Linear Discriminant Analysis

Marjoleine Sloos May 22 2012 Class Presentation Statistics, RUG

Goals of this presentation

- Insight in Discriminant analysis
 - When to use it
 - How to use it
- Critical review of a dialectological method
 - Be careful with native raters!

Route map

- Swiss Standard German long <ä>
 - $[\varepsilon:] \sim [e:]$ variation
- Methodology
 - Corpus
 - On line experiment: Level of Swiss accent
 - Categorical analysis
 - Acoustical

Statistics: Discriminant Analysis

Results

Standard German <ä>

- Träne
- Räd-chen
- Bäder
- fähr-t

'Tear'

- 'wheel.Dim'
- 'bath.Plur'
- 'drive.3Sg'

[ε:]~[e:] Variation

- Träne
- Räd-chen
- Bäder
- fähr-t

tr[e:]ne~tr[ε:]ne r[e:]dchen~ r[ε:]dchen b[e:]der~ b[ε:]der f[e:]rt~ f[ε:]rt

[ε:]~[e:] Variation

The [ε:]~[e:] variation is gradient
any realization between [ε:]~[e:] is
 possible
Example
Exa

Where symbols appear in pairs, the one to the right represents a rounded vowel.

Swiss Standard German (SSG)

- Swiss Standard German (SSG) differs from Standard German as spoken in Germany (NSG)
 - E.g. in NSG <ä> is more likely to be pronounced as [e:]
 - Neutralization with <e>

» Beeren	b[e:]ren	'berry.Plur
» Bären	b[e:]ren	'bear.Plur'

- SG 'Schriftsprache'
 - Close connection orthography and pronunciation
 - » Beerenb[e:]ren'berry.Plur'» Bärenb[ɛ:]ren'bear.Plur'

Swiss Standard German (SSG)

- Change?
 - Younger speakers tend to a more NSG pronunciation
 - Older speakers tend to a more SSG pronunciation
 - Ongoing change (Hove 2002)

Research Question (1)

• Which factors play a role in the realization of <ä> in Swiss Standard German?

Hypotheses

- Swiss accent
 - The more Swiss accent a speaker has, the lower (i.e. [ε:]-like) the realization of <ä>
- Age (e.g. Labov 2001)
 - Younger speakers tend to a higher (i.e. [e:]-like) pronunciation
 - Older speakers tend to a lower (i.e. [ϵ :]-like) pronunciation
 - Gender (e.g. Labov 2001)
 - Pemale speakers tend to a higher (i.e. [e:]-like) pronunciation
 - Male speakers tend to a lower (i.e. [ɛ:]-like) pronunciation

Hypotheses

- Umlaut
 - <ä> that is the result of umlaut of <a> has a lower (i.e. [ε:]-like) realization
- Frequency (Bybee 1999 et seq., Phillips 2006)
 - Words that are highly frequent are likely to be pronounced with a lower (i.e. [ε:]-like) pronunciation
 - Words that are lowly frequent are likely to be pronounced with a higher (i.e. [e:]-like) pronunciation

Pre-r context

When $\langle \ddot{a} \rangle$ is followed by a rhotic, pronunciation is lower (i.e. [ϵ :]-like), than in other contexts (Hall 1990)

Methodology

- Recordings of 'native speakers'
- Categorical rating by two linguistically trained 'native speakers'
- Logistic regression test on the factors
- Common method, but reliable?

Psycholinguistics: Listeners reconstruct what they think they hear....

Research Question (2)

• Do raters rely on just acoustic features? = are raters objective and unbiased?

Methodology

• Raters' judgements compared with the acoustical measurements

Are the [e:] and [ε:] ratings clear-cut categories?

Level of SSG accent

- Corpus data
 - Institut für deutsche Sprache Mannheim (Brinckmann et al. 2008)
 - 40 speakers

7 locations

- Average 15 <ä> per speaker
- 22 males 18 females

Level of SSG accent

- Online elicitation of the level of Swiss accent of all speakers in the corpus
 - 40 respondents: 20 German 20 Swiss
 - Estimation of the SSG accent on a four-point scale

Raters judgements

- Two raters
 - Both female
 - -24 and 27 years old
 - Linguistically trained
 - Judged long <ä> to be pronounced as either [e:] or [ε:]

Acoustical analysis

 First formant F1 and second formant F2 were measured in Praat (Weenink & Boersma 2010)

Linear Discriminant Analysis

- Analyses whether the value of the dependent variable can be predicted on the basis of the independent variable
- Parametric test
- Dependent variable is nominal
- Independent variable is rational

Linear Discriminant Analysis

- Aims:
 - Investigate the differences between groups
 - Predicting the category to which a value belongs
 - To determine the best way to distinguish between groups
 - Classify cases into groups

Data

Item		Rater RB	Rater MS	F1	F2
	3412	E	E	4.79	11.84
	3413	E	E	4.76	11.82
	3414	E	E	4.70	11.74
	3415	E	E	4.31	12.56
	3416	e	e	5.12	11.66
	3417	E	E	4.62	13.12
	3418	E	E	4.85	12.12
	3419	e	E	3.72	12.35
	3420	E	E	4.97	12.29
	3421	E	E	4.55	11.32
	3422	E	E	5.49	11.63
	3423	E	E	4.73	11.82
	3424	E	E	4.13	12.74
	3412	E	E	4.79	11.84

LDA rater 1

Call: lda(RealRB ~ F1 + F2, data = CH) Prior probabilities of groups: 0 1 0.685567 0.314433

Group means: F1 F2 E 5.23 12.55 e 4.73 13.11 Coefficients of linear discriminants: LD1 F1-0.82 F2 0.77

LDA rater 2

Call: lda(RealMS ~ F1 + F2, data = CH) Prior probabilities of groups: 0 1 0.806563 0.193437

Group means: F1 F2 E 5.28 12.65 e 4.23 13.06 Coefficients of linear discriminants: LD1 F1 -1.0583420 F2 0.5133036

LDA pairs of ratings

ee		EE	
F1	F2	F1	F2
N 5.24	12.66	N 4.70	13.07
Y 4.17	13.09	Y 5.28	12.53

LDA pairs of ratings

Further....

- Comparison
 - Logistic regression on the raters data
 - Linear regression on the acoustic measurements
 - \rightarrow Totally different analysis!

Further....

- Raters' judgements are predictable by SSG accent level and pre-r context
- Acoustic measurements are predictable by other factors.....

Further....

	Estimate	Std. Error	t value	<i>p</i> -value
(Intercept)	64.51	3.588	17.98	< .001*
Age young	-7.63	1.342	-5.69	< .001*
Gender male	5.70	1.247	4.57	< .001*
LogLemmaFrequency	0.03	1.382	0.03	0.978
Pre-r context	5.03	5.497	0.92	0.361
LogLemmaFrequency :	-5.78	2.080	-2.78	0.006*
Pre-r context				

Residual standard error: 14.55 on 568 degrees of freedom (2 observations deleted due to missingness) Multiple R-squared: 0.2686, Adjusted R-squared: 0.2544 F-statistic: 18.96 on 11 and 568 DF, p-value: < 0.001

Take home message

- Don't trust the native speaker!
- Don't rely only on LDA!

References

- Boersma, P., & Weenink, D. (2010). *Praat: Doing phonetics by computer.* [computer program]
- Brinckmann, C., Kleiner, S., Knobl, R., & Berend, N. (2008). German today: An areally extensive corpus of spoken standard German. Marrakech, Marocco.
- Bybee, J. (1999). Usage-based phonology. *Functionalism and Formalism in Linguistics*, 1, 211-242.
- Hall, T. A. (1993). The phonology of German /R/. *Phonology*, *10*(1), pp. 83-105.
- Hove, I. (2002). *Die Aussprache der Standardsprache in der deutschen Schweiz*. Tübingen: Niemeyer.
- Labov, W (2001). *Principles of linguistic change: Social factors*. Oxford etc.: Blackwell.

Phillips, B. S. (2006). *Word frequency and lexical diffusion*. Hampshire/New York: Palgrave Macmillan.

Discussion?

Thank you!

Acoustical analysis

- Vowels are normalized
 - -[i] = 100-[a] = 0
- Euclidean distance Interpol = $\delta(\langle \ddot{a} \rangle - a) * 100$ δ (i-a) prototy
 - prototypical $[\varepsilon] = 56$ prototypical [e] = 72