Multiple Linear Regression and an Application on Language Attrition

Gulsen Yilmaz

Rijksuniversiteit Groningen, April 2009

Outline

- Introduction to multiple linear regression
 - -Method of least squares
 - -Methods of regression
 - -Outliers/residuals
 - -Assumptions
- How to run and interpret regression analysis
- The study

Introduction to multiple linear regression

- Investigates relationships between variables using several independent variables and predicts numerical variable
- Effect of each variable can be estimated separately
- Used in econometrics, policy making and also 'linguistics'
- Difference from correlation: predictive power
- example: income dependent on education, experience, school performance,...

Simple and multiple linear regression

Simple regression

- D : use of L2 Dutch (IV)
- A : attrition in L1 Turkish (DV)

A = a + bD + e

- a = constant (attrition with no Dutch use)
- b = 'coefficient' of D effect of an additional unit of Dutch use on attrition
- e = other factors that influence attrition (error, deviation)
- \rightarrow mean of the outcome depends on one variable

Multiple regression

P: positive attitude towards Dutch culture

A = a + bD + yP + e

- b: estimated effect of additional use of Dutch on attrition, holding positive attitude constant
- y: estimated effect of positive attitude on attrition, holding Dutch use constant
- \rightarrow mean of the outcome depends on two variables

Multiple linear regression model

Outcome_i = Model_i + error_i

•
$$y_i = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_n x_n + \varepsilon_i$$

- y_i : outcome
- b_1 : coefficient of the first predictor x
- b_2 : coefficient of the second predictor x and so on
- ε_i : deviations, independent and normally distributed

Method of least squares

- Deviation = $\sum (\text{observed-model})^2$
- Line of best fit: the line that best describes the data
- The best fit if we have more variables
- Multiple regression: selects a plane so that the sum of squared errors is at a minimum

Scatterplot of the relationship between reaction time in L1, Dutch L2 use and positive attitude towards L2 culture

(hypothetical values)

Where does R² come from

- SS_T, Total Sum of Squares: observed data – mean of outcome
- SS_R, Residual Sum of Squares: observed data – regression line
- SS_M, Model Sum of Squares: mean of outcome – regression line

Smaller the residual, the better the quality of the model

Methods of regression

stepwise methods for complex models:

- Enter: all predictors at once, builds the complex model all at once
- Forward: one predictor at a time, the best predictor, then the second best predictor
- Backward: builds the complex model, drops the least good predictor, then the second least good one

Which method to choose

- Not too many predictors
 - i.e. principal component analysis

correct children regret if they forget L1 importance of L1 for children saturday classes etc.

- Past research
- Supression: Supressor effects occur when a predictor has a significant effect only when another variable is held constant.
- Forward selection \rightarrow type 2 error due to supressor effects

Outliers and residuals (regression diagnostics)

- Outlier: very different from the rest of the data
- Influential: case with a large influence on our model
- See both outliers and influentials to assess your model
- But, no justification for data removal to have significant results

Some tips for regression diagnostics

Case summaries on the output:

- standardized: no more than 5% of cases > above 2 no more than 1% > above 2.5 any case > 3 could be an outlier
- Cook's distance: any value above 1, concern
- Ieverage: values 0-1, big values concern
- Mahalanobis distance: values above 25 (N=500, 5 predictors), and values above 15(N=100, 3 predictors), concern
- DFBeta: greater than 1, concern
- CVR (covariance ratio): if close to 1, ok

Assumptions of multiple regression

Variables:

Predictor:quantitative or categorical(with two categories) Outcome:quantitative, continious, unbounded

- Nonzero variance: Predictors should have some variation in value
- Predictors should be uncorrelated with external variables

Assumptions cont.

- No perfect collinearity: no perfect linear relationship between two or more of the predictors
- \rightarrow otherwise multicollinearity:
 - 1. weak exlanatory power
 - 2. difficult to assess the importance of individual factors
 - 3. unstable predictor equations
- →check: VIF (variance inflation factor) tolerance statistic (1/VIF)
 - -largest VIF>10,concern
 - -average VIF>1, regression maybe biased
 - -tolerance< .1, serious problem
 - -tolerance< .2, a potential problem

Assumptions cont.

- Homoscedasticity: Residuals at each level of the predictors should have the same variance.
 →check by visual inspection of the residual scatter plot
- Independent errors: Errors should be uncorrelated →check Durbin-Watson test
 - -If 2: residuals are uncorrelated, fine
 - -concern: values <1 and values >3

Assumptions cont.

- Normally distibuted errors: Residuals should be normally distributed with a mean of zero
- Independence: Each value of outcome variable should come from a separate entity
- Linearity: The mean values of the outcome variable for each increment of the predictors lie along a straight line

How to do multiple regression?

How to interpret the output?

This is how the data looks like on SPSS:

📲 *results	alldefiniti	ivewith	noutou	itliersc	gusesett	o1.sav [DataSet1]] - SPSS Dat	a Editor					Ú.					_ 8 ×
<u>F</u> ile <u>E</u> dit	⊻iew	<u>D</u> ata	<u>T</u> ransf	form	<u>A</u> nalyze	<u>G</u> raphs	Utilities	Add- <u>o</u> ns	<u>W</u> indow	<u>H</u> elp									
🗁 📙 🚑	<u>.</u>	•	1	I	? 🏘	+	🔡 🦺	📑 👒 Q	•										
1 : group		1	.0															/isible: 171 of	171 Variables
	group	name	subj no	L1	ATTCON	l Cutoff	HFAv	MFAv	LFAv	RT	age	ageemi	emilength	L1fam	prefcul	social	lgforchi	Igprofess	se:
1	1	На	1	1.00	1.00	0.00	818.92	891.82	1.01E	893.28	51	29	22	0.80	0.40	0.88	0.50	0.00	
2	1	Ab	2	1.00	1.00	1.00	1043.55	1205.60	1323.54	1164.96	54	19	35	0.86	0.45	0.88	0.63	0.00	200
3	1	Fet	3	1.00	1.00	1.00	955.35	1142.06	1138.95	1070.64	38	21	17	0.93	0.45	0.81	0.50	1.00	
4	1	На	4	1.00	1.00	0.00	840.28	844.67	1242.71	924.29	46	28	18	0.55	0.60	0.69	0.50	1.00	
5	1	Dri	5	1.00	1.00	1.00	691.12	709.60	948.33	777.25	37	26	11	0.88	0.50	0.88		0.25	
6	1	Ah	6	1.00	1.00	1.00	865.70	918.88	1059.59	944.42	39	25	14	0.25	0.60	0.56	0.67	0.00	
7	1	Th	7	1.00	1.00	1.00	1032.28	1177.71	1390.50	1193.14	42	27	15	0.41	0.40	0.81	0.42	0.00	
8	1	Ab	8	1.00	1.00	1.00	1023.08	1069.90	1342.20	1133.01	52	23	29	0.45	0.50	0.81	0.58	0.00	
9	1	Me	9	1.00	1.00	0.00	783.04	859.65	933.72	849.95	38	23	15	0.55	0.60	0.88	0.50	0.00	
10	1	Nai	10	1.00	1.00	1.00	997.32	1147.05	1084.00	1070.87	45	22	23	0.77	0.50	0.81	0.58	0.00	
11	1	La	11	1.00	1.00	0.00	1289.62	1363.90	1628.13	1400.94	65	22	43	0.64	0.40	0.69	0.58	0.00	
12	1	Mo	12	1.00	1.00	0.00	1174.20	1602.33	1450.60	1379.31	62	32	30	0.73	0.45	0.44	0.25	0.25	
13	1	Ab	13	1.00	1.00	1.00	1272.04	1168.63	1454.60	1284.93	37	24	13	0.77	0.45	0.81	0.75	0.00	
14	1	Sai	14	1.00	1.00	0.00	973.25	1111.63	1305.47	1127.41	35	24	11	0.73	0.45	0.56	0.50	0.00	
15	1	Ali	15	1.00	1.00	1.00	1059.18	1212.00	1233.00	1151.84	65	27	38	0.86	0.70	0.81	0.75	0.50	
16	1	Fat	16	1.00	1.00	1.00	1001.91	1030.42	1217.47	1074.43	49	28	21	1.00	0.50	0.88	0.75	0.00	
17	1	Be	17	1.00	1.00	0.00	946.82	1116.75	1130.79	1048.63	39	18	21	0.64	0.20	0.08	0.50	0.00	
18	1	Mo	18	1.00	1.00	1.00	840.29	813.40	973.72	870.35	33	19	14	0.61	0.55	0.31	0.50	1.00	
19	1	Но	19	1.00	1.00	1.00	929.05	951.79	817.11	900.80	50	27	23	0.57	0.30	0.25	0.42	0.00	
20	1	Mo	20	1.00	1.00	1.00	1006.32	1101.94	1106.79	1064.24	35	25	10	0.83	0.15	0.38		0.00	
21	1	Ali	21	1.00	1.00	1.00	875.95	896.00	916.00	893.12	60	32	28	1.00	0.75	0.81	0.75	0.00	
22	1	ma	22	1.00	1.00	1.00	883.80	882.41	1014.40	922.33	51	19	32	1.00	0.60	0.81	0.63	0.00	
23	1	Ka	23	1.00	1.00	1.00	1040.28	1112.94	1390.20	1154.04	42	24	18	0.57	0.40	0.44		0.00	
24	1	Ou	24	1.00	1.00	1.00	1226.06	1184.85	1196.33	1204.81	65	32	33	1.00	0.35	0.81	0.75	0.00	
<u>~</u> г		1 -	25	4.00	1.00	1 00	007.00	047.77	1051 51	040.00		- 14	4.4	0.77	0.77	0.04	0.75	0.00	

Steps to run a multiple linear regression:

X Linear Regression Dependent: Statistics... • 💑 L1 🔗 HFAV Plots... 🙈 ATTCON Block 1 of 1 🚠 Cutoff Save... 1 MEAV Previous Next Options... LFAv Independent(s): RT social aqe lgforchi aqeemi Igprofess 10 emilenqth L1fam Method: Forward prefcul 1Enter Selection Variable: • social Stepwise 4 Iqforchi Remove . P Iqprofess Backward Case Labels: 4 Forward sex 💑 national WLS Weight: 💑 edu \Rightarrow Ŧ -**-**----OK Cancel Paste Reset Help

What the statistics options mean:

22	Linear Regression: Stat	istics	×						
Г	Regression Coefficient	✓ Model fit							
	🗹 <u>E</u> stimates	💌 R <u>s</u> quared change							
	✓ Confidence intervals	✓ Descriptives							
	Co <u>v</u> ariance matrix	Part and partial correlations							
		Collinearity diagnostics							
ſ	Residuals								
	🗹 D <u>u</u> rbin-Watson								
	✓ <u>Casewise diagnostics</u>								
	Outliers outside:	2 standard deviations							
	◯ <u>A</u> ll cases								
	Continue	ancel Help							

Regression plot is a good way to check the assumptions of random errors and homoscedasticity

*ZRESID(standardized residuals, errors)

*ZPRED(standardized predicted values of DV based on the model

Linear Regression: Plots	>	
DEPENDNT *ZPRED *ZRESID *DRESID *ADJPRED *SRESID *SDRESID Standardized Residual Plo	Scatter 1 of 1 Previous Next Y: *ZRESID X: *ZPRED	
 ✓ <u>H</u>istogram ✓ Normal probability plot 		
Continue	Cancel Help	

Plot of *ZRESID against *ZPRED

- assumptions of linearity and homoscedasticity met?
- yes, because points are random, widely dispersed, no sign of trend

Scatterplot

Histogram of residuals

- assumption of normal distibution of errors met?
- yes, a bell shaped curve means normal distribution

Histogram

Plot of residuals

- assumption met?
- yes, straight line represents normal distribution

Normal P-P Plot of Regression Standardized Residual

Dependent Variable: HFAv

How to interpret multiple regression Anova

Model Summary ^b										
			Adjusted R	Std. Error of the						
Model	R	R Square	Square	Estimate	R Square Change	F Change	df1	df2	Sig. F Change	Durbin-Watson
1	.308 ^a	.095	.083	142.81332	.095	7,657	1	73	.007	1.693
a. Predic	tors: (Constar	nt), age				1			1	
b. Depen	ident Variable	: HFAv								
			ANOVA ^b							

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	156173.656	1	156173.656	7.657	.007ª
	Residual	1488881.987	73	20395.644		
	Total	1645055.643	74			

a. Predictors: (Constant), age

b. Dependent Variable: HFAv

Interpretation

- Look at F-ratio and significance and R²
- For this data F ratio is 7,657 and significant at p<. 01</p>
- Regression model predicts the outcome well
- R² = ,095
 age accounts for about 10% variation in the reaction time
- Durbin-Watson is close to 2, so fine

How to interpret multiple regression Coefficients

						Coeffi	cients ^ª						
		Unstandardize	d Coefficients	Standardized Coefficients		\mathbf{A}	95% Confidenc	e Interval for B		Correlations		Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	Zero-order	Partial	Part	Tolerance	VIF
1	(Constant)	800.573	79.913		10,018		641.307	959.839					
	age	4.738	1.712	.308	2.767	.007	1.326	8.151	.308	.308	.308	1.000	1.000

a. Dependent Variable: HFAv

Interpretation

- Look at t-ratio and significance
- t- statistics: If a variable significantly predicts the outcome, it should have a coefficient significantly different from zero
- For this data t- ratio is 10.018, significant at p<.001</p>
- Age is a good predictor

Introduction to the study

Aim: Investigate L1 attrition among Turks and Moroccans in the Netherlands

Attrition: "a linguistic system in disuse will be vying for memory space with the other linguistic system(s) occupying the same brain, […] not being kept 'fresh' and 'strong' through constant use will somehow weaken it, and […] it will therefore suffer in some way." (Schmid, 2006:74)

L1 proficiency in a migrant context

- Limited exposure to L1 and less opportunities to use it
- Attitudes towards L1/L2 and L1/L2 culture
- Factors that enhance L1 maintenance: a large community size, symbolic value of language, cultural and linguistic dissimilarity
- Yet, stability of the native language cannot be guaranteed

Activation Threshold Hypothesis(ATH): an account for attrition

ATH: Language disuse \rightarrow higher thresholds \rightarrow attrition

- First affects lexical items
 - -Word finding/retrieval problems
 - -Decreased lexical diversity
 - -Disfluency in speech
- Word retrieval: 2-5 words/second
 Conceptualization → Formulation → Articulation
- Bilingual disadvantage

Predictions of the study

- Lexical access problems: Slower Reaction Times (RTs)
- Despite
 - dominant L1 use
 - strong attachment to L1 and L1 culture

The Study

- Informants: first generation Moroccans (n = 35) and Turks (n = 54)
- Degree of bilingualism: various
- Age at arrival: 14 42 (mean: 22.00)
- Age: 28 65 (mean: 44.73)
- Length of residence: 10 43 years (mean: 22.37)
- Control groups: collected, matched (age: 25-62, mean: 43.45)

Research Design

I. Picture Naming Task

- 78 pictures (26 high, 26 mid, 26 low fam.)
- no cognates, no ambiguous pictures
- timed: 3000 ms
- accuracy and reaction time measured
- E-prime software

2. Sociolinguistic questionnaire

 L1 and L2 use, social networks, linguistic/cultural affiliation, attitudes towards language learning

3. Free speech

Variables in multiple regression

Predictors

(Independent Variables)

- L1 use in the family
- L1 social use
- Preferred culture
- Importance of L1 for children
- L1 professional use

Outcome

(Dependent Variable)

RT on the PNT task

Outliers

- If half or more than half of the participants couldn't name an object, item excluded
- If the response was below 250 ms, response excluded
- Cutoff point: those subjects with more than 25% invalid responses get a 0, those with less get a 1

Recode between 0 and 1

Example: Do you consider yourself a bilingual? 1= NL better, 2=bilingual, 3=TR better

original 1=NL better, recoded as 0 original 2=bilingual, recoded as 0.5 original 3= TR better, recoded as 1

Check reliability of subscales

Example:

L1 use in family : nationality of partner, language with partner, with children, with grandchildren

Reliability goes up when grandchildren are omitted

Compute mean for predictors and reaction time

 Example: Preferred culture is L1 or L2 culture COMPUTE prefcul = MEAN(mosque,culture,L1friend,L1club,L1media)

RT measured in miliseconds
 Total RT (78 items)
 High Fam RT (26 items)
 Medium Fam RT (26 items)
 Low Fam RT (26 items)

Picture Naming Task: Reaction Time Results

Results

- Slower RTs in the experimental group compared to controls
- LF significant, HF and MF approaching significance
- So, sign of lexical retrieval difficulties

Predicting performance on the PNT on the basis of L1 use/attitudes

Multiple linear regression

- Attrition not related to variables in question except age
- T-tests
- Attrition in only MA group
- TR: maintainers
- MA controls faster than TR controls

Discussion: Why Moroccans differ from Turks

Group level differences:

- MA: early multilinguals (Berber and/or French)
- Turks: no other languages before coming to NL
- Moroccans more open to Dutch language and culture

Individual level factors/predictors:

- Total languages, attitudes not related to attrition
- L2 proficiency may be a potential factor

Discussion: Multiple linear regression

- Why the other predictors turned out to be weak?
- Possible correlation between the predictors?
 - i.e. if they prefer L1 culture they would automatically use L1 more
- Enough number of participants?
- Small range of variation in reaction time?
 - i.e. only 80 ms yields to significant difference
- What other potential predictors can account for the outcome? i.e. Dutch proficiency, language specific factors in TR and MA

Future of the Study

- Data collection in L2 from the same speakers
- Analysis of spoken data in L1 and L2
- Effects of multicompetence on lexical access in L1 and L2
- Signs of lexical attrition in free speech
- Effects of attrition in other domains

THANK YOU!