

10-6-2011

Methodology and Statistics for Linguistic Research (LTR002M10, 2010/2011)

Cochran's Q test

Jet Vonk

10-6-2011

Content

- > Types of data
- > Cochran's Q test
 - Who?
 - What?
 - When?
 - How?
 - Application?
- > Cochran's Q test: Example
- > Limitations of the Cochran's Q test
- > Discussion
- > References

10-6-2011

Types of data

10-6-2011

Types of data

 Nominal data: no specific order, no numerical meaning, differentiated by a naming system

Examples:

- Men/women
- Set of countries

10-6-2011

Types of data

Types of data

Ordinal data: items have a specific order on the scale

Examples:

- Positions within a company
- Winner, second and third in a race

10-6-2011

10-6-2011

Types of data

10-6-2011

10-6-2011

10-6-2011

Types of data

Non-parametric

10-6-2011

Types of data

Types of data ▶dependent → 2 samples independent nominal dependent k samples →independent

Cochran's Q test

Cochran's Q test: who?

William Gemmell Cochran (1909 – 1980)

Cochran, W.G. (1950). The Comparison of Percentages in Matched Samples. *Biometrika, 37*, 256-66.

10-6-2011

10-6-2011

Cochran's Q test: what?

McNemar (1947) considered the problem of testing the significance of the difference between two correlated sample proportions

 Cochran suggested a generalization of the problem in which there are k(>2) matched samples

Cochran's Q test: what?

- > To statistically analyze success rate data
- Tests the hypothesis that several related dichotomous variables have the same mean
- The variables are measured on the same individual or on matched individuals

10-6-2011

Cochran's Q test: when?

- > Nominal data
- > More than 2 samples
- > Dependent
- > Binary response: <u>succes</u> (1) versus <u>failure</u> (0)

10-6-2011

Cochran's Q test: how?

Each of *k* treatments is independently applied to *b* blocks (or subjects) and each outcome is measured as
 a success (1) or as a failure (0)

	Treatment 1	Treatment 2		Treatment k
Block 1	<i>X</i> ₁₁	X ₁₂		X _{1k}
Block 2	X ₂₁	X ₂₂	• • •	X _{2k}
Block 3	X ₃₁	X ₃₂	• • •	X _{3k}
:			•.	
Block b	X _{b1}	X _{b2}		X _{bk}

10-6-2011

Cochran's Q test: how?

- > Hypotheses:
 - Ho: treatments are similarly effective
 - H1: treatments differ in effectiveness

10-6-2011

Cochran's Q test: how?

Test statistic:
$$T = k (k-1) \sum_{j=1}^{k} \left(X_{\bullet j} - \frac{N}{k} \right)^2 / \sum_{i=1}^{b} X_{i \bullet} (k - X_{i \bullet})$$

- *k* is the number of treatments
- X_{i} is the column total for the *j*th treatment
- *b* is the number of blocks
- X_{i} is the row total for the *i*th block
- *N* is the grand total
- > For significance level α , the critical region is $T > X_{1-\alpha,k-1}^2$ where $X_{1-\alpha,k-1}^2$ is the $(1 - \alpha)$ -quantile of the chi-square distribution with k - 1 degrees of freedom

10-6-2011

Cochran's Q test: how?

> OR...

	Test Variables:	
 VAR00001 VAR00003 VAR00004 VAR00005 VAR00006 		E <u>x</u> act Statistics
Test Type <u>Friedman Kendall</u> OK	s W <u>Cochran's Q</u> Paste <u>R</u> eset Cancel	Help

10-6-2011

Cochran's Q test: application?

- > Cochran's Q is often used for meta-analyses, e.g:
 - Is there a difference in treatments (to test)...?
 - Is there a difference in tasks (to test)...?
 - Is there a difference in materials (to test)...?
- > But also: are ... used in the same rate or is there a difference?
 - Methods
 - Materials
 - Devices

10-6-2011

- > Background:
 - A teacher has been observed on 20 different moments in his lessons (when he was about to explain something)
 - Observed on 3 different teaching strategies:
 - Point out the subject
 - Correspond with questions of students
 - Use of a stimulating beginning
 - Question: does the teacher use these strategies in the same rate or is there a difference?

10-6-2011

	aangevenonderwer p	aansluitenbijvrage nlln	prikkelendbegin
1	1	0	0
2	1	0	0
3	1	1	0
4	1	0	1
5	1	1	0
6	0	1	0
7	1	0	0
8	1	1	0
9	1	1	0
10	1	1	0
11	1	0	0
12	0	1	0
13	1	0	1
14	1	0	1
15	1	1	0
16	1	0	1
17	1	0	0
18	1	1	0
19	1	1	0
20	1	1	1

10-6-2011

10-6-2011

Cochran's Q test: example

Frequencies				
	Value			
	0	1		
aangeven onderwerp	2	18		
aansluiten bij vragen <u>lln</u>	9	11		
prikkelend begin	15	5		

Test Statistics					
N	20				
Cochran's Q	13,368ª				
df	2				
Asymp. Sig.	,001				

a. 1 is treated as a

success.

> There is a significant difference in the use of teaching strategies used by this teacher (X₂(2) = 13.37, p = .001)

10-6-2011

- When you find any significant effect, you need to do a post-hoc test (as you do for ANOVA)
- For Cochran's Q test: run multiple McNemar's tests and adjust the p values with Bonferroni correction (a method used to address the problem of multiple comparisons, overcorrects for Type I error)

10-6-2011

Cochran's Q test: example

aangeven onderwerp & aansluiten bij vragen IIn

aangeven onderwerp	aansluiten bij vrag	
	0	1
0	0	2
1	9	9

aangeven onderwerp & prikkelend begin

aangeven onderwerp	prikkelend begin	
	0	1
0	2	0
1	13	5

aansluiten bij vragen IIn & prikkelend begin

aansluiten bij vragen IIn	prikkelend begin	
	0	1
0	5	4
1	10	1

	aangeven onderwerp & aansluiten bij vragen IIn	aangeven onderwerp & prikkelend begin	aansluiten bij vragen lin & prikkelend begin		
N	20	20	20		
Exact Sig. (2-tailed)	,065ª	,000ª	,180ª		

Tost Statistics^b

a. Binomial distribution used.

b. McNemar Test

10-6-2011

Cochran's Q test: example

- > Bonferroni correction:
 - $\alpha = 0.05$
 - 3 comparisons

0.05/	′3=	0.01	6666	6666	666666	
0.00/		0 , 0			000000	

 Only the difference between the use of 'point out the subject' and 'stimulating beginning' is significant

	aangeven onderwerp & aansluiten bij vragen IIn	aangeven onderwerp & prikkelend begin	aansluiten bij vragen IIn & prikkelend begin
Ν	20	20	20
Exact Sig. (2-tailed)	,065ª	,000ª	,180ª

Test Statistics^b

a. Binomial distribution used.

b. McNemar Test

Limitations of the Cochran's Q test

- Only determines the occurrence of a change, but does not evaluates the extent of change
 - Possible to do multiple McNemar's tests, but no interaction effect can be measured

Limitations of the Cochran's Q test

- Only determines the occurrence of a change, but does not evaluates the extent of change
 - Possible to do multiple McNemar's tests, but no interaction effect can be measured
- The test is known to be poor at detecting true heterogeneity among studies as significant
 - Meta-analyses often include small numbers of studies, and the power of the test in such circumstances is low
 - Because the test is poor at detecting true heterogeneity, a nonsignificant result cannot be taken as evidence of homogeneity

Limitations of the Cochran's Q test

- Only determines the occurrence of a change, but does not evaluates the extent of change
 - Possible to do multiple McNemar's tests, but no interaction effect can be measured
- The test is known to be poor at detecting true heterogeneity among studies as significant
 - Meta-analyses often include small numbers of studies, and the power of the test in such circumstances is low
 - Because the test is poor at detecting true heterogeneity, a nonsignificant result cannot be taken as evidence of homogeneity
- The test does not accommodate a control group, because it is a test for use with dependent observations

10-6-2011

Discussion

> To begin with:

Questions?

10-6-2011

Discussion

- > Discussion points?
- > ...for example:
 - Is this analysis usefull in Linguistic analyses?
 - Is it applicable in <u>your</u> research (e.g. pilot study)?

10-6-2011

References

- > Cochran, W.G. (1950). The Comparison of Percentages in Matched Samples. *Biometrika, 37*, 256-66.
- > Higgins, J.P.T., Thompson, S.G., Deeks, J.J., Altman, D.G. (2003). Measuring inconsistency in meta-analyses. *BMJ*, *327*, 557-560.
- > Pett, M.A. (1997). *Nonparametric Statistics for Health Care Research: Statistics for Small Samples and Unusual Distributions.* Thousand Oaks, CA: SAGE Publications.