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1 Finite state OT: Frank and Satta
(1998)

Optimality Theory in the sense of Prince and
Smolensky 1993 is computationally very expen-
sive in the general case. It can be shown that
the set of optimal candidates for a given gener-
ator GEN and a set of constraints CON may
be undecidable even if both GEN and all con-
straints in CON are recursive. Under certain
general conditions, however, optimization does
not even exceed the limits of finite state tech-
niques. Frank and Satta (1998) show that the
optimal input-output relation is rational if (a)
GEN is a rational relation and (b) all con-
straints in CON are binary markedness con-
straints that have a regular language as exten-
sion. The proof of this fact makes crucial use
of an operation called “conditional intersection”
(Karttunen 1998 calls it “lenient composition”),
which, in the finite state calculus from Kaplan
and Kay (1994), can be defined as

R lc L
.= {R ◦ L, (domain(R) - domain(R

◦ L)) ◦ R}

The optimal input-output relation can be de-
fined by successively leniently composing GEN
with the (extensions of the) constraints in CON
in the order of their strength.

2 Bidirectional OT

Blutner (2000) introduces a notion of bidirec-
tional OT which rests on the intuition that an
input-output pair competes both with alterna-
tive outputs for the given input (as in standard
OT) and with alternative inputs for the given
output. Bidirectional OT has been successfully

applied to the analysis of quite a few phenom-
ena, mainly in the area of semantics and prag-
matics. Existing applications of bidirectional
OT make heavy use of “gradient” or “count-
ing” constraints, i.e. constraints that can be vi-
olated more than once. Typical examples are
“Do not accommodate!” or “Avoid focus!”. The
present paper explores the impact of gradient
constraints on the automata theoretic complex-
ity of both unidirectional and bidirectional OT.
Its main result states that for a given class of
Gen-relations and (gradient) constraints, bidi-
rectional OT is more complex than unidirec-
tional OT. While this class of OT-systems is
clearly too limited to model the intended ap-
plications of bidirectionality in semantics and
pragmatics—it is restricted to Gen-Relations
and constraints that can be modeled by finite
automata—it nevertheless illuminates the in-
trinsic complexity of bidirectionality, and it may
serve as starting point for more general investi-
gations into the complexity of OT.
Jäger (2000) defines bidirectional OT in the
way given below (which is equivalent to Blut-
ner’s original definition under very general con-
ditions).

Definition 1 (OT-System):

1. An OT-system is a pair O = 〈GEN, C〉,
where GEN is a relation, and C =
〈c1, . . . , cp〉, p ∈ N is a linearly ordered se-
quence of functions from GEN to N.

2. Let a, b ∈ GEN. a <O b iff there is an i
with 1 ≤ i ≤ p such that ci(a) < ci(b) and
for all j < i : cj(a) = cj(b).

Definition 2 (Bidirectional Optimality): An
input-output pair 〈i, o〉 is 2-optimal iff
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1. 〈i, o〉 ∈ GEN,

2. there is no 2-optimal 〈i′, o〉 such that
〈i′, o〉 < 〈i, o〉.

3. there is no 2-optimal 〈i, o′〉 such that
〈i, o′〉 < 〈i, o〉.

So an OT-System induces a ranking of candi-
dates in the usual way. Bidirectional optimality
differs from the unidirectional case in that an
input-output pair 〈i, o〉 can be blocked either by
a better alternative output o′ for i or a better
alternative input i′ for o. In Jäger (2000) it is
shown that despite its apparent circularity, 2-
optimality is a well-defined notion.

3 Finite state bidirectional OT

It is furthermore shown in Jäger (2000) that
Frank and Satta’s result carries over to the
bidirectional case. To gain an intuitive under-
standing of the construction, let us consider
how 2-optimality is evaluated in case of a fi-
nite GEN. Suppose GEN = {1, 2, 3}×{1, 2, 3},
and we have two constraints which both say
“Be small!”. One of its instance applies to
the input and one to the output. So we have
〈i1, o1〉 < 〈i2, o2〉 iff i1 ≤ i2, o1 ≤ o2, and
〈i1, o1〉 6= 〈i2, o2〉. Now obviously 〈1, 1〉 is 2-
optimal since both its input and its output obey
the constraint in an optimal way. Accordingly,
〈1, 2〉, 〈1, 3〉, 〈2, 1〉 and 〈3, 1〉 are blocked, since
they all share a component with a 2-optimal
candidate. Among the remaining candidates,
〈2, 2〉 is certainly 2-optimal because all of its
competitors in either dimension are known to
be blocked. This candidate in turn blocks 〈2, 3〉
and 〈3, 2〉. The only remaining candidate, 〈3, 3〉,
is again 2-optimal since all its competitors are
blocked.1 This example illustrates the general
strategy for the finite case: Find the cheapest
input-output pairs in the whole of GEN and
mark them as 2-optimal. Next mark all can-
didates that share either the input component
or the output component (but not both) with
one of these 2-optimal candidates as blocked. If
there are candidates left that are neither marked
as 2-optimal nor as blocked, repeat the proce-
dure until GEN is exhausted.

1 2-optimality thus predicts iconicity: the pairing of
cheap inputs with cheap outputs is optimal, but also the
pairing of expensive inputs with expensive outputs. See
Blutner’s paper for further discussion of this point.

The finite state construction in Jäger (2000) is
modeled after this algorithm. The first step
amounts to finding the globally optimal input-
output pairs in the whole of GEN. As in Frank
and Satta’s construction, this global optimiza-
tion is achieved by successively optimizing with
respect to the constraints in CON in the order
of their ranking. Jäger’s construction is also re-
stricted to binary markedness constraints. As a
further complication, we have to distinguish be-
tween input constraints and output constraints
(the former would not make sense in unidirec-
tional OT).

Definition 3 (Bidirectional lenient composition):
Let O = 〈GEN,CON〉 be an OT-system and
ci be a binary markedness constraint.

R blc ci
.=

R ◦ range(([] x range(R)) lc ci)
if ci is an output constraint

range(([] x domain(R)) lc ci) ◦ R
if ci is an input constraint

The set of globally optimal input-output pairs
with respect to a system of ranked constraints
CON = 〈c1, . . . , cn〉 can now be defined as
(where blc is assumed to be left-associative):

Definition 4 (Global optimization):

glop(R,CON)
.= R blc c1 blc · · · blc cn

The recursive aspect of the naive algorithm
given above can be modeled by means of the
recursive definition given in figure 1 on the fol-
lowing page.
Suppose after n round of marking candidates
either as 2-optimal or as blocked, a certain
set of pairs 2opt(n,R,CON) is known to
be 2-optimal. Restricting GEN to those in-
puts that do not occur in the domain of
2opt(n,R,CON) and to those outputs that
do not occur in the range of 2opt(n,R,CON)
excludes all input-output pairs that are either
in 2opt(n,R,CON) or blocked by some ele-
ment of 2opt(n,R,CON). The remaining re-
lation is thus the set of pairs that are nei-
ther known to be 2-optimal nor known to be
blocked at the current state. Applying the
glop operation to this set delivers the opti-
mal elements of this set. It is easy to see that
2opt(n + 1,R,CON) is a rational relation if
R and 2opt(n,R,CON) are and all constraints
are regular, and 2opt(0,R,CON) is certainly
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Definition 5:
2opt(0,R,CON)

.= {}
2opt(n+ 1,R,CON)

.= {2opt(n,R,CON),
glop(
~domain(2opt(n,R,CON)) ◦ R ◦ ~range(2opt(n,R,CON)),
CON)}

Fig. 1: Recursive definition of 2-optimality

rational. Thus if GEN is rational and all con-
straints in CON are regular markedness con-
straints, 2opt(n,GEN,CON) is a rational re-
lation for arbitrary n. In Jäger (2000) it is
proved that the set of 2-optimal candidates is
2opt(2i,GEN,CON), where i is the number
of constraints in CON. Bidirectional optimal-
ity can thus be modeled by means of finite state
techniques provided we are only dealing with
binary markedness constraints and all compo-
nents of the OT system in question are finite
state objects.

4 Gradient constraints in
unidirectional OT

Both Frank and Satta’s and Jäger’s construc-
tion are restricted to binary constraints. Kart-
tunen (1998) shows how Frank and Satta’s re-
sult can be generalized to counting constraints
which have an upper bound on the number of
constraint violations, and the same trick can be
applied to the bidirectional case. You simply
have to replace a constraint c which admits at
most n violations by n + 1 binary constraints
of the form “Don’t violate c at all!”, “Violate c
at most once”, ..., “Violate c at most n times!”.
No matter how these new constraints are ranked
with respect to each other, they will induce
the same ranking of candidates as the original
counting constraint. This technique is not ap-
plicable though if there is no upper bound for
the number of violations. Gerdemann and van
Noord (2000) present an alternative approach to
the finite state modeling of gradient constraints.
They implement the constraint “Parse!” from
Prince and Smolensky (1993) as a regular ex-
pression, even though “Parse!” can be violated
arbitrarily many times. Their approach is based
on the insight that the ordering on outputs that
is induced by this constraint is itself a rational
relation. In other words, there is a finite state
transducer T such that every suboptimal candi-

date (with respect to “Parse!”) can be obtained
by applying T to some other candidate.
Even though the mentioned authors only con-
sider this and closely related examples, their
method can easily be generalized. Let us call
a constraint c rational iff there is a rational re-
lation R such that for all candidates x and y it
holds that

c(x) < c(y)⇐⇒ xRy

Intuitively, the relation R represents the ranking
that is induced by the constraint c. In the sequel
we will write rel(c) for the rational relation that
represents a rational constraint c.
Suppose R is a rational relation and c a rational
constraint. Then the generalized lenient com-
position of R with rel(c) (written as “R glc
rel(c)”) relates an input i with an output o iff
iRo and among the possible outputs of i under
R, o violates c only minimally.

Definition 6 (Generalized lenient composition):

R glc S
.= R ◦ ~range(range(R) ◦ S)

Clearly the generalized lenient composition of
two rational relations is again a rational rela-
tion.
Lenient composition with binary constraints is
a special case of this more general notion. Sup-
pose the extension of some binary constraint c
is the regular language l(c). Then c is a ratio-
nal constraint, and rel(c) = l(c) x ˜l(c). As the
reader may convince himself, it generally holds
that

R lc L = R glc (L x ˜L)

The considerations from this section suggest
a general recipe for implementing OT-systems
with gradient constraints as regular expression:
Try to represent gradient constraints as ratio-
nal relations and use generalized lenient compo-
sition!
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5 Gradient constraints and
bidirectionality

The result summarized in section 3 suggest that
bidirectional OT is not more complex than uni-
directional OT in an automata theoretic sense,
despite its considerable conceptual complexity.
This is not true though: the construction from
the previous section does not carry over to the
bidirectional case. To see why, consider the fol-
lowing OT system: GEN is given by the regular
expression

[a*,b*] ◦ {{a x [], b}* ◦ [[] x a*,
b*], {a, b x []} ◦ [a*, [] x b*]}

It defines the relation {〈aibj , akbl〉|i = k∨j = l}.
We assume two constraint: c1: “No a!” applies
to the input, and c2: “No b!” applies to the
output. So the number of violations of c1 equals
the number of as in the string that is evaluated,
and likewise for c2. c1 is ranked higher than
c2 (but this plays no role in the sequel). The
corresponding relations are (if we restrict the
domain to [a*,b*], which is sufficient for the
given GEN):

rel(c1): [[] x a+, ?*]
rel(c2): [?*, [] x b+]

The set of 2-optimal input-output pairs
with respect to this OT system is the set
{〈aibk, aibi〉|i, k ≥ 0} ∪ {〈aibi, akbi〉|i, k ≥ 0}.
The proof of this fact is given in the appendix. It
is easy to see that this relation cannot be ratio-
nal. If it were, the image of the regular language
a+ under this relation would be regular too, but
this image is the non-regular {anbn|n > 0}.
To conclude this section, due to the recursive
definition of bidirectional optimality, bidirec-
tional optimization with respect to gradient con-
straints involves an aspect of counting (which
is missing in the unidirectional case) that can-
not be modeled by means of finite state tech-
niques. Thus despite the results from Jäger
(2000) that suggest the contrary, bidirectional
OT has a higher automata theoretic complexity
than unidirectional OT.

Appendix

To establish that the set of 2-optimal pairs
for the OT-system given in the last section is
{〈aiby, azbi〉|y = i ∨ z = i}, we make use of the
fact that for arbitrary n, 2opt(n,GEN,CON)

is a subset of the set of 2-optimal elements
of GEN with respect to CON (which is
proven in Jäger 2000). Let us abbreviate
2opt(n,GEN,CON) for the GEN and CON
given above as 2opt(n). We first prove by com-
plete induction over n that for all n:

(1) 2opt(n) = {〈aiby, azbi〉|i < n ∧
(y = i ∨ z = i)}

The base case (n = 0) is obvious since 2opt(0) =
∅ by definition. Now suppose the claim holds for
n. Then by definition 5,

2opt(n+ 1) = 2opt(n) ∪
glop(˜domain(2opt(n))
◦ GEN ◦ ˜range(2opt(n)),
CON)

Now domain(2opt(n)) = {〈aibk〉|i < n}, thus
˜domain(2opt(n)) = {〈aibk〉|i ≥ n}. Likewise,
˜range(2opt(n)) = {〈akbi〉|i ≥ n}. Thus

˜domain(2opt(n)) ◦GEN ◦ ˜range(2opt(n))

= {〈axby, azbw〉|x,w ≥ n ∧ (x = z ∨ y = w)}

Let us call this relation R0. To evaluate
glop(R0,CON), we have to replace lc in the
definition of blc by glc (since we are dealing
with gradient constraints). Given this, we get

R0 blc rel(c1) = {〈anby, azbw〉|w ≥ n ∧
(z = n ∨ y = w)}

(The effect of c1 is minimizing the number of
as in the input.) Let us call this relation R1.
Applying constraint c2 gives

R1 blc rel(c2) = {〈anby, azbn〉|z = n

∨y = n)}

(c2 minimizes the number of bs in the out-
put.) Putting the pieces together, this en-
tails that 2opt(n + 1) = {〈aiby, az, bi〉|i <
n + 1 ∧ (y = i ∨ z = i)}, which completes
the proof of (1). It remains to be shown that
2opt(ω+α) = 2opt(ω) for arbitrary ordinals α,
where 2opt(ω) =

⋃
n<ω 2opt(n). That this is so

follows from the fact that

˜domain(2opt(ω))◦GEN◦˜range(2opt(ω)) = ∅

hence 2opt(ω + 1) = 2opt(ω), and likewise for
all other transfinite ordinals. a



5 Gradient constraints and bidirectionality 5

References

Blutner, R. (2000). Some aspects of optimality in
natural language interpretation. to appear in
Journal of Semantics.

Frank, R. and G. Satta (1998). Optimality theory
and the generative complexity of constraint viola-
bility. Computational Linguistics, 24(1):307–315.

Gerdemann, D. and G. van Noord (2000). Ap-
proximation and exactness in finite state opti-
mality theory. In J. Eisner, L. Karttunen, and
A. Thériault, eds., Finite State Phonology. Pro-
ceedings of SIGPHON 2000. ACL.
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