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� Inf. Stats
Logistic Regression

Idea: Predict categorical variable using regression

Examples

• surgery survival dependent on age, length of surgery, ...

• whether purchase occurs dependent on age, income, web-site characteristics,

• whether speech error occur as alcohol level increases

• when linguistic rules apply (final [t] in Dutch) dependent on speed of utterance,
stress, social group, ...

Very popular, especially in sociolinguistics.
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� Inf. Stats
Regression Techniques Attractive

• allow prediction of one variable value based on one or more others

• allow an estimation of the importance of various independent factors (cf. χ2)
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� Inf. Stats
Outline Logistic Regression

Idea: Predict categorical variable using regression

• core task: analyze dependency of categorical variable on others using regression

• problem: translating regression techniques to categorical domain

• key step: predict chance of categorical variable
—transforming categorical to numeric variable

• note: independent variables may be numeric or categorical —as in regression in
general, simple or multiple
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� Inf. Stats
Chance as Dependent Variable

Idea: Predict chance of categorical variable as dependent variable using regression

• real chances p are positive numbers 0 ≤ p ≤ 1

• problem: how to keep predicted values in correct bounds

• solution: don’t use chances directly, but rather a more complicated transformation
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� Inf. Stats
Logit(p) = ln

p
(1−p)
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� Inf. Stats
Logit(p) vs. Logistic

• use of logit solves problems of bounds—we predict logit values −∞ ≤ v ≤ ∞ (cf.
chances 0 ≤ p ≤ 1)

• logit is easily interpretable as “odds”
– “the odds of Real against Ajax are 4 to 1”

—probability is 0.8, p/(1 − p) = 0.8/0.2 = 4/1

• why the name ‘logistic’?
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� Inf. Stats
Why ‘logistic’?
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Similarly constrains predicted value v: 0 ≤ v ≤ 1
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� Inf. Stats
Logistic vs. Logit Functions

ln p
1−p = logit(p)

p
1−p = elogit(p)

p = elogit(p)(1 − p)

p = elogit(p) − pelogit(p)

p + pelogit(p) = elogit(p)

p(1 + elogit(p)) = elogit(p)

p = elogit(p)

(1+elogit(p))
(×e−logit(p)

e−logit(p)

p = 1

(1+e−logit(p))
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� Inf. Stats
Strategy: Predict Logit Values

logit(p) = β0 + β1x, where x is the independent variable

• try to find optimal β0, β1 given data

• note that we’re seeking a nonlinear relationship
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� Inf. Stats
Example: Labov’s NYC /r/ study

William Labov examined variant pronunciations of syllable-final /r/ in American
English ([r] vs [@]). New York used to be like Boston, final /r/ is [@], but it started changing
in the 1950’s and 1960’s. Labov hypothesized a social basis for the change.
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� Inf. Stats
Data on NYC /r/

Social Status Pronunciation of /r/
cons. ([r]) vocalic ([@]) mixed

high 30 6 32
medium 20 74 31

low 4 50 17

What stat. test is needed to ask whether soc. status influences pronunciation of /r/?
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� Inf. Stats
Analyzing Social Influence on /r/

What stat. test is needed to ask whether soc. status influences pronunciation of /r/?

• χ2 test of independence (see that section)
—is one nominal variable dependent on another?

• we exercise logistic regression for two reasons:
– to measure the degree of dependence
– to combine with questions of further dependence
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� Inf. Stats
Simplifying the Question

Eliminate the “mixed-r reports”:

Social Status Pronunciation of /r/
cons. ([r]) vocalic ([@]) mixed

high 30 6 32
medium 20 74 31

low 4 50 17

• now we’re predicting a dichotomous (two-valued) variable (instead of a polytomous
one). Note that the predictor is still polytomous.

• this step would be questionable if the category being eliminated dominated
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� Inf. Stats
Coding

• we code /r/ as ’0, vocalic’ and ’1, consonantal’

• remember the “weight by frequency” command

• SPSS offers several alternatives for the Independent Variable (Status)

• “dummy” coding (SPSS: “indicator”) is recommended:

Status explanation dummy-1 dummy-2
1 (high, Saks) 1 0
2 (mid, Macy’s) 0 1
3 (low, S.Klein) 0 0
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� Inf. Stats
SPSS Output—Coding

Dependent Variable Encoding:

Original Internal
Value Value

0 0 [vocalic pronunciation]
1 1 [consonantal " ]

Parameter
Value Freq Coding

(1) (2)
SOC_STAT

1 2 1.000 .000
2 2 .000 1.000
3 2 .000 .000
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� Inf. Stats
SPSS Output

-------------------- Variables in the Equation -----------------
Variable B S.E. Wald df Sig R Exp(B)

SOC_STAT 43.90 2 .000 .42
SOC_STAT(1) 4.13 .69 36.38 1 .000 .39 62.49
SOC_STAT(2) 1.22 .58 4.44 1 .035 .10 3.38
Constant -2.53 .52 23.63 1 .000

Recall that we’re finding the parameters to the following equation:

logit(p) = β0 + β1s1 + β2s2

= −2.5 + 4.1s1

= −2.5 + 1.2s2

= −2.5
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� Inf. Stats
Interpreting SPSS Output

logit(p) = −2.5 + 4.1s1 Saks, s1 = 1

= −2.5 + 1.2s2 Macy’s, s2 = 1

= −2.5 S.Klein, s1 = s2 = 0

= −2.5 + 4.1 = 1.6 Saks
= −2.5 + 1.2 = −1.3 Macy’s
= −2.5 S.Klein
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� Inf. Stats
Checking Interpretation of Output

ln p
(1−p) = 1.6 Saks

= −1.3 Macy’s
= −2.5 S.Klein

ln p
(1−p)

p
(1−p) p

1.6 30/6 ≈ 0.84 Saks
−1.3 20/74 ≈ 0.21 Macy’s
−2.5 4/50 ≈ 0.07 S.Klein

These indeed match the data to be predicted.
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� Inf. Stats
SPSS Output

-------------------- Variables in the Equation -----------------
Variable B S.E. Wald df Sig R Exp(B)

SOC_STAT 43.90 2 .000 .42
SOC_STAT(1) 4.13 .69 36.38 1 .000 .39 62.49
SOC_STAT(2) 1.22 .58 4.44 1 .035 .10 3.38
Constant -2.53 .52 23.63 1 .000

Note that:

• all variables are significant
• a kind of r (−1 ≤ R ≤ 1) is being estimated

—without the certainty that r2, R2 indicates explained variance

• Exp (B) = eβ
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� Inf. Stats
Understanding SPSS Output

Classification Table for UITSPRK
The Cut Value is .50

Predicted
0 1 Percent Correct
0 I 1

Observed +-------+-------+
0 0 I 124 I 6 I 95.38%

+-------+-------+
1 1 I 24 I 30 I 55.56%

+-------+-------+
Overall 83.70%
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� Inf. Stats
Predictions, Correctness

Predicted
[@] [r] Percent Correct

Macy’s I
/Klein I Saks

Observed +-------+-------+
0 [@] I 124 I 6 I 95.38%

+-------+-------+
1 [r] I 24 I 30 I 55.56%

+-------+-------+
Overall 83.70%

This shows the prediction of the variable coded for status.

Note that we’re predicting that Saks’s pronunciations should be all [r] and the others
all [@] (schwa).
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� Inf. Stats
Log Likelihood

Variance in the binomial case is p(1 − p), and variance of the number of observa-
tions is pk(1 − p)(n−k) where the positive value [r] was seen k times and the null value
(n − k) times. From this we derive the log likelihood L:

L = ln p
k
(1 − p)

(n−k)
= k ln p + (n − k) ln(1 − p)

We measure the quality of the model using log likelihood and estimating the para-
meters to obtain the optimal value:

It also turns out that −2L has a χ2 distribution with (n − 1) degrees of freedom.

� � � 	 
 � 22



� �
� ���

� Inf. Stats
Log Probabilities
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Very likely events (p ≈ 1) contribute little to log likelihoods.
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� Inf. Stats
Log Likelihood

We measure the quality of the model using log likelihood and estimating the para-
meters to obtain the optimal value. We obtain the optimal value by using the overall
frequencies as a best guess:

Social Status Pronunciation of /r/
cons. ([r]) vocalic ([@])

high 30 6
medium 20 74

low 4 50

totals 54 130
best guess 0.293 0.707
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� Inf. Stats
Simplest Model—No Social Class

We measure the quality of the model using log likelihood and estimating the para-
meters to obtain the optimal value.

L = k ln p + (n − k) ln(1 − p)

= 54 ln(0.293) + 130 ln(0.707)

= 54(−1.23) + 130(−0.35)

= −66.4 + −45.1 = −111.5

−2L = 223

This is the simplest model.

We then turn to the model which distinguishes Saks from everything else.
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� Inf. Stats
Parameters in New Model

We examine the new model, which dsitinguishes two classes, for which distinct
“best guesses” are obtained, again using the empirical frequencies:

Social Status Pronunciation of /r/
cons. ([r]) vocalic ([@]) prop. r

high 30 6 0.833
nonhigh 24 124 0.162
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� Inf. Stats
−2L in New (Two-Class) Model

L = k ln p + (n − k) ln(1 − p)

= 30 ln(0.833) + 6 ln(0.167)

= 30(−0.183) + 6(−1.79)

= −5.5 + −10.7 = −16.2

L = k ln p + (n − k) ln(1 − p)

= 24 ln(0.162) + 124 ln(0.838)

= 24(−1.82) + 124(−0.177)

= −43.7 + −21.9 = −65.6

sum = −81.8

× − 2

−2L = 161.6
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� Inf. Stats
SPSS Report on Explained Variance

Beginning Block Number 0. Initial Log Likelihood Function
-2 Log Likelihood 222.7

[...]

Estimation terminated at iteration number 4 because L decreased ...
-2 Log Likelihood 158.3

Chi-Square df Significance
Model 64.461 2 .0000

Reduction in −2L: 222.7− 158.3 = 64.4 is the best measure of the quality of the
model. 64.4 is 29% of the variance (222.7).
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� Inf. Stats
Visualizing Relations
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� Inf. Stats
Analysis of Residuals

• Just as in linear regression, useful in order to see where predictions go wrong, where
other/additional ideas might be useful

• SPSS can save residuals (false predictions).

• Labov’s data is not available except in the tabular form used, so we cannot examine
the residuals here.
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� Inf. Stats
Logistic Regression

Idea: Predict categorical variable using regression

• Example: whether linguistic rules apply, e.g., syllable-final [r] in NYC

• key step: predict chance of categorical variable
—transforming categorical to numeric variable
—logit (log-odds) transformation used

logit(x) = ln
p

1 − p

• independent variables may be numeric or categorical
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