Association Measures: Minimum Sensitivity

by Ihor Tytyk

Groningen 2011

Collostruction

matter woman Treat \longrightarrow patient illness grey \longrightarrow market man day

Collostruction:

Collocation:

regret sentential (I regret leaving school so young.) sentential (I regret that I will be unable to attend.) infinitive (I regret to inform you that.)

Collostruction Strength

- Collostructional analysis Stefan Th. Gries (University of California, Santa Barbara) and Anatol Stefanowitsch (University of Bremen)
- Collostruction strength is the degree of attraction that a word C_j exhibits to a construction C_k

It is some sort of glue between units, a verb and a complement.

- based on frequency
- can be measured

association strength – degree of collocativity – degree of attraction – collocativity – degree of attraction

Methods comparison

Adjusted R2

 R^2 – coefficient of determination

Contingency Table

 $O_{11}, O_{12}, O_{21}, O_{22}$ – frequencies; C_1, C_2, R_1, R_2 – totals; N – sample size

In order to calculate MS two probabilities are needed: **P (verb | construction)** and **P (construction | verb**)

$$S_{w1} = \frac{O_{11}}{C_1} = P(w1|w2) \quad S_{w2} = \frac{O_{11}}{R_1} = P(w2|w1)$$

Minimum sensitivity

$$S_{w1} = \frac{O_{11}}{C_1} = P(w1|w2) \quad S_{w2} = \frac{O_{11}}{R_1} = P(w2|w1)$$

$$MS = min\left\{\frac{O_{11}}{R_1}; \frac{O_{11}}{C_1}\right\}$$

$$AM = MS$$

Experinmental data

Verb synonyms: *to propose, to suggest* Collostruction comparison

Complements:

Suggest

- + infinitive (They suggest to go see a doctor.)
- + to NP (He suggested me to go to Europe.)
- + gerund (Tim suggests finding your life purpose.)
- + that-clause (It was suggested to me to do this upon arrival in Norway.)
- + NP (I suggest a solution for designing service agents.)

Corpora / Tools

- Ukwac (UK Web archive)
- A ukwac file with 17mil. words
- CWB (Open Corpus Workbench) is a collection of open-source tools for managing and querying large text corpora
- CQP was used for querying the corpus (collostructions extraction)
- With the help of UCS association measures were calculated

Calculation

	<i>that</i> -clause	X - construction	
Suggest	7541	14930	22471
Verb	248438		
	255979		

$$MS = min\left\{\frac{7541}{255979}; \frac{7541}{22471}\right\} = min\{0.0294594; 0.335588\} = 0.02945$$

MI					
suggest	1,69	1,78	0,68	3,13	1,67
propose	1,59	1,57	2,68	2,36	2,11

MS				that-	
	to NP	gerund	infinitive	clause	NP
suggest	0,00110	0,00135	0,00010	0,02945	0,00105
propose	0,00054	0,00052	0,00205	0,00322	0,00180

Complement taking probabilities

Minimum sensitivity

Mutual information

Method advantages

- free from underlying distributional assumptions
- computationally is less demanding
- less dependant on the sample size
- empirically is most adequate (acc. to D. Wiechmann)

Issues to consider

- More collostructions to analyze
- Some 'gold standard' is needed for more objective evaluation
- Construction-tag annotated corpora would be very useful

References

- Daniel Wiechmann (2008) On the computation of collostructional strength: Testing measures of association as expressions of lexical bias.
- Daniel Wiechmann (2008) *Some thoughts how to measure association strength.*

