Logical specification of transducers for NLP

Nathan Vaillette
Ohio State University and the Universitat Tibingen

1 Overview This paper concerns applications of
an algorithm that converts logical formulas which spec-
ify regular languages into finite-state machines accept-
ing the corresponding languages. We provide an ex-
tension to the logic for a limited class of regular re-
lations. We then demonstrate the usefulness of this
logic for specifying the sort of finite-state transducers
as are used in natural language processing by providing
a simple logical definition of the conditional replace-
ment operator.

2 Introduction Regular languages and relations
can be encoded using regular expressions, which can be
compiled to finite-state machines. This frees us from
the need to work with the machines directly, thus pro-
viding a higher-level description language. However,
this kind of description is not always the most conve-
nient. It would also be useful to be able to describe
regular sets in a logic. In many situations, this would
be closer to the thought process and would provide a
kind of executable specification for automata. Such a
declarative approach is also advantageous for verifica-
tion of correctness.

Monadic second-order logic (MSOL) provides an
expressive framework with an important connection to
regular sets. Theoretical work on the decidability of
restrictive theories of arithmetic in [1] and [2] estab-
lished an equivalence between certain MSOL languages
and finite-state automata. Applications of the theory
were not undertaken for some time, because of its ex-
tremely daunting complexity: in the worst case, the
space requirements of the conversion from logic for-
mulas to automata is bounded from below by a stack
of exponentials proportional in size to the number of
quantifiers in the formula [7]. However, recent imple-
mentations such as the the MONA [10] and MOSEL [§]
projects have demonstrated that the worst case need
not be a problem in practice.

The implementation described here is significantly
less ambitious and general than these projects and
unlike them does not use special techniques for au-
tomata representation. However, it has several fea-
tures that are advantageous, especially for NLP. It is
implemented within the FSA Utilities, an open-source
finite-state toolkit [14] which has been used in several
NLP applications. First of all, it is convenient to inte-
grate the logic into such a toolkit. Regular expressions

and defined macros of the Utilities can be mixed with
and even embedded in logic formulas. Secondly, the
Utilities extends the formalism of finite state machines
slightly by providing a direct treatment of predicates
and open (i.e. infinite) alphabets. This means that a
transition in an automaton need not only read a sin-
gle symbol or one of a set of symbols, but can also
read a specification like not_in([dog,cat]). Such
a transition accepts any symbol besides dog or cat,
thus recognizing an infinite set. Finally, the Utilities
also supports finite-state transducers, and in partic-
ular, transducers with open alphabets and predicates
and identity transitions over these. For example, a
identity transition can be specified to map any symbol
besides dog or cat to itself. This is particularly useful
for our extension of the logic to regular relations.

3 The logic The particular logical language we use
is a variant of MSO(Str) (cf. [13]). On our interpreta-
tion, a formula denotes a language over an alphabet
of symbols. The logic has monadic second-order vari-
ables, which are interpreted as sets of positions (lo-
cations of symbol tokens) in a string. (It lacks first-
order variables, but these can be simulated using the
singleton predicate.) Intuitively, a formula states a
restriction and denotes the set of all strings that obey
that restriction. The syntax we use will be based
on terms of Prolog, in which the Utilities are imple-
mented. A MSOL variable will be written as a Prolog
atom wrapped in v(...). The basic atomic formu-
las of the logic are as follows. singleton(v(x)) says
that the set of positions v(x) denotes is a singleton.
subset (v(x),v(y)) states a subset relation between
two sets. precedes(v(x),v(y)) states that v(x) and
v(y) are both strings of positions, and that v(x)
directly precedes v(y). Finally, matches(v(x),R),
states that v(x) is a string of positions and expresses
a matching relationship between v(x) and a regular
expression R. Whereas MSO(Str) only has predicates
relating a set to a single alphabet symbol, our version
with matches allows arbitrary regular expressions to
be embedded into logic formulas. matches(v(x),R)
holds when v(x) is a member of the language denoted
by R. The regular expression notation of the Utilities
used in this paper is given in table 1.

The language also has connectives and quantifiers
and (F1,F2), or(F1,F2), not(F), all(v(x),F), and

1 empty string

[E1,...En] concatenation of E1 ...En
{E1,...En} unionofEl,...En
Ex* Kleene closure
“E complement
“E term complement
El1 & E2 intersection
7 any symbol
El1 x E2 cross-product
E1l xx E2 same-length cross-product
AoB composition
id(E) identity transduction

Table 1: Regular expression operators

exists(v(x),F) with obvious interpretations. In the
implementation, derived formulas can be defined as
macros. The languages describable by formulas of the
logic are exactly the regular languages over an open
alphabet.

An example formula is given in figure 1. It
states that every occurrence of [a,b] must be di-
rectly followed by an occurrence of [c,d]. This de-
notes the same language as the regular expression
~“[? *,a,b,"[c,d,? *]], but in a more transparent
way.

all(v(x),
if(

matches(v(x),[a,b]),

%% then

exists(v(y),

and (

matches(v(y), [c,d]),
precedes (v (x),v(y))
NN

Figure 1: Example formula

4 Logic to automata The central insight which
allows the conversion of the logic formulas to automata
is the use of multi-tape automata, with extra tapes
added to represent the interpretation of the free vari-
ables of a formula. Each free variable has its own tape
with boolean values on it. The tape for variable v(x)
has T in every position which is in the interpretation
of v(x), and F everywhere else. The interpretation of
the formula as a language is obtained simply by strip-
ping off the extra tapes. The reader is referred to the
references cited for more details.

In our implementation, we simulate multi-tape
transducers on one-tape machines by interleaving the
tapes. We recursively compile logic formulas to
(pseudo-)multi-tape regular expressions, which the
Utilities compiles to automata.

5 A logic for regular relations The basic tech-
nique used to associate logic formulas with automata
recognizing regular languages can be carried over to
transducers for regular relations. A formula now char-
acterizes a relation by restricting the pairs of strings
that can occur in it. However, the problem arises that
negation and conjunction of formulas involves comple-
menting and intersecting the corresponding automata.
Therefore, it is necessary for the class of regular lan-
guages used to be closed under these operations. The
entire class of regular relations is unfortunately not.
Our solution will be to use only same-length relations.
These are ones which can be represented in a trans-
ducer in which each transition is over an pair (or more
generally, n-tuple) of symbols. The variables are inter-
preted as sets of positions in the aligned pair of strings.
Although this is a rather severe restriction, we will see
in the next section that it does not necessarily preclude
us from using the logic in the specification of a larger
class of relations.

To describe relations, we simply allow relational
regular expressions as the second argument of matches.
The one complication that arises is that although the
Utilities supports identity transitions over an open al-
phabet, it does not have a way to represent their nega-
tion, which would require a transition that reads any
symbol in a set and writes any distinct symbol in that
set. We circumvent this by using an modified repre-
sentation internally where every transition is followed
by either a 0, 1, or 2 to indicate whether it is a normal,
identity, or distinctness transition, where the latter is
used in the negation of identity. This means that the
logic can represent transductions that cannot be con-
verted back into the normal transducer representation
of the Utilities, e.g. not (matches (v(x),1d(?))) since
they contain distinctness transductions. These how-
ever are not needed in practice.

The next section explores an application of this
logic to the definition of the replace operator.

6 The replace operator Several varieties of
finite-state replacement operators have been proposed,
such as in [3], [4], [5], [6], [9], and [12]. These have in
common that they implement as a transducer replace-
ments like ¢ — 1/__p, which replaces every occur-
rence of ¢ in the input which occurs between A and
p with ¢. All of these implementations have a proce-
dural nature, based on a cascade of transducers where
special marker symbols are inserted to delimit regions
and are later deleted. They can become rather compli-
cated, and it would be hard to rigorously prove their
correctness. However, we can give a purely declarative
definition in the logic which has a clear connection to
the intended interpretation.

[6] defines an unconditional replacement operator
¢ — 1 as a regular relation made of regions where in-
put ¢ is paired with output ¢, alternating with regions

macro(to_replace(v(S),Phi),
matches (v(S),Phi xx 7 *)).

macro (to_preserve(v(S) ,Phi),
not (exists(v(S2),
subset (v(S82),v(S)),
to_replace(v(S2),Phi)))).

macro(in_replaced_region(v(X),Phi,Psi),
exists(v(S),

subset (v(X),v(S)),

to_replace(v(S),Phi),

matches(v(S) ,Phi x Psi),

exists(v(S2),
to_preserve(v(S2),Phi),
matches (v(S2),1d(?) %),
precedes(v(S),v(S2))))).

Figure 2: Preliminary definitions for the unconditional
replace operator

%% definition of Phi -> Psi
all(v(X),
if(
singleton(v(X)),
%% then

or(
in_replaced_region(v(X),Phi,Psi)
in_preserved_region(v(X) ,Phi,Psi)
).

Figure 3: The unconditional replacement operator

that don’t contain any occurrences of ¢ in the input
and that output the input unchanged. We can define
this similarly in the logic. Figure 2 gives some prelim-
inary macro definitions. (The first argument of macro
is a template which expands into the second argument,
the uppercase symbols being parameters which are in-
stantiated. For perspicuity, we allow formulas of the
form exists(v(V),F1,...Fn) where the Fs are inter-
preted conjunctively.)

A string is to_replace if it has the right in-
put; it is to_preserve if it doesn’t contain anything
to replace. The region v(S) in the definition of
in_replaced_region is one that is to_replace and
actually gets replaced (matches Input x Output) and
is followed by a region that is to_preserve and ac-
tually is preserved. A parallel definition can be given
for in_preserved_region, true of a preserved region
followed by a replaced one. With this machinery in
place, the definition of the unconditional replacement
operator in figure 3 states an alternation between such
regions.

macro(cond_to_replace(v(S) ,Phi,Lambda,Rho),
matches(v(S),Phi xx 7 *),
and (
exists(v(1),
matches(v(1l),? * xx Lambda),
precedes(v(1),v(8))),
exists(v(r),
matches(v(r),Rho xx 7 %),
precedes(v(S),v(r))))).

Figure 4: Conditional version of to_replace

This definition of the unconditional replacement
operator is by itself no improvement on Karttunen’s; in
fact it is a bit more complicated. The advantage that
it offers is that it can be extended very simply. First of
all, to turn it into a conditional replacement operator,
all we need to do is redefine to_replace to also look
at the context, as in figure 4. This makes figure 3 into
a definition of ¢ — ¢¥/A__p without any further work.
(Note that the context check in figure 4 is rightward
oriented in the sense of [6] because it checks left con-
text on the output side and right context on the input
side. Obviously, other orientations can be defined just
as simply.)

The definition of to_replace can be further re-
stricted to yield different varieties of replacement. For
instance, v(S) can also be constrained not to be a
proper prefix of any other string with the right in-
put in the right context. This can be used in a di-
rected replacement operator that does a left-to-right
longest-match replacement (though further restrictions
are necessary to ensure the right directionality).

The operators defined here use a logic of same-
length relations, so they cannot handle any replace-
ments involving insertions or deletions, i.e. where
Phi x Psi is not a same-length relation. However,
this restriction can be easily circumvented by us-
ing a special alphabet symbol 0 to mimic nulls,
as is done in two-level morphology [11]. Dele-
tions are handled straightforwardly by mapping in-
put to 0 and then composing the replace operator
with a transducer that removes all 0s from the out-
put. For instance, ([a,b] => [c,0] / x ___y) o
{id(¢0),0 x[1}* replaces any occurrence of [a,b]
between x and y with c. This is no problem, since
[a,b] x [c,0] is a same-length relation.

For insertions, we can likewise compose the replace
operator with a transducer that inserts Os into the in-
put. However, this will produce spurious outputs, since
the transducer can’t generally know where to insert the
0s. We can solve this problem by simply using a dif-
ferent definition of matches, according to which the
input side is not required to match some L, but rather
L with any number of 0s inserted anywhere. With this

mechanism, Os in the right place will match as desired,
while at the same time Os in the wrong place will not
block matching. This shows that the restriction of the
logic to same-length relations need not necessarily be
an obstacle to using it in the description of transducers
for regular relations in general.

7 Future work The usefulness of the logic of reg-
ular relations in defining replacement operators should
carry over to the declarative specification of other
transducers used in NLP. In a related vein, logical
specification of transducers is conceptually similar to
the rules of two-level morphology. Both describe a
mapping by constraining possible input-output corre-
spondences. Therefore, it seems that the logic could
be useful as more flexible formalism for stating two-
level rules than that of [11]. Lastly, since most of the
quantification we have used has been over strings of
positions instead of arbitrary, possibly discontinuous
sets, it would be interesting to explore whether a logic
with more restricted quantification would have desir-
able properties.

References

[1] J.R. Biichi. Weak second order arithmetic and
finite automata. Zeitschr. f. math. Logik und
Grundlagen d. Math. 6:66-92, 1960.

[2] C. C. Elgot. Decision problems of finite automata
design and related arithmetics. Trans. Amer.

Math. Soc. 98:21-52, 1961

D. Gerdemann and G. van Noord. Transducers
from Rewrite Rules with Backreferences. In EACL
99, Bergen, Norway, 1999.

Ronald Kaplan and Martin Kay. Regular mod-
els of phonological rule systems. Computational
Linguistics, 20(3):331-379, 1994.

[5] Lauri Karttunen. Directed replacement. In 34th
Annual Meeting of the Association for Computa-

tional Linguistics, Santa Cruz, 1996.

Lauri Karttunen. The replace operator. In Eman-
nual Roche and Yves Schabes, editors, Finite-
State Language Processing, pages 117-147. Brad-
ford, MIT Press, 1997.

[6]

[7] A. R. Meyer Weak monadic second-order the-
ory of successor is not elementary recursive. In
R. Parikh (ed.), Logic Colloguium (Proc. Sympo-
sium on Logic, Boston 1972), LNCS 453, pages

132-154, 1975.

P. Kelb, T. Margaria, M. Mendler, and C. Gsot-
tberger. MOSEL: A Flexible Toolset for MOnadic
SEcond-order Logic. In Proc. TACAS’97, Int.

[9]

[10]

[11]

[12]

[13]

[14]

Workshop on Tools and Algorithms for the Con-
struction and Analysis of Systems, LNCS 1217,
pages 183-202. Springer Verlag, 1997.

A. Kempe and L. Karttunen Parallel Replacement
in Finite State Calculus In COLING-96, Copen-
hagen, 1996.

N. Klarlund and A. Mgller. MONA Version 1.4
User’s Manual. Department of Computer Sci-
ence, Aarhus, Denmark, 2001. Available from
http://www.brics.dk/mona/manual.html.

Kimmo Koskenniemi. Two-level Morphology:
a General Computational Model for Word-form
Recognition and Production. Technical report 11,
Department of General Linguistics, University of
Helsinki, Finland, 1983.

Mehryar Mohri and Richard Sproat. An effi-
cient compiler for weighted rewrite rules. In 34th
Annual Meeting of the Association for Computa-
tional Linguistics, Santa Cruz, 1996.

Wolfgang Thomas. Languages, Automata, and
Logic Bericht 9607, Institut fiir Informatik und
Praktische Mathematik, Universitit Kiel, 1996.

Gertjan van Noord. FSA6 Refer-
ence Manual. Alfa-informatica, Uni-
versity of Groningen. Available from

http://odur.let.rug.nl/ vannoord/Fsa/Manual/

