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1. Introduction
The pleasure writers experience in writing considerably influences their motivation and consequently 
their writing performance (Hayes, 1996). Low-motivated writers perform worse, since they spend less 
time on a writing task, are less engaged in a writing task, study less thoroughly instructional material, 
and are less willing to attend writing training sessions.

Although someone’s pleasure in writing needs to be taken into account in order to draw valid 
conclusions about the factors influencing someone’s writing performance, it is rather difficult to 
measure such attitude (O’Keefe, 2002). We cannot look into writers’ minds. We just can ask them to 
externalize the attitude we are interested in, but then we probably do not get a truthful answer 
(Thurstone, 1977). Assuming that a writing researcher highly values writing, writers probably present 
their attitude more positively than it is. Besides, if we just ask writers whether they like writing or not, 
we cannot get insight in the aspects that are related to that attitude (O’Keefe, 2002). For example, the 
amount of writing experience they have. Since writing is less laborious when you have a lot of 
experience, highly experienced writers generally like it more (Hayes, 1996).

To avoid socially preferred answers and be able to receive information about an attitude and aspects 
related to an attitude, researchers prefer the use of questionnaires asking for a person’s degree of 
agreement with evaluative statements about the object of attitude and related aspects (O’Keefe, 2002). 
However, the use of such method does not necessarily mean that reliable and valid indications of 
someone’s attitude can be obtained. In the end, some items can measure a completely different 
construct than the attitude of interest (Ratray & Jones, 2007).

In this paper, two statistical methods are discussed extensively with which the validity and 
reliability of a questionnaire measuring an attitude and attitude related aspects can be tested: 
exploratory factor analysis and Cronbach’s alpha (Bornstedt, 1977; Ratray & Jones, 2007). To show 
how these tests should be conducted and the results interpreted, a questionnaire used to determine 
Dutch seventh graders’ pleasure in writing will be evaluated.

2. Data
In the school years 2010-2011 and 2011-2012, the Centre for Language, Education and 
Communication of the University of Groningen has conducted an experiment to test whether writing 
instruction in secondary school content courses improves the writing skills, writing attitude and 
content knowledge of seventh graders. 114 Seventh graders received instruction in writing an 
expository text in the Dutch class. Afterwards, the 57 seventh graders in the experimental group wrote 
that genre three times in the history and three times in the science class. The 57 seventh graders in the 
control group followed the normal procedure in the history and science classes: making workbook 
exercises about the topics of interest. Before and after the intervention, all seventh graders had to write 
an expository text about the same subject to test their skill change, had to do a content knowledge 
exam to test their knowledge change, and had to fill in a questionnaire to test their attitude change. The 
effects of the intervention could be determined by comparing the skill, knowledge and attitude changes 
of both groups.
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The attitude measure focused on two attitudes: a writer’s self-efficacy in writing and a writer’s 
pleasure in writing. Participants had to indicate their level of agreement with 40 evaluative statements 
about writing on a 5-point Likert scale (ranging from strongly agree to strongly disagree). The level of 
agreement with the first 20 statements revealed participants’ self-efficacy, the level of agreement with 
the other 20 statements participants’ level of pleasure in writing. 7 of each 20 items were formulated 
negatively instead of positively to force students to evaluate every statement in its own right. When all 
items are formulated in the same direction, people seem to evaluate them equally (Ratray & Jones, 
2007). In this paper, just the reliability and validity check of the second part of the questionnaire - 
students’ pleasure in writing - is discussed (for the questionnaire see Table 1).

3. Factor analysis
With factor analysis, the construct validity of a questionnaire can be tested (Bornstedt, 1977; Ratray & 
Jones, 2007). If a questionnaire is construct valid, all items together represent the underlying construct 
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p01 I love writing.

p02 Writing is my favorite school subject.

p03 When I write, I feel well.

p04 I hate writing.

p05 I write as soon as I get the chance.

p06 I make sure that I have to write as less as possible.

p07 I write more than my class mates.

p08 When I write, I prefer to do something different.

p09 Writing gives me pleasure.

p10 I just write, when I can get a good grade for it.

p11 Writing is boring.

p12 I like different kinds of writing.

p13 When I have the opportunity to determine on my own what I do in the Dutch class, I 
usual do a writing task.

p14 I write even if the teacher does not assign a writing task.

p15 I would like to spend more time on writing.

p16 Writing is a waste of time.

p17 I always look forward to writing lessons.

p18 I write because I have to at school.

p19 I like it to write down my thoughts.

p20 I would like to write more at school.

Table 1.	

  Questionnaire to seventh’ graders pleasure in writing



well. Hence, one’s total score on the twenty items of the questionnaire of interest should represent 
one’s pleasure in writing correctly. Exploratory factor analysis detects the constructs - i.e. factors - that 
underlie a dataset based on the correlations between variables (in this case, questionnaire items) (Field, 
2009; Tabachnik & Fidell, 2001; Rietveld & Van Hout, 1993). The factors that explain the highest 
proportion of variance the variables share are expected to represent the underlying constructs. In 
contrast to the commonly used principal component analysis, factor analysis does not have the 
presumption that all variance within a dataset is shared (Costello & Osborne, 2005; Field, 2009; 
Tabachnik & Fidell, 2001; Rietveld & Van Hout, 1993). Since that generally is not the case either, 
factor analysis is assumed to be a more reliable questionnaire evaluation method than principal 
component analysis (Costello & Osborne, 2005).

3.1. Prerequisites
In order to conduct a reliable factor analysis the sample size needs to be big enough (Costello & 
Osborne, 2005; Field, 2009; Tabachnik & Fidell, 2001). The smaller the sample, the bigger the chance 
that the correlation coefficients between items differ from the correlation coefficients between items in 
other samples (Field, 2009). A common rule of thumb is that a researcher at least needs 10-15 
participants per item. Since the sample size in this study is 114 instead of the required 200-300, we 
could conclude that a factor analysis should not be done with this data set. Yet, it largely depends on 
the proportion of variance in a dataset a factor explains how large a sample needs to be. If a factor 
explains lots of variance in a dataset, variables correlate highly with that factor, i.e. load highly on that 
factor. A factor with four or more loadings greater than 0.6 “is reliable regardless of sample 
size.”  (Field, 2009, p. 647). Fortunately, we do not have to do a factor analysis in order to determine 
whether our sample size is adequate, the Kaiser-Meyer-Okin measure of sampling adequacy (KMO) 
can signal in advance whether the sample size is large enough to reliably extract factors (Field, 2009). 
The KMO “represents the ratio of the squared correlation between variables to the squared partial 
correlation between variables.”  (Field, 2009, p. 647). When the KMO is near 0, it is difficult to extract 
a factor, since the amount of variance just two variables share (partial correlation) is relatively large in 
comparison with the amount of variance two variables share with other variables (correlation minus 
partial correlation). When the KMO is near 1, a factor or factors can probably be extracted, since the 
opposite pattern is visible. Therefore, 
KMO “values between 0.5 and 0.7 are 
mediocre, values between 0.7 and 0.8 are 
good, values between 0.8 and 0.9 are 
great and values above 0.9 are 
superb.”  (Field, 2009. p. 647). The KMO 
value of this dataset falls within the last 
category (KMO=0.922).

Another prerequisite for factor 
analysis is that the variables are measured 
at an interval level (Field, 2009). A Likert 
scale is assumed to be an interval scale 
(Ratray & Jones, 2007), although the item 
scores are discrete values. That hinders 
the check of the next condition: the data 
should be approximately normally 
distributed to be able to generalize the 
results beyond the sample (Field, 2009) 
and to conduct a maximum likelihood 
factor analysis to determine validly how 
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Figure 1. Q-Q plot of the variable p06: ‘I make sure that I 
have to write as less as possible.’



many factors underlie the dataset (see §3.3.1) (Costello & Osborne, 2005). Normality tests seem not to 
be able to test normality of distribution in a set of discrete data. The normality tests signal non-
normality of distribution in this dataset by rendering p-values far lower than 0.05, although we can see 
a  pattern of normal distribution in the Q-Q plots with a bit of fantasy. For example, the sixth item in 
the questionnaire “I make sure that I have to write as less as possible.”  is far from normally distributed 
according to the Shapiro-Wilk test (W = 0.9136, p = 1.777e-06), but does seem normally distributed in 
Figure 1. The exact values are centered in five groups, of which the centers are on the Q-Q line. Most 
points are centered at the middle of the line, there are a bit less points with values of 2 or 4, and very 
few points with values of 1 or 5. Based on the Q-Q plots, I concluded that the dataset is approximately 
normally distributed, and therefore usable in a maximum likelihood factor analysis and generalizable 
to the population of Dutch seventh graders. If we want to generalize for a larger population, we need 
to conduct the same survey among other (sub)groups in the population as well (Field, 2009).

The final step before a factor analysis can be conducted is generating the correlation matrix and 
checking whether the variables do not correlate too highly or too lowly with other variables (Field, 
2009). If variables correlate too highly (r > 0.8 or r < -.8), “it becomes impossible to determine the 
unique contribution to a factor of the variables that are highly correlated.”  (Field, 2009, p. 648). If a 
variable correlates lowly with many other variables (-0.3 < r < 0.3), the variable probably does not 
measure the same underlying construct as the other variables. Both the highly and lowly correlating 
items should be eliminated. As can be seen in Table 2, none of the questionnaire items correlates too 
highly with other items, but some correlate too lowly with several other items. That does not 
necessarily mean that the items should be eliminated: the variables with which they do not correlate 
enough could constitute another factor. There is one objective test to determine whether the items do 
not correlate too lowly: Barlett’s test. However, that test tests a very extreme case of non-correlation: 
all items of the questionnaire do not correlate with any other item. If the Barlett’s test gives a 
significant result, we can assume that the items correlate anyhow, like in this data set: χ2 (190) = 
1263.862, p = 7.117332e‐158. Since the Barlett’s test gives a significant result and the items correlate 
at most with a third of the items too lowly, items were not excluded before the factor analysis was 
conducted.
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	 p01   p02   p03  p04    p05   p06   p07	  p08   p09   p10   p11   p12   p13   p14   p15   p16   p17   p18   p19   p20
p01 	 1.00  0.67  0.61  -0.56 0.41  -0.39 0.37  -0.46 0.62  -0.37 -0.52 0.43  0.49  0.57  0.47  -0.41 0.60  -0.47 0.55  0.52 
p02	 0.66  1.00  0.62  -0.42 0.35  -0.30 0.25  -0.34 0.58  -0.20 -0.34 0.42  0.47  0.53  0.50  -0.29 0.61  -0.30 0.50  0.59
p03 	 0.61  0.62  1.00  -0.52 0.47  -0.34 0.43  -0.39 0.59  -0.33 -0.40 0.51  0.49  0.60  0.60  -0.39 0.69  -0.40 0.51  0.57
p04 	 -0.56 -0.42 -0.52 1.00  -0.22 0.51  -0.32 0.47  -0.47 0.46  0.61  -0.44 -0.31 -0.31 -0.35 0.67  -0.43 0.54  -0.36 -0.44
p05 	 0.41  0.35  0.47  -0.22 1.00  -0.22 0.48  -0.34 0.54  -0.26 -0.27 0.24  0.33  0.46  0.48  -0.21 0.50  -0.23 0.25  0.43
p06 	 -0.39 -0.30 -0.34 0.51  -0.22 1.00  -0.34 0.56  -0.32 0.44  0.46  -0.31 -0.28 -0.30 -0.38 0.54  -0.40 0.45  -0.40 -0.40
p07 	 0.37  0.25  0.43  -0.32 0.48  -0.34 1.00  -0.38 0.35  -0.25 -0.24 0.27  0.22  0.34  0.47  -0.31 0.52  -0.20 0.29  0.41
p08 	 -0.46 -0.34 -0.40 0.47  -0.34 0.56  -0.38 1.00  -0.42 0.46  0.43  -0.26 -0.22 -0.41 -0.38 0.46  -0.40 0.47  -0.39 -0.39
p09 	 0.62  0.58  0.60  -0.47 0.55  -0.32 0.35  -0.42 1.00  -0.45 -0.41 0.55  0.46  0.61  0.54  -0.34 0.64  -0.45 0.54  0.62
p10	 -0.37 -0.21 -0.34 0.46  -0.26 0.44  -0.25 0.46  -0.45 1.00  0.40  -0.26 -0.22 -0.40 -0.33 0.42  -0.38 0.63  -0.29 -0.43
p11 	 -0.53 -0.39 -0.41 0.61  -0.27 0.46  -0.24 0.43  -0.41 0.40  1.00  -0.38 -0.25 -0.35 -0.24 0.47  -0.33 0.45  -0.25 -0.39
p12 	 0.42  0.42  0.51  -0.44 0.24  -0.31 0.27  -0.26 0.55  -0.27 -0.38 1.00  0.38  0.49  0.40  -0.38 0.44  -0.42 0.45  0.41
p13 	 0.49  0.48  0.47  -0.31 0.33  -0.28 0.22  -0.22 0.46  -0.22 -0.25 0.38  1.00  0.50  0.45  -0.23 0.54  -0.18 0.51  0.59
p14 	 0.57  0.53  0.60  -0.31 0.46  -0.30 0.34  -0.41 0.61  -0.39 -0.35 0.49  0.50  1.00  0.51  -0.28 0.61  -0.38 0.45  0.56
p15 	 0.47  0.50  0.60  -0.35 0.48  -0.37 0.47  -0.38 0.54  -0.33 -0.24 0.40  0.45  0.51  1.00  -0.44 0.70  -0.28 0.49  0.59
p16 	 -0.41 -0.29 -0.39 0.67  -0.21 0.54  -0.31 0.46  -0.34 0.42  0.47  -0.38 -0.23 -0.28 -0.44 1.00  -0.39 0.53  -0.38 -0.40
p17 	 0.60  0.61  0.69  -0.43 0.50  -0.40 0.52  -0.39 0.64  -0.38 -0.33 0.44  0.54  0.61  0.70  -0.39 1.00  -0.35 0.59  0.75
p18 	 -0.47 -0.30 -0.40 0.53  -0.23 0.45  -0.20 0.47  -0.45 0.63  0.45  -0.42 -0.18 -0.38 -0.28 0.53  -0.35 1.00  -0.35 -0.40
p19 	 0.55  0.51  0.51  -0.36 0.25  -0.40 0.29  -0.39 0.54  -0.30 -0.25 0.45  0.51  0.45  0.49  -0.38 0.59  -0.35 1.00  0.56
p20 	 0.52  0.59  0.57  -0.44 0.43  -0.40 0.41  -0.39 0.63  -0.44 -0.40 0.41  0.59  0.56  0.59  -0.40 0.75  -0.40 0.56  1.00

Table 2. Correlation matrix of the dataset. The underlined correlations are too low (-0.3 < r < 0.3).



3.2. The factor analysis
3.2.1. Factor extraction

At heart of factor extraction lies complex algebra with the correlation matrix, it reaches beyond the 
scope of this paper to explain that comprehensively and in full detail. I refer the interested reader to 
chapter 6 and 7 of Statistical Techniques for the Study of Language and Language Behaviour (Rietveld 
& Van Hout, 1993).

The algebraic matrix calculations finally end up with eigenvectors (Field, 2009; Tabachnik & 
Fidell, 2001; Rietveld & Van Hout, 1993). As can be seen in Figure 2, these eigenvectors are linear 
representations of the variance variables share. The longer an eigenvector is, the more variance it 
explains, the more important it is (Field, 2009). We can calculate an eigenvector’s value by counting 
up the loadings of each variable on the eigenvector. As demonstrated in Figure 3, just a small 
proportion of the 20 eigenvectors of the correlation matrix in this study has a considerable eigenvalue: 
many reach 0 or have even lower values. We just want to retain the eigenvectors - or factors - that 
explain a considerable amount of the variance in the dataset, by which value do we draw the line?

Statistical packages generally retain factors with eigenvalues greater than 1.0 (Costello & Osborne, 
2005). Yet, then there is a considerable change that too many factors are retained: in 36% of the 
samples Costello and Osborne studied (2005), too many factors were retained. 

A more reliable and rather easy method is to look at the scree plot, as the graph in Figure 3 is called 
(Costello & Osborne, 2005). The factors with values above the point at which the curve flattens out 
should be retained. The factors with values at the break point or below should be eliminated. The 
statistical package R helps to determine where the break point is by drawing a straight line at that 
point. Thus, looking at Figure 3, two factors should be retained.

However, the best method to determine how many factors to retain is a maximum likelihood factor 
analysis, since that measure tests how well a model of a particular amount of factors accounts for the 
variance within a dataset (Costello & Osborne, 2005). A high eigenvalue does not necessarily mean 
that the factor explains a hugh amount of the variance in a dataset. It could explain the variance in one 
cluster of variables, but not in another one. That cluster probably measures another underlying factor 
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Figure 3. Screeplot of factors underlying the dataset. 
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Figure 2. Scatterplot of two variables (x1 and x2). The 
lines e1 and e2 represent the eigenvectors of the 
correlation matrix of variables x1 and x2. The eigenvalue 
of an eigenvector is the length of an eigenvector 
measured from one end of the oval to the other end.
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Call:
factanal(x = na.omit(passion), factors = 1)

Loadings:	 	 	 	 	 	 	
     Factor1
p01  0.767 		 	 	 	 Factor1
p02  0.710 		 SS loadings      8.635	
p03  0.786 		 Proportion Var   0.432
p04 -0.637 
p05  0.557 
p06 -0.542 		 Test of the hypothesis that 1 factor is sufficient.
p07  0.520 		 The chi square statistic is 336.46 on 170 degrees of freedom.
p08 -0.572 		 The p-value is 4.89e-13
p09  0.782 
p10 -0.529 
p11 -0.545 
p12  0.599 
p13  0.605 
p14  0.719 
p15  0.714 
p16 -0.558 
p17  0.830 
p18 -0.559 
p19  0.674 
p20  0.783 

Call:
factanal(x = na.omit(passion), factors = 2, rotation = "oblimin")

Loadings:
     Factor1 Factor2
p01  0.547  -0.289 	 	 	 	      Factor1 Factor2
p02  0.747         	 	 SS loadings      6.141   3.534
p03  0.727         	 	 Proportion Var   0.307   0.177
p04          0.802 	 	 Cumulative Var   0.307   0.484
p05  0.625         
p06          0.641 	 	
p07  0.463         	 	 Factor Correlations:        
p08 -0.133   0.558 	 	    	    Factor1 Factor2
p09  0.702  -0.115 	 	 Factor1   1.000  -0.642
p10          0.597 	 	 Factor2  -0.642   1.000
p11          0.680 
p12  0.412  -0.243 
p13  0.719   0.122 	 	 Test of the hypothesis that 2 factors are sufficient.
p14  0.739        	  	 The chi square statistic is 197.76 on 151 degrees of freedom.
p15  0.758         	 	 The p-value is 0.00636
p16          0.771 
p17  0.917         
p18          0.739 
p19  0.623         
p20  0.771         

Call:
factanal(x = na.omit(passion), factors = 3, rotation = "oblimin")
        
Loadings:
     Factor1 Factor2 Factor3
p01  0.565  -0.263   0.293 	                Factor1 Factor2 Factor3
p02  0.767           0.279 	 SS loadings      5.963   3.539   0.585
p03  0.720  -0.106         	 Proportion Var   0.298   0.177   0.029
p04          0.781  -0.121 	 Cumulative Var   0.298   0.475   0.504
p05  0.600          -0.134 
p06          0.672   0.166 	
p07  0.438  -0.153  -0.336 
p08 -0.130   0.575         

Table 3. Output of a factor analysis in R with 1, 2 or 3 extracted factors



which should not be ignored. The null hypothesis in a maximum likelihood factor analysis is that the 
number of factors fits well the dataset, when the null hypothesis is rejected a model with a larger 
amount of factors should be considered. As can be seen in Table 3, a model with one factor is rejected 
at an α-level of 0.01, a model with two factors is rejected at an α-level of 0.05 and a model with three 
factors at none of the usual α-levels (p=.106). If we would set our α-level at 0.05 as common in social-
scientific research (Field, 2009), a model with three factors would be the best choice. However, the 
third factor seems rather unimportant, it just explains 2.9% of the variance in the dataset and is based 
on just one variable p07. Variables with loadings lower than 0.3 are considered to have a non-
significant impact on a factor, and need therefore to be ignored (Field, 2009). It seems more 
appropriate to set our α-level at 0.01 and assume that two factors should be retained. The second factor 
accounts for a considerable amount of the variance in the dataset: 17,7%. All variables load highly on 
that factor, except for the ones that load higher on the other factor and therefore seem to make up that 
one. Finally, the scree test rendered the same result.

3.2.2. Factor rotation
When several factors are extracted, the interpretation of what they represent should be based on the 
items that load on them (Field, 2009). If several variables load on several factors, it becomes rather 
difficult to determine the construct they represent. Therefore, in factor analysis, the factors are rotated 
towards some variables and away from some other. That process is illustrated in Figure 4. In that 
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p09  0.695  -0.118   0.125 
p10          0.605         	 Factor Correlations:
p11          0.656  -0.195 	  	    Factor1 Factor2 Factor3
p12  0.411  -0.235   0.146 	 Factor1  1.0000 -0.6148 -0.0385
p13  0.700   0.104         	 Factor2 -0.6148  1.0000  0.0596
p14  0.725                 	 Factor3 -0.0385  0.0596  1.0000
p15  0.738          -0.275 
p16          0.794   0.136 
p17  0.902          -0.169 	 Test of the hypothesis that 3 factors are sufficient.
p18          0.718         	 The chi square statistic is 153.68 on 133 degrees of freedom.
p19  0.611                 	 The p-value is 0.106 
p20  0.750                 

Table 3. Output of a factor analysis in R with 1, 2 or 3 extracted factors
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                           Factor 2          Factor 2 
 
• Figure 2: graphical representation of factor rotation. The left graph represents orthogonal rotation and the 

right one represents oblique rotation. The stars represent the loadings of the original variables on the 
factors. (Source for this figure: Field 2000: 439).  

 
 
There are several methods to carry out rotations. SPSS offers five: varimax, quartimax, 
equamax, direct oblimin and promax. The first three options are orthogonal rotation; the last 
two oblique. It depends on the situation, but mostly varimax is used in orthogonal rotation and 
direct oblimin in oblique rotation. Orthogonal rotation results in a rotated component / factor 
matrix that presents the ‘post-rotation’ loadings of the original variables on the extracted 
factors, and a transformation matrix that gives information about the angle of rotation. In 
oblique rotation the results are a pattern matrix, structure matrix, and a component correlation 
matrix. The pattern matrix presents the ‘pattern loadings’ (“regression coefficients of the 
variable on each of the factors”; Rietveld & Van Hout 1993: 281) while the structure matrix 
presents ‘structure loadings’ (“correlations between the variables and the factors”; ibid.); most 
of the time the pattern matrix is used to interpret the factors. The component correlation 
matrix presents the correlation between the extracted factors / components, and is thus 
important for choosing between orthogonal and oblique rotation. 
 
2.2.6. Results: factor loadings and factor scores 
In the last paragraph it was already reported that the factor loadings are represented in the 
rotated component matrix. As may be known by now, these factor loadings are important for 
the interpretation of the factors, especially the high ones. One can wonder, however, how high 
a loading has to be in order to determine the interpretation of the factor in a significant way. 
This is dependent of the sample size (Field 2000: 440): the bigger the sample the smaller the 
loadings can be to be significant. Stevens (1992) made a critical values table to determine this 
significance (see Field 2000: 440). Field (2000: 441) states, on the other hand, that “the 
significance of a loading gives little indication of the substantive importance of a variable to a 
factor”. For this to determine, the loadings have to be squared. Stevens (1992: in Field 2000: 
441) then “recommends interpreting only factor loadings with an absolute value greater than 
0.4 (which explain around 16% of variance)”. This is only possible in principal component 
analysis, though. In factor analysis the amount of explained variance is calculated in a 
different way (see the last paragraph of section 2.2.3.2.). Thus, Stevens recommendation 
should be approached with care! 

Figure 4. Graphical presentation of factor rotation: orthogonal rotation (left) and oblique rotation (right). The 
axes represent the extracted factors, the stars the original variables (graph source: Field, 2000, p. 439)



analysis, two factors were retained. One is represented as the x-axis, the other one as the y-axis. The 
variables (the stars) get their positions in the graph based on their correlation coefficients with both 
factors. It is rather ambiguous to which the circled variable belongs (left graph). It loads just a bit more 
on factor 1. However, by rotating both factors, the ambiguity gets solved: the variable loads highly on 
factor 1 and lowly on factor 2.

As can be seen in Figure 4, there are two kinds of rotation. The first kind of rotation ‘orthogonal 
rotation’ is used, when the factors are assumed to be independent (Field, 2009; Tabachnik & Fidell, 
2001; Rietveld & Van Hout, 1993). The second kind of rotation ‘oblique rotation’ is used, when the 
factors are assumed to correlate. Since it was assumed that all 20 items in this questionnaire measured 
the same construct, we may expect that an oblique rotation is appropriate. This can be checked after 
having conducted the factor analysis, since statistical packages always give a correlation matrix of the 
factors when you opt an oblique rotation method (oblimin or promax). Therefore, it is highly 
recommended to always do a factor analysis with oblique rotation first, even if you are quite sure that 
the factors are independent (Costello & Osborne, 2005). The factors in this study certainly correlate 
with each other, although negatively: r=-0.64.

3.3.3. Factor interpretation
Ignoring the variables that load lower than 0.3 on a factor (see §3.3.1), we can conclude based on the 
output of the factor analysis with two extracted factors (see Table 3) that the positively formulated 
items in this questionnaire make up the first factor and the negatively formulated items the second 
factor. It is a rather common pattern that reverse-phrased items load on a different factor (Schmitt & 
Stults, 1985), since people do not express the same opinion when they have to evaluate a negatively 
phrased item instead of a positively phrased one (Kamoen, Holleman & Van den Bergh, 2007). People 
tend to express their opinions more positively when a questionnaire item is phrased negatively 
(Kamoen, Holleman & Van den Bergh, 2007). However, it can be expected that the two factors 
measure the same underlying construct, since they correlate considerably in a negative direction. It is 
after all expected that seventh graders who score highly on the negatively phrased items (hence, 
dislike writing), do not score highly on the positively phrased ones.

4. Cronbach’s alpha
When the questionnaire at issue is reliable, people completely identical - at least with regard to their 
pleasure in writing - should get the same score, and people completely different a completely different 
score (Field, 2009). Yet, it is rather hard and time-consuming to find two people who are fully equal or 
unequal. In statistics, therefore, it is assumed that a questionnaire is reliable when an individual item 
or a set of some items renders the same result as the entire questionnaire. 

The simplest method to test the internal consistency of a questionnaire is dividing the scores a 
participant received on a questionnaire in two sets with an equal amount of scores and calculating the 
correlation between these two sets (Field, 2009). A high correlation signals a high internal consistency. 
Unfortunately, since the correlation coefficient can differ depending on the place at which you split the 
dataset, you need to split the dataset as often as the number of variables in your dataset, calculate a 
correlation coefficient for all the different combinations of sets and determine the questionnaire’s 
reliability based on the average of all these coefficients. Cronbach came up with a faster and 
comparable method to calculate a questionnaire’s reliability:
α = (N²M(Cov))/(∑s² + ∑Cov)

Assumption behind this equation is that the unique variance within variables (s²) should be rather 
small in comparison with the covariance between scale items (Cov) in order to have an internal 
consistent measure (Cortina, 1993).
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4.1. Prerequisite
Before the Cronbach’s alpha of a questionnaire can be determined, the scoring of reverse-phrased 
items of a questionnaire needs to be reversed (Field, 2009). Hence, a score of 5 on a negatively 
formulated item in this questionnaire should be rescored in 1, a score of 4 in 2, et cetera. Assuming 
that a seventh grader who really likes writing strongly agrees with the statement ‘I like writing’ and 
strongly disagrees with the statement ‘I hate writing’, item scores can differ substantially between 
students as long as the scores of the reverse-phrased items are not reversed. Given that covariances 
between such scores are negative, the use of reverse-phrased items will finally lead to a lower and 
consequently incorrect Cronbach’s alpha, since the top half of the Cronbach’s alpha equation 
incorporates the average of all covariances between items. Fortunately, R reverses scores 
automatically. Since reverse-phrased items load negatively on an underlying factor, R detects them 
easily by determining that underlying factor.

4.2. Cronbach’s alpha analysis
Generally, a questionnaire with an α of 0.8 is considered reliable (Field, 2009). Hence, this 
questionnaire certainly is reliable, since the α is 0.93 (see Table 4). The resulted α should yet be 
interpreted with caution. Since the amount of items in a questionnaire is taken into account in the 
equation, a hugh amount of variables can upgrade the α (Cortina, 1993; Field, 2009). For example, if 
we do a reliability analysis for just the items making up the first factor in our research, we get the same 
α, but the average correlation is 0.49 instead of 0.43. How hugh the alpha should be for a dataset with 
a particular amount of items is still a point of discussion (Cortina, 1993). Cortina (1993) recommends 
to determine the adequacy of a measure on the level of precision needed. If you want to make a fine 
distinction in the level of pleasure in writing someone has, a more reliable measure is needed than if 
you want to make a rough distinction. However, since the α of this questionnaire is far higher than 0.8, 
we can assume that it is reliable (Field, 2009). 
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Table 4. Output of a Cronbach’s alpha analysis in R

Reliability analysis   
Call: alpha(x = passion)

     alpha average_r mean   sd
      0.93    0.42    3.3   0.36
	
Reliability if an item is dropped:		 	   Item statistics
          alpha     average_r		 	 	 	  n    r   r.cor mean sd	
p01       0.93      0.41	 	 	 	   p01  114 0.77  0.76 3.5 1.19
p02       0.93      0.42	 	 	 	   p02  114 0.68  0.67 3.9 1.07
p03       0.93      0.41	 	 	 	   p03  114 0.77  0.76 3.6 1.06
p04-      0.93      0.42	 	 	 	   p04- 114 0.70  0.69 3.3 1.29
p05       0.93      0.43	 	 	 	   p05  113 0.57  0.55 3.8 0.90
p06-      0.93      0.42	 	 	 	   p06- 114 0.61  0.59 3.0 1.19
p07       0.93      0.43	 	 	 	   p07  114 0.55  0.52 3.4 0.82
p08-      0.93      0.42	 	 	 	   p08- 114 0.63  0.60 2.6 1.18
p09       0.93      0.41	 	 	 	   p09  114 0.78  0.77 3.6 0.98
p10-      0.93      0.43	 	 	 	   p10- 114 0.59  0.57 2.5 1.23
p11-      0.93      0.42	 	 	 	   p11- 114 0.60  0.58 3.1 1.26
p12       0.93      0.42	 	 	 	   p12  114 0.62  0.59 3.0 1.00
p13       0.93      0.42	 	 	 	   p13  114 0.60  0.57 3.4 1.08
p14       0.93      0.42	 	 	 	   p14  114 0.71  0.70 3.7 1.01
p15       0.93      0.42	 	 	 	   p15  114 0.71  0.70 3.8 0.95
p16-      0.93      0.42	 	 	 	   p16- 113 0.63  0.62 3.4 1.12
p17       0.93      0.41	 	 	 	   p17  113 0.80  0.80 3.8 0.85
p18-      0.93      0.42	 	  	 	   p18- 114 0.62  0.61 2.6 1.17
p19       0.93      0.42	 	 	 	   p19  114 0.67  0.66 3.2 1.06
p20       0.93      0.41	 	  	 	   p20  114 0.77  0.76 3.8 0.94



Besides, a hugh Cronbach’s alpha should not be interpreted as a signal of unidimensionality (Cortina, 
1993; Field, 2009). Since α is a measure of the strength of a factor when there is just one factor 
underlying the dataset, many researchers assume that a dataset is unidimensional when the α is rather 
high. Yet, the α of this dataset is rather high as well, although the factor analysis revealed that the 
dataset is not unidimensional. Thus, if you want to measure with Cronbach’s alpha the strength of a 
factor or factors underlying a dataset, Cronbach’s alpha should be applied to all the factors extracted 
during a previous factor analysis (Field, 2009). Our factors turn out to be quite strong: the α of the 
factor made up of the positively phrased items is 0.93, the α of the factor made up of the negatively 
phrased items is 0.86.

The final step in the interpretation of the output of a Cronbach’s alpha analysis is determining how 
each item individually contributes to the reliability of the questionnaire (Field, 2009). As can be seen 
in Table 4, R also renders the values of the α, when one of the items is deleted. If the α increases a lot 
when a particular item is deleted, one should consider deletion. The same counts for items which 
decrease the average correlation coefficient a lot, or correlate lower than 0.3 with the total score of the 
questionnaire (see the values under r and r.cor in Table 4; r.cor is the item total correlation corrected 
for item overlap and scale correlation). In this questionnaire, all items positively contribute to the 
reliability of the questionnaire. The α remains the same when an item is deleted, the average r almost 
the same, and the correlations between the total score and the item score are moderate to high.

5. Conclusion
The evaluated questionnaire seems reliable and construct valid. The items measure the same 
underlying construct. The extraction of two factors in the factor analysis just seems to be a 
consequence of the wording of the questionnaire items. After all, the two factors correlate highly with 
each other. The result of the reliability measure was high: α=0.93. All items contribute to the reliability 
and construct validity of the questionnaire: the items correlate more than 0.4 with the factors that 
underlie them, the Cronbach’s alpha does not increase when one of the questionnaire items is deleted, 
and the average correlation coefficient sometimes just a bit.

Although a questionnaire is generally accepted as reliable when the Cronbach’s alpha is higher than 
0.8, we cannot claim that the questionnaire is valid based on the factor analysis alone (Bornstedt, 
1977; Ratray & Jones, 2007). We just know that the items measure the same underlying construct. It 
can be expected based on the questionnaire statements that that is one’s pleasure in writing. However, 
to prove that it measures one’s pleasure in writing, the results of other measures of one’s pleasure in 
writing should be compared (Bornstedt, 1977; Ratray & Jones, 2007). Unfortunately, it is not easy to 
invent such measures (O’Keefe, 2002).
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