Logistic Regression

Inf. Stats

Idea: Predict categorical variable using regression

Examples

surgery survival dependent on age, length of surgery, ...
whether purchase occurs dependent on age, income, web-site characteristics,
whether speech error occur as alcohol level increases

when linguistic rules apply (final [t] in Dutch) dependent on speed of utterance,
stress, social group, ...

Very popular, especially in sociolinguistics.
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Regression Techniques Attractive

Inf. Stats

e allow prediction of one variable value based on one or more others
e allow an estimation of the importance of various independent factors (cf. x?)
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Outline Logistic Regression

Inf. Stats

Idea: Predict categorical variable using regression

e core task: analyze dependency of categorical variable on others using regression
e problem: translating regression techniques to categorical domain

e key step: predict chance of categorical variable
—transforming categorical to numeric variable

e note: independent variables may be numeric or categorical —as in regression in
general, simple or multiple
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Chance as Dependent Variable

Inf. Stats

Idea: Predict chance of categorical variable as dependent variable using regression

e real chances p are positive numbers0 < p <1
e problem: how to keep predicted values in correct bounds
e solution: don’t use chances directly, but rather a more complicated transformation
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Logit(p) = In -2~

(1_p) Inf. Stats

> ‘ ‘ logit(x)
4L i
3l ]
5l ]
1l ]
ol ]
1 H J
2t A
3+ J
4t J
-5 . . . .

0 0.2 0.4 0.6 0.8 1

P 0.01 0.05 0.10 0.30 0.5 0.7 09 0.95 0.99
logit(p) | —4.6 —-2.9 —2.2 —-0.8 0.0 0.8 2.2 29 4.6

:

Logit(p) vs. Logistic

Inf. Stats

e use of logit solves problems of bounds—we predict logit values —oco < v < oo (cf.
chances 0 < p < 1)
e logit is easily interpretable as “odds”
— “the odds of Real against Ajax are 4 to 1”
—probability is 0.8, p/(1 — p) = 0.8/0.2 = 4/1
e why the name ‘logistic’?
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Why ‘logistic’?

Inf. Stats
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Similarly constrains predicted value v: 0 < v < 1

:

Inf. Stats

In& = logit(p)
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p = 6Iogit(p)(1 —p)
p = 109it(p) _ pelogit(p)
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Strategy: Predict Logit Values

Inf. Stats

logit(p) = Bo + B1x, where x is the independent variable

e try to find optimal 3y, 3, given data
e note that we're seeking a nonlinear relationship
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Example: Labov’s NYC /r/ study

Inf. Stats

William Labov examined variant pronunciations of syllable-final /r/ in American
English ([r] vs [3]). New York used to be like Boston, final /r/ is [3], but it started changing
in the 1950’s and 1960’s. Labov hypothesized a social basis for the change.

Saks
Macy’s /rl allophones  |mixed [r,o]

32 al cons. [r]

31

SKlein

30

20 17

4
N = 68 125 71

high social stratum Saks Macy’s S.Klein low social stratum
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Data on NYC /r/

Inf. Stats

Social Status Pronunciation of /r/
cons. ([r]) | vocalic ([3]) | mixed
high 30 6 32
medium 20 74 31
low 4 50 17

What stat. test is needed to ask whether soc. status influences pronunciation of /r/?
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Analyzing Social Influence on /r/

Inf. Stats

What stat. test is needed to ask whether soc. status influences pronunciation of /r/?

e ’ test of independence (see that section)
—is one nominal variable dependent on another?

e Wwe exercise logistic regression for two reasons:
— to measure the degree of dependence
— to combine with questions of further dependence
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Simplifying the Question

Inf. Stats

Eliminate the “mixed-r reports”:

Social Status Pronunciation of /r/
cons. ([r]) | vocalic ([3]) | mixed
high 30 6 32
medium 20 74 31
low 4 50 17

e now we're predicting a dichotomous (two-valued) variable (instead of a polytomous
one). Note that the predictor is still polytomous.

e this step would be questionable if the category being eliminated dominated
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Coding

Inf. Stats

we code /r/ as '0, vocalic’ and 1, consonantal’

remember the “weight by frequency” command

SPSS offers several alternatives for the Independent Variable (Status)
“dummy” coding (SPSS: “indicator”) is recommended:

Status  explanation dummy-1  dummy-2

1  (high, Saks) 1 0
2 (mid, Macy’s) 0 1
3 (low, S.Klein) 0 0
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SPSS Output—Coding

Inf. Stats
Dependent Vari abl e Encodi ng:
Origi nal I nt er nal
Val ue Val ue
0 0 [ vocal i ¢ pronunciation]
1 1 [ consonant al " ]
Par anet er
Val ue Freq Coding
(1) (2)
SOC_STAT
1 2 1.000 . 000
2 2 . 000 1.000
3 2 . 000 . 000
RuG 15
SPSS Output
Inf. Stats
-------------------- Variables in the Equation -----------------
Vari abl e B S. E Wal d df Sig R Exp( B)
SOC_STAT 43. 90 2 . 000 .42
SOC_STAT( 1) 4.13 . 69 36. 38 1 . 000 .39 62. 49
SOC _STAT( 2) 1.22 .58 4. 44 1 . 035 .10 3.38
Const ant -2.53 .52 23. 63 1 . 000

Recall that we're finding the parameters to the following equation:

Bo 4+ Bis1 + Ba2s2
—2.5+4.1s1
—2.5+1.2s9
—2.5

logit(p)
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Interpreting SPSS Output

Inf. Stats
logit(p) = —2.5+4+4.1s; Saks, s; =1
= —2.5+41.2s9 Macy’s, so = 1
— —2.5 S.Klein, §s1 =8, =20
= —25+4+4.1=1.6 Saks
—25+1.2=—-1.3 Macy’s
= —-25 S.Klein
RuG 17
Checking Interpretation of Output
Inf. Stats

In =2 = 1.6 Saks
(1-p)
= —1.3 Macy’s
= —2.5 SKlein
p p
Ing=h T p

1.6 30/6 =~ 0.84 Saks
—1.3 20/74 =~ 0.21 Macy’s
—2.5 4/50 =~ 0.07 SKlein

These indeed match the data to be predicted.
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SPSS Output

Inf. Stats

-------------------- Variables in the Equation -----------------

Vari abl e B S.E Wal d df Sig R Exp( B)
SOC_STAT 43. 90 2 . 000 .42
SOC _STAT(1) 4,13 . 69 36. 38 1 . 000 .39 62. 49
SOC_STAT( 2) 1.22 . 58 4. 44 1 . 035 .10 3.38
Const ant -2.53 .52 23. 63 1 . 000
Note that:

e all variables are significant
e akindofr (—1 < R < 1) is being estimated

—without the certainty that 2, R? indicates explained variance
e Exp (B) = ¢
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Understanding SPSS Output

Inf. Stats

Classification Table for U TSPRK
The Cut Value is .50

Pr edi ct ed
0 1 Percent Correct
0 |1 1
Cbserved Fo-ma - - - Fo-ma - - - +
0 0 | 124 | 6 | 95. 38%
S e +
1 1 I 24 | 30 | 55. 56%
S N R +

Overall 83.70%
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Predictions, Correctness

Inf. Stats

Predi ct ed
[@ [r] Percent Correct
Macy’' s |
/Klein | Saks
(bser ved SRR SR +
0 [@ | 124 | 6 | 95. 38%
S A R +
1 [r] I 24 | 30 | 55. 56%
S SN T +

Overall 83.70%
This shows the prediction of the variable coded for status.

Note that we're predicting that Saks’s pronunciations should be all [r] and the others
all [@] (schwa).
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Log Likelihood

Inf. Stats

Variance in the binomial case is p(1 — p), and variance of the number of observa-
tions is p*(1 — p)(”*’“) where the positive value [r] was seen k times and the null value
(n — k) times. From this we derive the log likelihood L:

L= lnpk(l — p)(n_k) =klnp+ (n —k)In(l — p)

We measure the quality of the model using log likelihood and estimating the para-
meters to obtain the optimal value:

It also turns out that —2L has a x? distribution with (n — 1) degrees of freedom.
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Log Probabilities

Inf. Stats
O T T T T

_5 1 1 1 1
0 0.2 04 0.6 0.8 1

Very likely events (p = 1) contribute little to log likelihoods.
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Log Likelihood

Inf. Stats

We measure the quality of the model using log likelihood and estimating the para-
meters to obtain the optimal value. We obtain the optimal value by using the overall
frequencies as a best guess:

Social Status Pronunciation of /r/
cons. ([r]) | vocalic ([3])
high 30 6
medium 20 74
low 4 50
totals 54 130
best guess 0.293 0.707
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Simplest Model—No Social Class

Inf. Stats

We measure the quality of the model using log likelihood and estimating the para-
meters to obtain the optimal value.

L = klnp+ (n—k)In(1 —p)
—  541n(0.293) + 1301n(0.707)
—  54(—1.23) + 130(—0.35)
= —66.4+ —45.1 = —111.5
—2L = 223

This is the simplest model.

We then turn to the model which distinguishes Saks from everything else.
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Parameters in New Model

Inf. Stats

We examine the new model, which dsitinguishes two classes, for which distinct
“best guesses” are obtained, again using the empirical frequencies:

Pronunciation of /r/
cons. ([r]) | vocalic ([3]) | prop. r
high 30 6 0.833
nonhigh ‘ 24 ‘ 124 ‘ 0.162

Social Status
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—2L in New (Two-Class) Model

Inf. Stats
L = klnp+ (n—k)In(1 —p)
= 301n(0.833) + 61n(0.167)
= 30(—0.183) +6(—1.79)
= —=5.5+4 —-10.7 = —16.2
L = klnp+4+ (n—k)In(1l — p)
— 241n(0.162) + 1241n(0.838)
— 24(—1.82) + 124(—0.177)
= —43.74+ —-21.9 = —65.6
sum = —&81.8
X — 2
—2L = 161.6
RuG 27
SPSS Report on Explained Variance
Inf. Stats

Begi nning Bl ock Nunmber 0. Initial Log Likelihood Function
-2 Log Likelihood 222. 7

[...]

Estimation term nated at iteration nunber 4 because L decreased ...

-2 Log Likelihood 158. 3

Chi - Squar e df Significance
Model 64. 461 2 . 0000

Reductionin —2L: 222.7 — 158.3 = 64.4 is the best measure of the quality of the
model. 64.4 is 29% of the variance (222.7).
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Visualizing Relations

Inf. Stats
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Analysis of Residuals

Inf. Stats

e Justasin linear regression, useful in order to see where predictions go wrong, where
other/additional ideas might be useful

e SPSS can save residuals (false predictions).

e Labov’s data is not available except in the tabular form used, so we cannot examine
the residuals here.

RuG
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Logistic Regression

Idea: Predict categorical variable using regression

e Example: whether linguistic rules apply, e.g., syllable-final [r] in NYC

e key step: predict chance of categorical variable
—transforming categorical to numeric variable
—logit (log-odds) transformation used

p

logit(x) = In ;

e independent variables may be numeric or categorical

RuG
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