68%** of the observations fall within σ of the mean μ .
- Approximately **95%** of the observations fall within 2σ of μ .
- Approximately **99.7%** of the observations fall within 3σ of μ .

CONFIDENCE INTERVAL

A level *C* confidence interval for a parameter is an interval computed from sample data by a method that has probability *C* of producing an interval containing the true value of the parameter.

Definition, pg 387 Introduction to the Practice of Statistics, Fifth Edition © 2005 W.H. Freeman and Company

CONFIDENCE INTERVAL FOR A POPULATION MEAN

and known standard deviation σ . The **margin of error** for a level *C* Choose an SRS of size n from a population having unknown mean μ confidence interval for μ is

$$m = Z^* \frac{\sigma}{\sqrt{n}}$$

Here z^* is the value on the standard normal curve with area C between the critical points $-z^*$ and z^* . The level C confidence interval for μ is

 $\overline{X} \pm m$

This interval is exact when the population distribution is normal and is approximately correct for large *n* in other cases.

Definition, pg 388 Introduction to the Practice of Statistics, Fifth Edition © 2005 W.H.Freeman and Company

Hypothesis Testing

- Very similar to reasoning with confidence intervals, but slightly different perspective:
 - Confidence interval are used when you want to estimate a population parameter (e.g., μ)
 - Hypothesis testing applies when you want to know the probability of finding some test result (e.g., mean from your sample)

Hypothesis Testing and Significance tests

- CI: good to estimate a population parameter
- Hp testing: is an *inferential* reasoning.
 - It assesses evidences provided by the data in favor of some claim about the population
- SIGNIFICANCE TEST
 - It compares data with *hypotheses* whose truth we want to assess
 - The hp is a claim about a model or a population parameter
 - The results of a significance test are expressed in terms of *probability* (how much are data and Hp similar to each other?

$H_o and H_a$

• H₀

- It is the hp of "no difference" or "no effect". It is the hp we want to test with a significance test.
- The significance test gives the strength of the evidence against H_{0.} It assess the evidence against H0 in terms of probability.
- Ha
 - Is the case we suspect to be true. It is in any case the hp we would like to proof to be true

Significance test at work

- The significance test is based on a statistic that
 - estimates the parameter that appears in the Hps
- If H0 is true
 - We expect the estimate to take a value near the parameter value specified by $\rm H_{0}$
- If H0 is false
 - The values of the estimate are far from the parameter values specified by H₀

Another formulation

- A test of significance finds the probability (pvalue) of getting an outcome as extreme or more than the observed outcome
 - Extreme means far away from what we expect assuming H_0 as true
- P-value:
 - The smaller the p-value, the stronger the evidences against H₀.

Alfa -level

ά-level

- It is a level that we consider critical to compare our significance with
 - Typically
 - ά=0.05
 - There will be only 5% of chances that the H0 will be rejected, in case it were true
 - ά=0.01
 - There will be only 1% of chances that the H0 will be rejected, in case it were true

TYPE I AND TYPE II ERRORS

error. If we accept H_0 (reject H_a) when in fact H_a is true, this is a **Type** If we reject H_0 (accept H_a) when in fact H_0 is true, this is a **Type I** II error.

Definition, pg 435 Introduction to the Practice of Statistics, Fifth Edition © 2005 W.H. Freeman and Company

•						
about ulation	H _a true	Correct decision	Type II error			
Truth the pop	H ₀ true	Type I error	Correct decision			
		Reject H ₀	Accept H ₀			
		Decision based on sample				

Figure 6-17 Introduction to the Practice of Statistics, Fifth Edition © 2005 W.H.Freeman and Company

Z TEST FOR A POPULATION MEAN

To test the hypothesis H_0 : $\mu = \mu_0$ based on an SRS of size *n* from a population with unknown mean μ and known standard deviation σ , compute the test statistic

$$z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

In terms of a standard normal random variable Z, the *P*-value for a test of H_0 against

Introduction to the Practice of Statistics, Fifth Edition © 2005 W.H. Freeman and Company

Hypothesis Testing

- Example book (pp. 409-411):
 - Mean blood pressure in population is 128,
 σ = 15
 - Sample of 72 executives with lot of stress
 - Sample average is 126.07, is this 'normal'?

 $H_0: \mu_{\text{executives}} = \mu_{\text{population}} = 128$ $H_a: \mu_{\text{executives}} \neq \mu_{\text{population}}$

- $z = (126.07 128) / (15 / \sqrt{72}) = |1.09|$
- For z= -1.09 we find in the tables that the probability is 0.1379. Multiplied per 2 = 0.2758

T-distribution and t-test

T-tests

- Assumption: σ population is UNKNOWN
- This happens most of the time.
 - Usually σ is known when we have standardized tests)
- This hypothesis testing (and associated calculation of confidence intervals) is done with <u>t-tests</u>

T-test

 Standardized sample mean, or one-sample z statistic is basis of z-procedures for inference about μ when σ is known:

 $z = \text{mean} - \mu / (\sigma / \sqrt{n})$

- Most of the time, we only know S, not σ
- Therefore we use S to estimate σ.
- However, when we use S/\sqrt{n} instead of σ /\sqrt{n} , z does NOT have a standardnormal distribution!
- It has a t distribution

The z-statistics

$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

THE *t* DISTRIBUTIONS

Suppose that an SRS of size *n* is drawn from an $N(\mu, \sigma)$ population. Then the one-sample t statistic

$$= \frac{\overline{X} - \mu}{s/\sqrt{n}}$$

has the *t* distribution with n - 1 degrees of freedom.

Definition, pg 451 Introduction to the Practice of Statistics, Fifth Edition © 2005 W.H.Freeman and Company

Degrees of Freedom

- "In general, the degrees of freedom of an estimate is equal to the *number of independent scores* that go into the estimate *minus the number of parameters estimated as intermediate steps* in the estimation of the parameter itself." (Lane)
- "the number of values in the final calculation of a statistic that are free to vary." (Hoffman)
- Difficult concept, but important in *determining the* shape of the distribution you are dealing with.
 Varies *roughly* with number of observations.

The t-distribution

- The density curve of t(k) has a similar shape than a normal curve:
 - Symmetric
 - Bell-shaped
- As k>>; t(k) _ N(0;1)
- Table D shows the critical values for t(k) distributions.

STANDARD ERROR

When the standard deviation of a statistic is estimated from the data, the result is called the **standard error** of the statistic. The standard error of the sample mean is

$$SE_{\bar{X}} = \frac{S}{\sqrt{n}}$$

Definition, pg 450 Introduction to the Practice of Statistics, Fifth Edition © 2005 W.H. Freeman and Company

THE ONE-SAMPLE *t* CONFIDENCE INTERVAL

Suppose that an SRS of size *n* is drawn from a population having unknown mean μ . A level *C* confidence interval for μ is

where t^* is the value for the t(n-1) density curve with area *C* between $-t^*$ and t^* . The quantity

$$t^* \frac{s}{\sqrt{n}}$$

is the **margin of error.** This interval is exact when the population distribution is normal and is approximately correct for large *n* in other cases.

Definition, pg 452 *Introduction to the Practice of Statistics, Fifth Edition* © 2005 W. H. Freeman and Company

THE ONE-SAMPLE *t* TEST

known mean μ . To test the hypothesis H_0 : $\mu = \mu_0$ based on an SRS of Suppose that an SRS of size n is drawn from a population having unsize *n*, compute the one-sample *t* statistic

$$t = \frac{\overline{X} - \mu_0}{s/\sqrt{n}}$$

In terms of a random variable T having the t(n-1) distribution, the

Definition, pg 454

Introduction to the Practice of Statistics, Fifth Edition © 2005 W.H. Freeman and Company

Example

- Vitamin C in a food product: should be 40 mg per 100 grams.
- $H_0: \mu = 40$
- Ha: μ ≠ 40
- T-test statistic for
 - n=8, mean = 22.50 and Sd=7.19
- What is the p-value?
- Is this significant?

We do the exercise together

- t(7)
- t=mean- $\mu/(S/\sqrt{n})$
- t=-6.88
- Table D: go to find t=-6.88 with df=7 (n-1)
- p<0.001 \longrightarrow we can reject H₀ and accept H_a

Figure 7-2 Introduction to the Practice of Statistics, Fifth Edition © 2005 W.H.Freeman and Company

Paired t-tests

- If you have matched observations you can perform a one-sample t-test on the difference!
- Observations from the same subject but in different conditions, i.e. number of verb produced by aphasic patients before or after speech therapy.

Example

- Aggressive behaviors of dementia patients on days where there is a full moon
- The observations for both conditions (moon days vs other days) are *matched pairs*. This pair could consist of two subjects, but here, the two observations (moon vs no moon) are from one and the same experimental unit, namely the patient.
- We apply the t-statistics to the differences. We want to see if there is a difference!

TABLE 7.2

Aggressive behaviors of dementia patients

Patient	Moon days	Other days	Difference	Patient	Moon days	Other days	Difference
1 2 3 4 5	3.33 3.67 2.67 3.33 3.33	0.27 0.59 0.32 0.19 1.26	3.06 3.08 2.35 3.14 2.07	9 10 11 12 13	6.00 4.33 3.33 0.67 1.33	$ \begin{array}{r} 1.59 \\ 0.60 \\ 0.65 \\ 0.69 \\ 1.26 \end{array} $	$\begin{array}{r} 4.41 \\ 3.73 \\ 2.68 \\ -0.02 \\ 0.07 \end{array}$
6 7 8	3.67 4.67 2.67	$0.11 \\ 0.30 \\ 0.40$	3.56 4.37 2.27	14 15	0.33 2.00	0.23 0.38	0.10 1.62

Table 7-2Introduction to the Practice of Statistics, Fifth Edition© 2005 W. H. Freeman and Company

Mean difference = 2.433; Sd = 1.460
t(14)

Example

- Ho? Ha?
 - Ho:µdiff=0
 - Ho:µdiff>0
- Calculate the t-statistic?
- What is the p-value?
- Why one-sided testing?

NOTE: in SPSS will calculate the difference for you in the *Paired-Samples T-test*

ROBUST PROCEDURES

A statistical inference procedure is called **robust** if the probability calculations required are insensitive to violations of the assumptions made.

Definition, pg 462 Introduction to the Practice of Statistics, Fifth Edition © 2005 W.H. Freeman and Company

Robustness for t-tests

- Number < 15: use t if distribution appears to be normal and there are no outliers / no strong skew
- Number ≥ 15: use t if there are no outliers / no strong skew
- Number ≥ 40: use t even when there is a strong skew

Robustness

- Note: if number < 15 and not normal or many outliers / strongly skewed:
 - Transformations
 - Non-parametric tests

•••

TWO-SAMPLE PROBLEMS

- The goal of inference is to compare the responses in two groups.
- Each group is considered to be a sample from a distinct population.
- The responses in each group are independent of those in the other group.

Definition, pg 485 *Introduction to the Practice of Statistics, Fifth Edition* © 2005 W. H. Freeman and Company

- Note 1: regard experimental and control group as coming from distinct populations, even if they *originate* from the same population through random sampling
- Note 2: independence of observations

Variance of difference

- We need to know the standard deviation of the *difference* between the two means (mean₁ – mean₂)
- Mathematically we can derive that the variance of the difference (mean₁ – mean₂) is:

$$\sigma_1^2 / n_1 + \sigma_2^2 / n_2$$

So the standard deviation, which is the square root of the variance, is the square root of this formula

TWO-SAMPLE z STATISTIC

Suppose that \overline{X}_1 is the mean of an SRS of size n_1 drawn from an of size n_2 drawn from an $N(\mu_2, \sigma_2)$ population. Then the **two-sample** $N(\mu_1, \sigma_1)$ population and that \overline{x}_2 is the mean of an independent SRS zstatistic

$$= \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

N

has the standard normal N(0, 1) sampling distribution.

Definition, pg 488 Introduction to the Practice of Statistics, Fifth Edition © 2005 W.H.Freeman and Company

THE TWO-SAMPLE *t* SIGNIFICANCE TEST

Suppose that an SRS of size n_1 is drawn from a normal population with unknown mean μ_1 and that an independent SRS of size n_2 is drawn from another normal population with unknown mean μ_2 . To test the hypothesis $H_0: \mu_1 = \mu_2$, compute the **two-sample** *t* **statistic**

$$t = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

and use *P*-values or critical values for the t(k) distribution, where the degrees of freedom *k* are either approximated by software or are the smaller of $n_1 - 1$ and $n_2 - 1$.

Definition, pg 489 *Introduction to the Practice of Statistics, Fifth Edition* © 2005 W. H. Freeman and Company

Two sample t-statistic

- Estimates σ_1 with Sd₁ and σ_2 with Sd₂
- No z-distribution
- No t-distribution!
- But approximation of t-distribution t(k) where k is the approximation of the degrees of freedom (done by software)

Example

- One class of 21 schoolkids get extra reading activities
- One class of 23 kids (control group) does not get extra activities
- P. 490 gives back-to-back stemplot
- plus normal quantile plots

55 28 48 Control group 17 17 60 53 42 55 55 26 62 62 37 43 57 **DRP** scores for third-graders Treatment group 62 54 57 33 TABLE 7.4 67 49 56 58 71 43

Table 7-4

Introduction to the Practice of Statistics, Fifth Edition © 2005 W.H.Freeman and Company

Example

Descriptive statistics:

- N (treatment) = 21; mean = 51.48; Sd = 11.01
- N (control) = 23; mean = 41.52; Sd = 17.15
- Nullhypothesis: $\mu_{treat} = \mu_{control}$
- Alternative hypothesis: $\mu_{treat} > \mu_{control}$
- Two-sample t-statistic

Levene's test

Tests whether to reject the null hypothesis of equal variances

Levene's Test for Equality of Variancest-test for Equality of MEquality of Variancest-test for Equality of MFSig.tDEVEqual variances,236,236,6309,90942,00018,5917Equal variances0,70228,258Equal variances0,00018,5917						Inc	lep	endent Sam	ples Test		
FSig.tdfSig. (2-tailed)Mean DifferenceDEVEqual variances assumed Equal variances,236,6309,90942,00018,5917				Levene's Equality of		t-test for Equality of M					
DEV Equal variances ,236 ,630 9,909 42 ,000 18,5917 Equal variances				F	Sig.	t		df	Sig. (2-tailed)	Mean Difference	Stc Diff
Equal variances	DEV	Equal variar assumed	ires	,236	,630	9,9.	9	42	,000	18,5917	1
not assumed 9,792 38,258 ,000 18,5917		Equal variar not assumed	nces d			9,79	2	38,258	,000	18,5917	1

Summary

- t-test is performed when σ is unknown (and estimated with Sd)
- One-sample t-test has t-distribution with df = n-1
- Matched Pairs t-test can be performed with one-sample t-test
- Two-sample t-test has an approximate tdistribution; df is calculated by software