Test of independence for twoway contingency tables

Application of log likelihood ratio to child acquisition data

Contents

- Odds ratio and log odds ratio
- Log likelihood and chi-square
- Application:

acquisition of relative clause barrierhood in whquestions and quantifiers

Open questions marked red!

Odds ratio

X / Y	Yes	No
Male	P1	(1-P1)
Female	P2	(1-P2)

Odds = P1/(1-P1)

Odds ratio (θ)= odds1/odds2 = $\frac{P1/(1-P1)}{P1}$

P2/(1-P2)

Inference from odds ratio

Baseline for comparison = 1 = independent

- $0 < \theta < 1$: success less likely in row 1 than in row 2
- $1 < \theta < \partial$: success more likely in row 1 than in row 2

In general:

further away from 1 in any direction = stronger association /less independent

Log odds ratio

- Problem: small moderate sample sizes odds ratio = skewed
- Solution: apply natural logarithm (log)

Odds ratio	Log odds ratio
1	0
2	0.7
0.5	-0.7

Significance test

• Log likelihood ratio (G²)

$$G^2 = 2 \sum_{nij} log \left(n_{ij} / \mu_{ij} \right)$$

Question: what is the relation between log odds ratio and (this formula of) log likelihood ratio?

Independence = 0: larger = less independent Question: can the outcome also be -x? P-value: estimates significance

Comparison X² and log likelihood

$$\begin{split} X^2 &= \sum (n_{ij} - \mu_{ij})^2 / \mu_{ij} \\ G^2 &= 2 \sum_{nij} \log (n_{ij} / \mu_{ij}) \end{split}$$

- X2 overestimates effect in large sample size
 - misses effect in small sample size
 - observations must be independent
- Log odds ratio
- independent of sample size
- invariant of marginal distribution
- invariant of row/column order

Introduction study (1)

Relative clause barrierhood:

Hoe zei Kees [dat de jongen gevallen was]?
How did Kees say the boy fell?
→ LD (how – fell) and SD (how – say)

Hoe hielp de sterke Indiaan de Indiaan [die naar zijn wigwam ging]? How did the strong Indian help the Indian who went to his wigwam? \rightarrow only SD (how – help)

Introduction study (2)

Relative clause barrierhood:

Alle cowboys zitten op een paard. Every cowboy is sitting on a horse. →distributive or collective

Er is een paard [waar alle cowboys op zitten]. There is a horse that every cowboy is sitting on. →collective only

Results

	Quantifiers		
WH	yes	no	Total
yes	9	7	16
no	0	4	4
Total	9	11	20

Application (1)

• Analyze – descriptive statitstics – crosstabs:

			quant		
			ja	nee	Total
wh	ja	Count	9	7	16
		Expected Count	7,2	8,8	16,0
	nee	Count	0	4	4
		Expected Count	1,8	2,2	4,0
Total		Count	9	11	20
		Expected Count	9,0	11,0	20,0

wh * quant Crosstabulation

Application (2)

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	4,091 ^b	1	,043		
Continuity Correction ^a	2,134	1	,144		
Likelihood Ratio	5,595	1	,018		
Fisher's Exact Test				,094	,068
N of Valid Cases	20				

- a. Computed only for a 2x2 table
- b. 2 cells (50,0%) have expected count less than 5. The minimum expected count is 1,80.

Question:

- 1. what exactly is likelihood ratio?
- 2. If not Log likelihood ratio then where to find log likelihood ratio in SPSS?

Application (3)

Observations adjusted:

			quant		
			ja	nee	Total
wh	ja	Count	9	7	16
		Expected Count	7,6	8,4	16,0
	nee	Count	10	14	24
		Expected Count	11,4	12,6	24,0
Total		Count	19	21	40
		Expected Count	19,0	21,0	40,0

wh * quant Crosstabulation

Application (4)

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	,819 ^b	1	,366	,520	,281
Continuity Correction ^a	,338	1	,561		
Likelihood Ratio	,820	1	,365	,520	,281
Fisher's Exact Test				,520	,281
N of Valid Cases	40				

a. Computed only for a 2x2 table

b. 0 cells (,0%) have expected count less than 5. The minimum expected count is 7,60.

Conclusions

• With large enough samples chi-square and log likelihood give same results

 Log likelihood is independent of sample size, marginal distribution and row/column order and therefore often more reliable