Inducing SFA with e-Transitions Using Minimum Description
Length

Yasemin Altun

Mark Johnson

Cognitive and Linguistic Sciences
Brown University

Yasemin_Altun@brown.edu

Email:

1 Introduction

Induction of the description of a language can
be defined as a problem that consists of two
parts: learning the structure and learning the
parameters of that structure. Considering the
difficulty of the problem, most of the studies in
this field focus on inducing the parameters of
a given structure, as opposed to inducing the
structure itself. My project aims to address the
more challenging part of the problem, the in-
duction of the structure. I developed an algo-
rithm for the induction of a Stochastic Finite
State Automaton (SFA) with e-transitions for
a regular language which takes as input a set
of strings from that language. Working within
a Bayesian framework, my algorithm, whose
structure is similar to (Stolcke and Omohun-
dro, 1994), induces the SFA using Minimum
Description Length (MDL) Principle for model
selection.

The automata with e-transitions capture
some linguistic generalities that the automata
without e-transitions fail to capture. They are
also more readable and simpler. The automata
of the English auxiliary system with and with-
out e-transitions are good examples that demon-
strate these properties. The MDL framework is
a natural setting of the induction of automata
with e-transitions. I applied the algorithm to
the problems of the induction of SFA of the
English auxiliary system and of Turkish mor-
phology. The results show that in the MDL
framework, inducing SFA with e-transitions re-
quires less data and also decreases the number
of learning steps.

2 Minimum Description Length and
Learning e-Transitions

Viewing induction as a search problem and us-
ing a Bayesian framework, an automata inducer

Mark_Johnson®@brown.edu

aims to find the automaton that maximizes a
combination of the prior probability of the au-
tomaton and the probability of the data set
given the automaton. One can use the Min-
imum Description Length principle, which has
cognitive plausibility, to define a probability dis-
tribution on the set of possible automata, such
that simpler machines are more probable than
more complex ones. The following objective
function, in Bayesian terms, expresses the prob-
lem:

a = argmin (logp(Ola) + alogp(a)) (1)

where a is stochastic finite state automaton,
A is the set of possible automata, O is the ob-
served data, and « is a factor comprimising be-
tween the size and the accuracy of the automa-
ton. The prior probability is assigned according
to the description length [of a:

p(a) = exp™{@

Using the Viterbi assumption, the likelihood
is calculated as follows:

N
p(Ola) = J] 6"

where 6; is a parameter of a (the transition
or ending probability) and w; is the evidence
from O related with the parameter ;. The
MDL principle defines only an approximate, not
an exact prior, since a plausible inductive sys-
tem should not be too sensitive to the encoding
scheme. We represent this observation using the
« parameter in Equation 1, which effectively al-
lows us to adjust the weight given the prior.

Automata with e-transitions can be exponen-
tially smaller than equivalent automata with-
out e-transitions that accept exactly the same
language. If the training data is in fact gener-
ated by a small automaton with e-transitions,
one might expect that a learner that can posit
automata with e-transitions may succeed when
a learner that cannot posit e-transitions fails.
Automata with e-transitions also capture some
linguistic generalities that automata without e-
transitions fail to capture. The MDL princi-
ple, which prefers simpler automata to more
complex ones favors the automata with e-
transitions. Therefore, the MDL framework is
a very natural setting of the problem of the in-
duction of automata with e-transitions.

3 The Algorithm

The algorithm first builds the tree-structured
automaton a that generates all and only the
strings in the data set with the probabilities
equal to their relative frequencies and no other
strings. Every state ¢; has the record of the
number of strings in O arriving g¢;, the num-
ber of strings ending in ¢; and the number of
strings traversing each arc of g;. The algorithm
repeatedly searches for the best generalization
of a. Merging two states of a and their children
recursively is one generalization technique. An-
other one is inserting an e-transition from one
state to another and merging their children re-
cursively. Both of these techniques results in
smaller machines that may produce more (in
some cases infinite number of) strings that are
not seen in the data set. These machines are
evaluated using the objective function, given
in (1), where the description length of a au-
tomata is a simple function of the number of
states and arcs of a. The likelihood of the data
is calculated using the counts recorded in every
state (the number of strings entering the states,
ending in the states, and traversing the arcs of
the states). So, the algorithm does not need
to parse the observed data every time, but just
uses the recorded counts. It, then, selects the
best generalization of a and repeats the search
process if the generalized machine performs bet-
ter in terms of the objective function than a.
The algorithm stops the search otherwise.
Figure 1 and Figure 2 present examples of
merging states and inserting an e-transition re-

b(.5)
4942 C &

5)
(1)

Figure 1: State merging example. Merge Statel

and State2

@ epsilon(5) a@
) Gl Gl T
>@ @ C(% b(.Z)@

Figure 2: Inserting e-transition example. From
Statel to Stateb

spectively. The algorithm merges states ¢; and
gj, when the probability distribution of the
strings generated by ¢; and g; are similar enough
that the description length of the system de-
creases. The algorithm inserts an e-transition
from g¢; to gj, when the probability distribution
of the strings generated from some arcs of ¢; is
very similar to the probability distribution of
the string generated from g;, however the prob-
ability distribution of the strings generated from
the rest of the arcs of ¢; is so different than the
rest that if ¢; and g; are merged, the description
length of the system increases. One can think of
e-transition insertion as merging some arcs of g;
with the arcs of ¢; and merging the states that
are reached by the merged arcs.

When merging states g; and g;, the algorithm
simply adds the related counts recorded in g¢;
and ¢; and calculates the relative frequencies.
When inserting an e-transition from g; to g;, the
algorithm inserts an e-transition with the count
equal to the sum of the counts of the merged
arcs of ¢; and increment the related counts of g;
accordingly.

When the search space is intractable, the al-
gorithm prunes the search space by restricting
attention to states that are close to the start
state. The rationale is that operations on the
states that are far from the start state do not
improve the objective function as much as the

states that are closer to the start state. Since
the part of the machine under these states are
much smaller that the part of the machine un-
der the states that are closer to the start state,
one wouldn’t gain much in terms of the objec-
tive function.

During the calculation of the likelihood of the
data, the algorithm makes a Viterbi assump-
tion and uses the stored counts as opposed to
parsing the observed data over and over again.
Viterbi assumption is crucial for the algorithm
to be intractable. In each learning step n? au-
tomata are generated and evaluated, where n
is the number of states. Evaluation of the au-
tomata involves calculating the likelihood of the
observed data given the automaton. Parsing the
data over and over again is unaffordable. The
algorithm uses the counts stored in the states to
calculate the likelihood. The Viterbi assump-
tion holds for the initial automaton and contin-
ues to hold for the generalizations of it if the
possible generations are deterministic. For this
reason, no nondeterminism is allowed in the in-
duced machines. Since after e-transition inser-
tion, the child states are merged, there is always
one possible path for each string.

4 Applications
4.1 English Auxiliary System

English auxiliary system can be summarized as
(Chomsky, 1957):

AUX — (Modal) (have) (be) (be) VERB

Any or all of the auxiliary components pre-
ceding the verb can be omitted.

I extracted out the uninflected form of the
auxiliary sequences from sections 2-21 of the
Penn TreeBank corpus and generated the SFA
that would describe this data best. I generated
1000 random corpora of different sizes of 1000
t0 12000 each and presented the algorithms that
learn SFA with e-transitions and that learn SFA
without e-transitions. The results show that
the SFA with e-transitions is accurately induced
with small data sets (data sets of size 3500),
whereas the algorithm that learns SFA without
e-transitions needs more data (data sets of size
of 9500) to converge to an accurate SFA. The
accuracy of the induced automata is measured
by the likelihood ratio test, where the null hy-

pothesis is that the languages generated by the
two machines, the induced one and the one that
we started off with, have the same underlying
distribution. The algorithm that learns SFA
with e-transitions also requires fewer general-
ization step, whereas learning the SFA without
e-transitions require around twice more steps.

4.2 Turkish Morphology

Turkish morphology defines a regular language
that has an infinite number of strings and the
FSA of this system is much more complex than
the FSA of English auxiliary system (Oflazer
et al., 1994). I used a segmented and labelled
Turkish newspaper articles corpus which was
morphologically analyzed by (Hakkani-Tur et
al., 2000) to induce the SFA of Turkish mor-
phology system. 1 presented the algorithms
that learn SFA with e-transitions and that learn
SFA without e-transitions different sizes of cor-
pora (Figure 3). The algorithm that learns
SFA with e-transitions requires a training set of
240000 words to induce the correct automata,
whereas the algorithm that learns SFA without
e-transitions requires a training set of 720000
words 1. The algorithm that learns SFA with
e-transitions takes less learning steps than the
algorithm that learns SFA without e-transitions
(Table 4) and the difference increases as the
training data size increases.

5 Related Work

The use of Bayesian framework approach dates
back to late 60’s (Horning, 1969). Chen per-
forms a model splitting approach using MDL
Principle when inducing a probabilistic context-
free grammar (Chen, 1996). Stolcke and Omo-
hundro use model merging, which is a common
technique used in automata theory (Hopcroft
and Ullman, 1979), for induction and apply it to
regular and context free languages (Stolcke and
Omohundro, 1994). Carrasco and Oncina use a
statistical test in model merging and apply it to
regular languages (Carrasco and Oncina, 1994).

!The difference between the set of strings generated
by the SFA with e-transitions induced with 240000 words
and the set of strings generated by the SFA with e-
transitions induced with 1200000 words is not statisti-
cally significant. This is also true for the set of strings
generated by the SFA with e-transitions induced with
360000 words and the set of strings generated by the
SFA with e-transitions induced with 1200000.

3.55

35r

w

w @

& IS
T T

w
w
T

- log prob(test data)

3.25

32 SFA without epsilon transitions

SFA with epsilon transitions

31 I I I I I I I I
60000 120000 240000 360000 480000 720000 960000 1200000

Size of training data

Figure 3: The negative loglikelihood of the test
data wrt SFA with and without e-transitions

350

SFA without epsilon transitions
3001

]

@

S
T

n

=1

S]
T

SFA with epsilon transitions

Number of learning steps

-

a

S
T

100p

50 I I I I I I
60000 120000 240000 360000 480000 720000 960000
Size of training data

1200000

Figure 4: The number of learning steps for each
training data size

According to my knowledge learning SFA with
e-transitions has not been studied before.

Inducing the finite state automaton of the En-
glish auxiliary system has been studied previ-
ously (Pilato and Berwick, 1985). In this study,
the algorithm makes use of the k —reversibility
of the English auxiliary system to constraint the
induction problem. The induced automaton is
larger than the automaton induced by the algo-
rithm presented above, since it does not have e-
transitions. According to my knowledge, learn-
ing the SFA of Turkish morphology defined as a

problem of learning both the structure and the
parameters has not been studied before. How-
ever, it has been studied as a problem learning
the parameters of a given structure (Hakkani-
Tur et al., 2000).

6 Conclusion

In this study, I developed an algorithm to in-
duce a stochastic finite state automaton, with
e-transitions for a regular language, which takes
as input a set of strings generated from the lan-
guage. One can induce SFA with e-transitions
within the MDL framework very naturally. The
results show that the algorithm that learns au-
tomata with e-transitions requires less data and
fewer learning steps than the algorithm that
learns SFA without e-transitions requires.

References

R. C. Carrasco and J. Oncina. 1994. Learning
stochastic regular grammars by means of a
state merging method. In International Con-
ference on Grammatical Inference.

S. Chen. 1996. Building Probabilistic Models
For Natural Language. Ph.D. thesis, Harvard
University.

C. Chomsky. 1957. Syntactic Structures. The
Hague.

D. Z. Hakkani-Tur, K. Oflazer, and G. Tur.
2000. Statistical morphological disambigua-
tion for agglutinative languages. In Proceed-
ings of the 18th International Conference on
Computational Linguistics.

J.E. Hopcroft and J.D. Ullman. 1979. Intro-
duction to Automata Theory, Languages, and
Computation. Addison-Wesley.

J.J. Horning. 1969. A study of grammatical in-
ference. Technical report, Computer Science
Department, Stanford University.

K. Oflazer, E. Gocmen, and C. Bozsahin. 1994.
An outline of turkish morphology. Technical
report, Computer Engineering Department,
METU, Turkey.

S. F. Pilato and R. C. Berwick. 1985. Re-
versible automata and induction of english
auxiliary system. In Proc. of the 23th ACL,
pages 70-75, Chicago, IL.

A. Stolcke and S. Omohundro. 1994. In-
ducing probabilistic grammars by bayesian
model merging. In International Conference
on Grammatical Inference.

