
Search Engines

Gertjan van Noord

September 19, 2024

This week

• Some notes on coding

• Chapter 6: scoring, ranked retrieval, tf-idf

1

How to recognize potential inefficiency?

for x in lista:

if x in listb:

if listb is a list , this is quadratic

if listb is a dictionary , this is linear

2

How to recognize potential inefficiency?

for x in lista:

for y in listb:

if listb is a list , this is quadratic

if listb is a dictionary , this is still quadratic

3

How to recognize potential inefficiency?

for x in lista:

if lista is a list , you get the elements in order

if lista is a dictionary , it depends ...

In some implementations, you get the elements of a dictionary in the order the
elements were placed in the dictionary. In other implementations, you get the elements
in some other order.

Your code should not depend on a particular order.

4

Sorted lists and sets, again

• sorted lists: intersection linear, membership logarithmic (cf. bisect module)

• hash (Python dictionaries/sets): intersection linear, membership linear (elements
must be non-mutable)

• sorted lists are memory-efficient, hashes “waste” some memory

• footnote: check out “perfect hash” if you want both compact and efficient

5

Chapter 6: Scoring

• parametric indexing; zone indexing

• weighted zone indexing

• term frequency and weighting

• vector model, queries as vectors

• computing scores

NB: we skip sections 6.1.2, 6.1.3, 6.4

6

Meta-data of the document is important

• fields: author, title, keywords, date, . . .

• per field, a separate parametric index is built

• the user interface should accomodate querying of such fields in addition to text queries

• the system must combine the query parts for retrieval

7

Zone indexes

• Zones are similar to fields in parametric index, except that zones contain arbitrary
free text

• Per zone, a separate index is built

• Zones could be author, title, abstract, keyword, body, ...

• This assumes that documents have a common outline

8

Zone index for zone queries

• Query: author:Greene AND abstract:war AND body:London

• Can be answered assuming we have several zone indexes

– author-Greene −→ [doc1,doc6,doc10]
– abstract-war −→ [doc3,doc4,doc6,doc10]
– body-London −→ [doc2,doc4,doc6]

• Business as usual: merge posting lists

9

Weighted zone scoring

• If a search term occurs in the title, the document is probably more relevant

• Certain zones of a document are more important than others

• Assign a weight to each zone

• A matching document is assigned a weight

– score of a zone: its weight if there is a hit, 0 otherwise
– total score: sum zone scores

10

Weighted zone scoring

Query: pie AND cream

Two zones: title (weight:0.6), abstract (weight:0.4)

title abstract
doc1 apple pie pie cream

doc2 cream pie recipe apple cream pie

doc3 apple pie apple cream

11

Weighted zone scoring

Query: pie AND cream

Two zones: title (weight:0.6), abstract (weight:0.4)

title abstract
doc1 apple pie pie cream

doc2 cream pie recipe apple cream pie

doc3 apple pie apple cream

doc1: 0.6 * 0 + 0.4 * 1 = 0.4
doc2: 0.6 * 1 + 0.4 * 1 = 1.0
doc3: 0.6 * 0 + 0.4 * 0 = 0.0

12

Weighted zone scoring

Query: pie AND cream

Two zones: title (weight:0.6), abstract (weight:0.4)

title abstract
doc1 apple pie pie cream

doc2 cream pie recipe apple cream pie

doc3 apple pie apple cream

doc1: 0.6 * 0 + 0.4 * 1 = 0.4
doc2: 0.6 * 1 + 0.4 * 1 = 1.0
doc3: 0.6 * 0 + 0.4 * 0 = 0.0

This is first example of ranked retrieval

13

Problems with Boolean model

• Boolean systems often give either too many or too few results

– but useful for specific precise search in a homogeneous corpus

• Boolean operators are difficult for many users

• Users want to type some query words, no operators, and get best results

• We need methods to rank results

• Is there more than presence/absence? Frequency?

• Some terms may be more important than others?

14

Advanced Scores for Terms in Documents

Two key insights:

• A document in which a search term occurs more often is more relevant

• A search term which occurs in fewer documents is more important

• Combined into the very famous heuristic tf-idf

15

TF-IDF

• tft,d: term frequency of term t in doc d

Please note: this is just the number of occurrences of t in d. So it is not the relative
frequency.

16

TF-IDF

• tft,d: term frequency of term t in doc d

• dft: document frequency of term t (in how many documents does t occur)

• relative document frequency of term t is defined as dft/N where N is the number of
documents

• idft: inverse document frequency. It is defined as log(N/dft)

• If df is higher, idf is lower; a term that only occurs in few documents has a high idf

• Score for a term t in document d: tft,d × idft.

17

TF-IDF

idft: inverse document frequency. It is defined as log(N/dft)

It does not matter much which log you use. Therefore, we use the default choice in
Python.

import math

idf = math.log(number_of_docs / docfreq)

18

TF-IDF

• Score for a term t in document d: tft,d × idft.

• Score for a query q = t1 . . . tn is the sum of the tf-idf values for each search term ti.

score(q, d) =
∑
ti

(tfti,d × idfti)

19

Example

TF ape child food of panther
doc1 8 2 2 10 2
doc2 1 5 9 20 0

Query 1 0 1 1 0

20

Example

TF ape child food of panther
doc1 8 2 2 10 2
doc2 1 5 9 20 0

Query 1 0 1 1 0

IDF 5 2 2 0.001 6

21

Example

TF ape child food of panther
doc1 8 2 2 10 2
doc2 1 5 9 20 0

Query 1 0 1 1 0

IDF 5 2 2 0.001 6

score(food of ape,doc1):

score(food of ape,doc2):

22

Example

TF ape child food of panther
doc1 8 2 2 10 2
doc2 1 5 9 20 0

Query 1 0 1 1 0

IDF 5 2 2 0.001 6

score(food of ape,doc1): 8*5 + 2*2 + 10*0.001 = 44.01
score(food of ape,doc2): 1*5 + 9*2 + 20*0.001 = 23.02

23

Vectors

TF ape child food of panther
doc1 8 2 2 10 2
doc2 1 5 9 20 0

IDF 5 2 2 0.001 6

We can immediately build vectors with tf-idf weights.

24

Vectors

TF-IDF ape child food of panther
doc1 40 4 4 0.01 12
doc2 5 10 18 0.02 0

Remaining problem: the frequencies do not take document length into account.

25

Vectors

TF-IDF ape child food of panther
doc1 40 4 4 0.01 12
doc2 5 10 18 0.02 0

Remaining problem: the frequencies do not take document length into account.

Solution: normalize vectors

26

Normalize vectors

• Divide each cell in the vector by its length

• Length of a vector: square root of the sum of the squares of all the elements

• Length of vector for doc1: 42.1 (square root of (1600 + 16 + 16 + 0 + 144))

• Length of vector for doc2: 21.2 (square root of (25 + 100 + 0 +324))

27

Normalize vectors

• Divide each cell in the vector by its length

• Length of a vector: square root of the sum of the squares of all the elements

• Length doc1: 42.1; length doc2: 21.2

ape child food of panther
doc1 0.95 0.09 0.09 0 0.3
doc2 0.24 0.48 0.86 0 0

28

Normalized vectors

ape child food of panther
doc1 0.95 0.09 0.09 0 0.3
doc2 0.24 0.48 0.86 0 0

Query 1 0 1 1 0

Score for each document? ∑
i

dociqueryi

Sum of products

score(query,doc1): 0.95*1 + 0.09*1 + 0*1 = 1.04
score(query,doc2): 0.24*1 + 0.86*1 + 0*1 = 1.10

29

Query can be weighted too

This also works if the terms in the query are weighted with tf-idf. Perhaps some
terms occur twice in the query.

query: ape food of ape
ape child food of panther

TF 2 0 1 1 0

IDF 5 2 2 0.001 6

TFIDF 10 0 2 0.001 0

30

Normalized vector for query too

Vector query is normalized too

TFIDF 10 0 2 0.001 0

−→

Query 0.98 0 0.20 0.0 0

31

Normalized vectors

ape child food of panther
doc1 0.95 0.09 0.09 0 0.3
doc2 0.24 0.48 0.86 0 0

Query 0.98 0 0.20 0.00 0

Score for each document? ∑
i

dociqueryi

so, as before: sum of products

32

Normalized vectors

ape child food of panther
doc1 0.95 0.09 0.09 0 0.3
doc2 0.24 0.48 0.86 0 0

Query 0.98 0 0.20 0.00 0

Score for each document? ∑
i

dociqueryi

Sum of products.

score(query,doc1): 0.95*0.98 + 0.09*0.2 + 0*0.0 = 0.95
score(query,doc2): 0.24*0.98 + 0.86*0.2 + 0*0.0 = 0.41

33

Cosine similarity

Score for each document? ∑
i

dociqueryi

Sum of products.

If doc and query are length-normalized vectors, then this is the cosine similarity of
the two vectors!

34

Cosine similarity

Score for each document? ∑
i

dociqueryi

Sum of products.

If doc and query are length-normalized vectors, then this is the cosine similarity of
the two vectors!

It is a similarity measure ranging from 0 to 1 which indicates how similar two
normalized vectors are.

(This is a useful notion in many other situations)

Retrieval: find a document that is most similar to the query

35

Each document is represented by its tf-idf vector

• Each document is a tf-idf vector

• As in week 1: the resulting matrix is way too big

• As in week 1: represent only the non-zero values!

36

Wrap up

• ranked retrieval

• tf-idf: prefer

– documents in which search term occurs more often
– documents in which infrequent search term occurs

• A document can be represented by a normalized vector

• A query can be represented by a normalized vector

• Best document: which document is most similar to the query?

• Cosine similarity

37

Excursion: word2vec

Deep learning models create vectors.

Most famous example: word2vec

You can try it out on the LWP machine:

$ /net/aps/haytabo/src/word2vec/distance /net/shared/vannoord/word2vec/Dutch-words/vectors.bin

Enter word or sentence (EXIT to break): boom

Word: boom Position in vocabulary: 2329

Word Cosine distance

bomen 0.657305

kastanjeboom 0.571457

appelboom 0.569731

verlichtingspaal 0.550243

elektriciteitspaal 0.548399

huisgevel 0.533083

plataan 0.532200

knotwilg 0.531878

38

Compute analogy

France is to Paris as Spain is to X? Paris - France + Spain is ?

$ /net/aps/haytabo/src/word2vec/word-analogy /net/shared/vannoord/word2vec/Dutch-words/vectors.bin

Enter three words (EXIT to break): Frankrijk Parijs Spanje

Word Distance

Madrid 0.695480

Barcelona 0.627260

Milaan 0.591913

Malaga 0.568099

Sevilla 0.558453

...

39

Other examples

Rotterdam Feyenoord Amsterdam Ajax
Vlaanderen Vlaams Wallonie Waals

België Ardennen Nederland Veluwe
Nederland Beatrix Engeland Elizabeth

België Dewinter Nederland Wilders
koning koningin prins prinses

Nederland Suriname België Congo
Frankrijk Seine België Thames

40

Assignment

Search Engine for Wikipedia with ranked output, using tf-idf

Take the Wikipedia search engine from the first and second assignment as starting
point to implement query tfidf.py, a variant which uses the same data format as
before, and which will return the Wikipedia articles in ranked order, where the order is
determined by the tf-idf score. Every query consists of multiple search terms, and your
engine returns all Wikipedia articles in which at least one of the terms occurs. The tf-idf
score is printed for each article, and the articles are returned in order. For our purposes,
it is easier if the higher scoring articles are shown last.

41

Assignment

To make the output both readable and not too large, for this assignment you should
print (only) the title of each Wikipedia article (remember that the first line of each
Wikipedia article is the title).

$ python3 query_tfidf.py small.txt

Two search terms (q to quit): ijsvogel kwak

8.79497643168877

Grijskopijsvogel .

8.79497643168877

Nederlandse spelling van dieren- en plantennamen .

9.893588720356881

Reigers .

26.38492929506631

IJsvogel .

42

Please note that we use the simple tf-idf definition here, we are not yet normalizing
scores and not yet working with vectors - this we leave for next week.

43

Proposed data-structure for this week’s exercise

• dictionary: doc-id → text (as before)

• dictionary: term → doc-id → tf-idf

{ t1 : { doc1 : 12.1,

doc2 : 8.4,

doc6 : 134.0 },

t2 : { doc1 : 3.1,

doc3 : 6.7 }

}

44

