

Logistic Regression

Inf. Stats

Idea: Predict categorical variable using regression

Examples

- surgery survival dependent on age, length of surgery, ...
- whether purchase occurs dependent on age, income, web-site characteristics,
- whether speech error occur as alcohol level increases
- when linguistic rules apply (final [t] in Dutch) dependent on speed of utterance, stress, social group, ...

Very popular, especially in sociolinguistics.

Regression Techniques Attractive

Inf. Stats

- allow prediction of one variable value based on one or more others
- allow an estimation of the importance of various independent factors (cf. χ^2)

Outline Logistic Regression

Idea: Predict categorical variable using regression

- core task: analyze dependency of categorical variable on others using regression
- problem: translating regression techniques to categorical domain
- key step: predict **chance of** categorical variable —transforming categorical to numeric variable
- note: independent variables may be numeric or categorical —as in regression in general, simple or multiple

Chance as Dependent Variable

Inf. Stats

3

Idea: Predict chance of categorical variable as dependent variable using regression

- real chances p are positive numbers $0 \le p \le 1$
- problem: how to keep predicted values in correct bounds
- solution: don't use chances directly, but rather a more complicated transformation

Logit(p) vs. Logistic

Inf. Stats

- use of logit solves problems of bounds—we predict logit values $-\infty \le v \le \infty$ (cf. chances $0 \le p \le 1$)
- logit is easily interpretable as "odds"
 - "the odds of Real against Ajax are 4 to 1" — probability is 0.8 m/(1 m) = 0.8/0.2
 - —probability is 0.8, p/(1-p) = 0.8/0.2 = 4/1
- why the name 'logistic'?

Why 'logistic'?

Similarly constrains predicted value $v: 0 \le v \le 1$

Logistic vs. Logit Functions

Inf. Stats

7

Inf. Stats

$$\begin{aligned} \ln \frac{p}{1-p} &= \log i(p) \\ \frac{p}{1-p} &= e^{\log i(p)} \\ p &= e^{\log i(p)} (1-p) \\ p &= e^{\log i(p)} - p e^{\log i(p)} \\ p + p e^{\log i(p)} &= e^{\log i(p)} \\ p(1+e^{\log i(p)}) &= e^{\log i(p)} \\ p &= \frac{e^{\log i(p)}}{(1+e^{\log i(p)})} (\times \frac{e^{-\log i(p)}}{e^{-\log i(p)}} \\ p &= \frac{1}{(1+e^{-\log i(p)})} \end{aligned}$$

Strategy: Predict Logit Values

Inf. Stats

 $logit(p) = \beta_0 + \beta_1 x$, where x is the independent variable

- try to find optimal β_0, β_1 given data
- note that we're seeking a **nonlinear** relationship

Example: Labov's NYC /r/ study

Inf. Stats

9

William Labov examined variant pronunciations of syllable-final /r/ in American English ([r] vs [ə]). New York used to be like Boston, final /r/ is [ə], but it started changing in the 1950's and 1960's. Labov hypothesized a social basis for the change.

Data on NYC /r/

Inf. Stats

Social Status	Pronunciation of /r/						
	cons. ([r])	vocalic ([ə])	mixed				
high	30	6	32				
medium	20	74	31				
low	4	50	17				

What stat. test is needed to ask whether soc. status influences pronunciation of /r/?

Analyzing Social Influence on /r/

Inf. Stats

11

What stat. test is needed to ask whether soc. status influences pronunciation of /r/?

- χ^2 test of independence (see that section)
 - —is one nominal variable dependent on another?
- we exercise logistic regression for two reasons:
 - to measure the degree of dependence
 - to combine with questions of further dependence

Simplifying the Question

Inf. Stats

13

Inf. Stats

Eliminate the "mixed-r reports":

Social Status	Pronunciation of /r/						
	cons. ([r])	vocalic ([ə])	mixed				
high	30	6	32				
medium	20	74	31				
low	4	50	17				

- now we're predicting a **dichotomous** (two-valued) variable (instead of a polytomous one). Note that the predictor is still polytomous.
- this step would be questionable if the category being eliminated dominated

Coding

- we code /r/ as '0, vocalic' and '1, consonantal'
- remember the "weight by frequency" command
- SPSS offers several alternatives for the Independent Variable (Status)
- "dummy" coding (SPSS: "indicator") is recommended:

Status	explanation	dummy-1	dummy-2
1	(high, Saks)	1	0
2	(mid, Macy's)	0	1
3	(low, S.Klein)	0	0

SPSS Output—Coding

Inf. Stats

Dependent Variable Encoding:

Original	Internal	-			
Value	Value				
0	0	[vocalic	pronur	nciation]	
1	1	[consonantal "			
			Paramet	cer	
	Value	Freq	Coding		
			(1)	(2)	
SOC_STAT					
	1	2	1.000	.000	
	2	2	.000	1.000	
	3	2	.000	.000	
$\mathbf{R} \boldsymbol{\mu} \mathbf{G}$					

SPSS Output

Inf. Stats

15

	Va	riables	in the	Equa	tion		
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
SOC_STAT			43.90	2	.000	.42	
SOC_STAT(1)	4.13	.69	36.38	1	.000	.39	62.49
SOC_STAT(2)	1.22	.58	4.44	1	.035	.10	3.38
Constant	-2.53	.52	23.63	1	.000		

Recall that we're finding the parameters to the following equation:

 $logit(p) = \beta_0 + \beta_1 s_1 + \beta_2 s_2$ $= -2.5 + 4.1 s_1$ $= -2.5 + 1.2 s_2$ = -2.5

Interpreting SPSS Output

Inf. Stats

logit(p)	=	$-2.5 + 4.1s_1$	Saks, $s_1 = 1$
	=	$-2.5 + 1.2s_2$	Macy's, $s_2=1$
	=	-2.5	S.Klein, $s_1 = s_2 = 0$
	=	-2.5 + 4.1 = 1.6	Saks
	=	-2.5 + 1.2 = -1.3	Macy's
	=	-2.5	S.Klein

Checking Interpretation of Output

Inf. Stats

$\ln \frac{p}{(1-p)}$	\overline{p} =	1.6	Saks
, , , , , , , , , , , , , , , , , , ,	=	-1.3 M	/lacy's
	=	-2.5 §	S.Klein
$\ln \frac{p}{(1-p)}$	$\frac{p}{(1-p)}$	p	
1.6	30/6	≈ 0.84	Saks
-1.3	20/74	≈ 0.21	Macy's
25	1/50	- 0 07	0 1/1 - 1

These indeed match the data to be predicted.

SPSS Output

Inf. Stats

	Var	riables	in the	Equa	tion		
Variable	В	S.E.	Wald	df	Sig	R	Exp(B)
SOC_STAT			43.90	2	.000	.42	
SOC_STAT(1)	4.13	.69	36.38	1	.000	.39	62.49
SOC_STAT(2)	1.22	.58	4.44	1	.035	.10	3.38
Constant	-2.53	.52	23.63	1	.000		

Note that:

- all variables are significant
- a kind of $r (-1 \le R \le 1)$ is being estimated —without the **certainty** that r^2, R^2 indicates explained variance
- Exp (B) $= e^{eta}$

Understanding SPSS Output

Inf. Stats

Classific	catio	on '	Table	foi	r UIT	SPRE	X	
The Cut Y	Value	e i	s .50					
			Pre	dict	ced			
			0		1		Percent	Correct
			0	I	1			
Observed		+		-+		-+		
0	0	I	124	I	6	I	95.38%	
		+		-+		-+		
1	1	I	24	I	30	I	55.56%	
		+		-+		-+		
					Over	all	83.70%	

Predictions, Correctness

Inf. Stats

			Pre	dic	ted			
			[@]		[r]		Percent	Correct
		М	acy's	Ι				
		/	Klein	I	Saks			
Observ	ed	+-		-+-		-+		
0	[@]	I	124	I	б	I	95.38%	
		+-		-+-		-+		
1	[r]	I	24	I	30	I	55.56%	
		+-		-+-		-+		
					Over	all	83.70%	

This shows the prediction of the variable coded for status.

Note that we're predicting that Saks's pronunciations should be all [r] and the others all [@] (schwa).

21

Log Likelihood

Inf. Stats

Variance in the binomial case is p(1-p), and variance of the number of observations is $p^k(1-p)^{(n-k)}$ where the positive value [r] was seen k times and the null value (n-k) times. From this we derive the **log likelihood** L:

$$L = \ln p^{k} (1-p)^{(n-k)} = k \ln p + (n-k) \ln(1-p)$$

We measure the quality of the model using log likelihood and estimating the parameters to obtain the optimal value:

It also turns out that -2L has a χ^2 distribution with (n-1) degrees of freedom.

Log Probabilities

Inf. Stats

Very likely events ($p \approx 1$) contribute little to log likelihoods.

RuG

Log Likelihood

Inf. Stats

23

We measure the quality of the model using log likelihood and estimating the parameters to obtain the optimal value. We obtain the **optimal** value by using the overall frequencies as a best guess:

Social Status	Pronunciation of /r/				
	cons. ([r])	vocalic ([ə])			
high	30	6			
medium	20	74			
low	4	50			
totals	54	130			
best guess	0.293	0.707			

Simplest Model—No Social Class

We measure the quality of the model using log likelihood and estimating the parameters to obtain the optimal value.

$$L = k \ln p + (n - k) \ln(1 - p)$$

= 54 \ln(0.293) + 130 \ln(0.707)
= 54(-1.23) + 130(-0.35)
= -66.4 + -45.1 = -111.5
-2L = 223

This is the simplest model.

We then turn to the model which distinguishes Saks from everything else.

RuG

25

Parameters in New Model

Inf. Stats

We examine the new model, which dsitinguishes two classes, for which distinct "best guesses" are obtained, again using the empirical frequencies:

Social Status	Pronunciation of /r/					
	cons. ([r])	vocalic ([ə])	prop. r			
high	30	6	0.833			
nonhigh	24	124	0.162			

L	=	$k \ln p + (n - k) \ln(1 - p)$ 30 ln(0.833) + 6 ln(0.167)	
	=	30(-0.183) + 6(-1.79)	
	=	-5.5 + -10.7	= -16.2
L	=	$k\ln p + (n-k)\ln(1-p)$	
	=	$24\ln(0.162) + 124\ln(0.838)$	
	=	24(-1.82) + 124(-0.177)	
	=	-43.7 + -21.9	= -65.6
sum			= -81.8
			$\times -2$
-2L			= 161.6

27

SPSS Report on Explained Variance

Inf. Stats

Beginning Block Number 0. Initial Log Likelihood Function -2 Log Likelihood 222.7

[...]

Estimation terminated at iteration number 4 because L decreased ... -2 Log Likelihood 158.3

	Chi-Square	df Si	ignificance
Model	64.461	2	.0000

Reduction in -2L: 222.7 - 158.3 = 64.4 is the best measure of the quality of the model. 64.4 is 29% of the variance (222.7).

Visualizing Relations

Analysis of Residuals

Inf. Stats

- Just as in linear regression, useful in order to see where predictions go wrong, where other/additional ideas might be useful
- SPSS can save residuals (false predictions).
- Labov's data is not available except in the tabular form used, so we cannot examine the residuals here.

Logistic Regression

Inf. Stats

Idea: Predict categorical variable using regression

- Example: whether linguistic rules apply, e.g., syllable-final [r] in NYC
- key step: predict chance of categorical variable
 - -transforming categorical to numeric variable
 - -logit (log-odds) transformation used

$$\mathsf{logit}(x) = \ln \frac{p}{1-p}$$

• independent variables may be numeric or categorical

