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Chapter 1

Introduction

1.1 Summary Project Goals

Algorithms for Linguistic Processing is a research proposal in the area of compu-
tational linguistics. The proposal focuses on problems of ambiguity and processing
efficiency by investigating grammar approximation and grammar specialization tech-
niques.

Theoretical linguistics has developed extensive and precise accounts of the
grammatical knowledge implicit in our use of language. It has been able to adduce
explanations of impressive generality and detail. These explanations account for
speakers’ discrimination between different linguistic structures, their ability to dis-
tinguish well-formed from ill-formed structures, and their ability to assign meaning
to such well-formed structures. Grammars are hypothesised which model the well-
formed utterances of a given natural language and the meaning representations
which correspond with these utterances.

The smaller and younger field of computational linguistics has also been suc-
cessful in obtaining results about the computational processing of language. These
range from descriptions of dozens of concrete algorithms and architectures for un-
derstanding and producing language (parsers and generators), to careful theoretical
analysis of the underlying algorithms. The theoretical analyses classify algorithms
in terms of their applicability, and the time and space they require to operate cor-
rectly. The scientific success of this endeavor has opened the door to many new
opportunities for applied linguistics.

However a number of important research problems have not been solved. An
important challenge for computational accounts of language is the observed effi-
ciency and certainty with which language is processed. The efficiency challenge is
both theoretical and practical: grammars with transparent inspiration from linguis-
tic theory cannot be processed efficiently. This can be demonstrated theoretically,
and has been corroborated experimentally. In current practice, such grammars are
recast into alternative formats, and are restricted in implementation. Effectively,
large areas of language are then set aside.

The certainty with which language is processed is not appreciated generally.
But careful implementation of wide-coverage grammars inevitably results in sys-
tems which regard even simple sentences as grammatically ambiguous, even to a



12 NWO Pionier Progress Report

high degree. The computational challenge is to incorporate disambiguation into
processing.

There are two central leading hypotheses of the project. We shall explore ap-
proximation techniques which recast theoretically sound grammars automatically
into forms which allow for efficient processing. The hypothesis is that processing
models of an extremely simple type, namely finite automata, can be employed. The
use of finite automata leads to interesting hypotheses about language processing,
as we will argue below.

Second, we test the hypothesis that certainty can be accounted for—at least to
some extent—by incorporating the results of language experience into processing.
This will involve the application of machine learning techniques to grammars in
combination with large samples of linguistic behavior, called corpora. Such tech-
niques will ensure that a given utterance, which receives a number of competing
analyses if considered in isolation, will receive a single analysis if the relevant con-
text and situation are taken into account.

The project aims furthermore at significant partial results. In order to test
its processing claims, large scale grammars of some theoretical ambition must be
tested. While these exist now for English, the project will devote resources to ex-
tending existing Dutch grammars to further test the claims. An extensive Dutch
grammar in the public domain would be a major contribution to Dutch compu-
tational linguistics and to the international community. Second, the processing
techniques and concrete implementations are technology which directly enables a
number of interesting applications in spoken language information systems, lan-
guage instruction, linguistic research, grammar checking, and language aids to the
disabled.

1.2 Adaptations in Project Goals

The general project goals have been kept quite stable over the first two years of the
project. A number of changes have been made with respect to details of implemen-
tation of the original work plan.

In the original project proposal, the following sub-topics were identified:

1. Finite-state Language Processing
Grammar specialization (disambiguation)

Grammar development for Dutch

W N

Linguistically-informed search tool

The first two topics were large and the last two topics were smaller, in the sense
of manpower assigned to them.

It turned out that one of the reviewers for the proposed project was skeptical
about the fourth item (the linguistically-informed search tool). In addition, a search
tool of the type described in the original project proposal became available before
the start of the project: gsearch (Corley et al., 2001). Both considerations led to the
conclusion that it would be better to ignore this fourth theme, and instead focus on
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a different contribution to Dutch corpus linguistics. In particular, by providing a
corpus of syntactically annotated Dutch sentences, we hope to provide a resource
for theoretical linguists, corpus linguists and computational linguists that is at
least as useful as the originally proposed tool. In any case, it has already turned
out to be very useful for the development of the project itself.

The structure of the project can now be described as follows. Note that we have
chosen to implement many of the algorithms in a single coherent framework: a
natural language analysis system for Dutch, called Alpino. This system is shortly
described in chapter 2, although many of the sub-components are described in
more detail in later chapters. The topics of the project are as follows:

Computational Grammar Leonoor van der Beek, Gosse Bouma, Gertjan van No-
ord, Begona Villada.

In section 3 we provide an overview of the efforts devoted to the construction
of a computational grammar of Dutch. An important sub-task in the compu-
tational description of Dutch is related to the analysis of various types of fixed
phrases. Progress in this area is described in section 4.

Annotation Efforts Leonoor van der Beek, Gosse Bouma, Robert Malouf, Gertjan
van Noord.

A number of tools have been implemented to facilitate the construction of a
corpus of syntactically annotated Dutch sentences. In section 5 we describe
the various issues related to the construction of the Alpino Dependency Tree-
bank.

Finite State Language Processing Gosse Bouma, Jan Daciuk, Gertjan van Noord,
Robbert Prins.

We have worked on a variety of topics in the context of finite-state natural
language processing. In section 6 a number of results in the area of efficient
construction of compact finite state automata is described. These results are
relevant for the construction and use of very large dictionaries and language
models. In section 7 we describe a number of experiments that have been
performed in the area of finite-state approximation. Chapter 8 presents a gen-
eralization of finite state automata in which labels represent predicates over
symbols. This generalization is motivated by problems in natural language
processing. A finite-state implementation of Optimality Theory is the topic of
section 9. Chapter 10 describes finite-state solutions to the problem of hy-
phenation.

Disambiguation Tanja Gaustad, Robert Malouf, Tony Mullen, Gertjan van Noord.

In section 11 we describe a number of experiments we performed using log-
linear modeling for parse selection. A number of different algorithms for pa-
rameter estimation of such log-linear models are compared in chapter 12. In
section 13 we describe the progress we have made in the area of word sense
disambiguation.
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1.3 Results

The project has been running for more than two years. All of the sub-projects are
now well under way. A number of research results are already established. As
can be seen from the list of publications at the end of this report, not only the
post-docs and senior researchers have established and published these results,
but in addition the Ph.D. students have already done very useful work, and all
have published (refereed) papers already.

Below we summarize the most important results.

Alpino A natural language analysis system of Dutch has been constructed which
integrates various components designed in many of the sub-projects. The
system therefore is very useful as a test-bed for innovations. We also use
the system to construct various training sets which are then used to improve
some of the sub-components of the system (bootstrapping). Last year, the
system was chosen to be the winner of the Battle of the Parsers at the LOT
winterschool. The system constructs dependency structures as proposed by
the NWO project Corpus Gesproken Nederlands. An overview of the system is
presented in (Bouma, van Noord, and Malouf, 2001).

Computational Grammar A wide-coverage computational grammar of Dutch has
been implemented, in combination with a large lexicon. The grammar is ca-
pable of analyzing a large collection of Dutch constructions, including all fre-
quent ones. A Dutch description of the grammar will appear as an article
in the Nederlandse Taalkunde journal. The grammar employs a state-of-the-
art analysis of non-local dependencies (Bouma, Malouf, and Sag, 2001) and
Dutch er-pronouns (Bouma, 2000). The lexicon was partly derived from exist-
ing electronic resources (Bouma, 2001a; Bouma, van Eynde, and Flickinger,
2000). Preliminary results for the sub-project on the analysis of Dutch fixed
phrases, in particular focusing on collocational prepositions, are reported in
(Bouma and Villada Moiron, 2002).

Annotation Efforts A large collection of Dutch sentences has been annotated
(semi-automatically) by CGN dependency structures. At the time of writing,
about 6400 sentences from the cdbl (newspaper) part of the Eindhoven cor-
pus are annotated (Uit den Boogaart, 1975). In addition, various annotation
tools are implemented and integrated in Alpino. This greatly facilitates the
future annotation of corpus material. The treebank is freely accessible via
Internet: http://www.let.rug.nl/ vannoord/trees/. We report on this work in
(van der Beek et al., 2002). A number of search tools have been developed for
the treebanks; a report is presented in (Bouma and Kloosterman, 2002).

Finite State Language Processing With Lauri Karttunen and Kimmo Kosken-
niemi, Gertjan van Noord chaired the ESSLLI workshop on Finite State Meth-
ods in Natural Language Processing. The Workshop included two talks by
project members (Daciuk, 2001; Bouma, 2001b). In addition, a related special
event was organized entitled 20 years of two-level morphology. Currently, van
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Noord is editing (with Lauri Karttunen and Kimmo Koskenniemi) a special is-
sue of the Journal of Natural Language Engineering on Finite State Methods in
Natural Language Processing.

In the area of finite state language processing a number of algorithms have
been designed which efficiently construct very compact finite state automata
for the representation of natural language dictionaries and language models
(Daciuk, 2000b; Daciuk et al., 2000; Daciuk, 2000a; Daciuk, 2002; Daciuk
and van Noord, 2001; van Noord, 2000b).

Regular expressions are a powerful means for the construction of finite state
automata. A number of extensions that are particularly useful for natural
language processing were reported (van Noord and Gerdemann, 2000). We
designed a more powerful variant of finite state automata in which symbols
are represented by predicates (collaboration with Dale Gerdemann from the
university of Tubingen). The properties of the new model were investigated
and have been reported in an article in Grammars (van Noord and Gerdemann,
2001).

In the area of finite state approximation, a lexical analysis filter using a Hid-
den Markov Model, trained on an automatically generated annotated corpus,
has been designed. It has been shown that the use of this filter is extremely
effective: average parse times are up to twenty times shorter (!), whereas in
addition a small increase in accuracy is observed (Prins and van Noord, 2001).

In addition, we have worked on a number of other applications of finite-state
methods. With Dale Gerdemann (University of Ttibingen), Gertjan van Noord
gave a keynote lecture on the SIGPHON Finite State Phonology workshop, on
a finite-state method for the implementation of Optimality Theory phonology
(Gerdemann and van Noord, 2000).

We also established that finite-state techniques are applicable to the prob-
lem of hyphenation, and we investigated means of constructing finite state
automata for hyphenation automatically (Bouma, 2001Db).

Disambiguation In the area of word-sense disambiguation we established that the
use of so-called pseudo-words for evaluation purposes is inappropriate (Gaus-
tad, 2001).

In the area of parse selection for disambiguation we have made very good
progress. A number of log-linear models have been implemented, and their
success carefully evaluated. The most successful models solve about 70% of
the disambiguation problem for the Alpino system. A collection of algorithms
for training such log-linear models have been implemented. We showed that
certain more general methods that are being employed in other areas of com-
puting perform much better than the traditional IIS algorithm. A comparison
appears in (Malouf, 2002). In log-linear models, the selection of features is an
important issue. In (Mullen, 2002) various methods for feature merging were
investigated; the experiments include an experiment with the Alpino system.
This experiment was presented at the NLPRS conference (Mullen, Malouf, and
van Noord, 2001).
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Quantitative Evaluation

The availability of annotated corpus material enables us to monitor the progress
of the Alpino system in a quantitative way. In the first published result of the
Alpino system (Bouma, van Noord, and Malouf, 2001), f-scores were reported over
all sentences of up to twenty words of the corpus (in as far as these were annotated
at the time). The best reported score for this sub-corpus was 75%. These exper-
iments were performed in the spring of 2001. In the mean-time we decided that
concept-accuracy is a somewhat more reliable metric (the metric is defined in chap-
ter 5). Concept-accuracy scores are always a little bit lower than f-scores. Even so,
the latest version of the Alpino system obtains an accuracy score of 82.5% (using
the default settings) on a random sample of (annotated) sentences of up to twenty
words.



Chapter 2

The Alpino System

Alpino is a wide-coverage computational analyzer of Dutch which aims at accurate,
full, parsing of unrestricted text. For English, tremendous progress has been made
in the area of wide-coverage parsing of unrestricted text. Many of the proposed
systems are statistical parsers, but systems based on a hand-written grammar
exist as well. The aim of Alpino is to provide computational analysis of Dutch with
coverage and accuracy comparable to state-of-the-art parsers for English.

The construction of a dependency structure on the basis of some input proceeds
in a number of steps, described below. The first step consists of lexical analy-
sis (section 2.1). An important component of lexical analysis is a Hidden Markov
Model which filters unlikely lexical categories. This component is described in de-
tail in chapter 7. The lexicon constitutes the linguistic knowledge source of this
processing phase. The lexicon is described in more detail in chapter 3.

In the second step a parse forest is constructed (section 2.2), on the basis of the
Alpino grammar. The grammar is described in more detail in chapter 3.

The third step consists of the selection of the best parse from the parse forest
(section 2.3). The last step employs various disambiguation models. Our efforts are
described in more detail in chapter 11.

To evaluate the coverage and disambiguation component of the system, a test-
bench of syntactically annotated material is absolutely crucial. Given the current
lack of such material for Dutch, we have started to annotate corpora with depen-
dency structures. Dependency structures provide a convenient level of representa-
tion for annotation, and a fairly neutral representation for further processing. The
annotation format is taken from the project Corpus Gesproken Nederlands (Corpus
of Spoken Dutch) (Oostdijk, 2000). The construction of dependency structures in
the grammar and our tree-banking efforts are described in section 5. A variety of
tools to help in constructing the treebank are integrated in Alpino.

The various components of Alpino are integrated in a single system which can
be used in a variety of ways. Typical uses include interactive usage for grammar de-
velopment or tree-banking. The graphical user interface built with Hdrug is useful
here (van Noord and Bouma, 1997b). The interface provides various visualization
formats for parse trees, dependency structures, feature structures, type hierarchies
and derivation trees.

For evaluation purposes, or for the construction of automatically gen-
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erated annotated training material, the system is employed in a non-
interactive mode. Finally, a simple experimental web-interface is supported:
http://gudrun.let.rug.nl/vannocordbin/alpino.

An important practical problem is the huge size of the various knowledge
sources that are employed (dictionary, language models). In section 6.3 a tech-
nique is presented which solves this problem.

2.1 Lexical Analysis

The lexicon associates a word or a sequence of words with one or more lexical
categories. Such categories contain information such as part-of-speech, inflection
as well as a subcategorization frame. For verbs, the lexicon typically hypothesizes
many different categories, differing mainly in the subcategorization frame. For
sentence (1), the lexicon produces 83 categories.

(1) Mercedes zou haar nieuwe model gisteren hebben aangekondigd
Mercedes should her new  model yesterday have  announced
Mercedes should have announced her new model yesterday

Some of those categories are obviously wrong. For example, one of the cate-
gories for the word hebben is verb (hebben, pl, part_sbar_transitive (door)).
The category indicates a finite plural verb which requires a separable prefix door,
and which subcategorizes for an SBAR complement. Since door does not occur
anywhere in sentence (1), this category will not be useful for this sentence. A filter
containing a number of hand-written rules has been implemented which checks
that such simple conditions hold. For sentence (1), the filter removes 56 categories.
After the filter has applied, feature structures are associated with each of these
categories. Often, a single category is mapped to multiple feature structures. The
remaining 27 filtered categories give rise to 89 feature structures.

An important aspect of lexical analysis is the treatment of unknown words.
The system applies a number of heuristics for unknown words. Currently, these
heuristics attempt to deal with numbers and number-like expressions, capitalized
words, words with missing diacritics, words with ‘too many’ diacritics, compounds,
and proper names.

If such heuristics still fail to provide an analysis, then the system guesses a
category by inspecting the suffix of the word. A list of suffixes is maintained which
predict the category of a given word. If this still does not provide an analysis, then
it is assumed that the word is a noun.

In addition to the treatment of unknown words, the robustness of the system is
enhanced by the possibility to skip tokens of the input. Currently this possibility is
employed only for certain punctuation marks. Even though punctuation is treated
both in the lexicon and the grammar, the syntax of punctuation is irregular enough
to warrant the possibility to ignore punctuation. For instance, quotation marks
may appear almost anywhere in the input. The corpus contains:

(2) De z.g. ” speelstraat , die hier en daar al bestaat ?
The so-called ” play-street , that here and there already exists ?
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Apparently, the author intended to place speelstraat within quotes, but the
second quote is not present. During lexical analysis, categories are optionally ex-
tended to include neighboring words which are classified as ‘skip-able’.

After the system has found all possible lexical categories, a further filter is ap-
plied which removes unlikely lexical assignments. This filter is described in full
detail in section 7. This filter removes many unlikely lexical categories. This speeds
up the parser a lot, whereas no reduction in accuracy is observed.

2.2 Parsing

The initial design and implementation of the Alpino parser is inherited from the
system described in (van Noord, 1997a), van Noord et al. (1999) and van Noord
(2001).

The Alpino parser takes the result of lexical analysis as its input, and produces
a parse forest: a compact representation of all parse trees. The Alpino parser is a
left-corner parser with selective memoization and goal-weakening. It is a variant of
the parsers described in van Noord (1997a). We generalized some of the techniques
described there to take into account relational constraints, which are delayed until
sufficiently instantiated (van Noord and Bouma, 1994).

As described in van Noord et al. (1999) and van Noord (2001), the parser can
be instructed to find all occurrences of the start category anywhere in the input.
This feature is added to enhance robustness as well. In case the parser cannot find
an instance of the start category from the beginning of the sentence to the end,
then the parser produces parse trees for large chunks of the input. A best-first
search procedure then picks out the best sequence of such chunks. Depending on
the application, such chunks might be very useful. In the past, we successfully
employed this strategy in a spoken dialogue system (van Zanten et al., 1999).

2.3 Parse Selection

The motivation to construct a parse forest is efficiency: the number of parse trees
for a given sentence can be enormous. In addition to this, in most applications the
objective will not be to obtain all parse trees, but rather the best parse tree. Thus,
the final component of the parser consists of a procedure to select these best parse
trees from the parse forest.

In order to select the best parse tree from a parse forest, we assume a parse
evaluation function which assigns a score to each parse. In section 11 we describe
experiments with a variety of parse evaluation functions based on log-linear models.

A naive algorithm constructs all possible parse trees, assigns each one a score,
and then selects the best one. Since it is too inefficient to construct all parse trees,
we have implemented the algorithm which computes parse trees from the parse
forest as a best-first search. This requires that the parse evaluation function is
extended to partial parse trees. In order to be able to guarantee that this search
procedure indeed finds the best parse tree, a certain monotonicity requirement
should apply to this evaluation function: if a (partial) tree s is better than s’, then
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beam < 10 < 20 < 30
acc (%) msec out | acc (%) msec out | acc (%) msec out
1 83.46 233 82.18 1004 77.66 2263
2| 83.76 243 82.59 1195 78.24 2813
4| 84.06 253 82.64 1439 78.52 3626
8| 84.02 262 82.75 1765 78.71 4976
16 | 84.01 273 82.38 1718 1 78.20 6525 2
32| 84.02 285 82.43 2180 1 77.34 7678 7
64| 84.02 295 82.43 2992 1
128 | 84.02 310 82.50 4480 1
o | 84.02 270

Table 2.1: Effect of beam-size on accuracy and efficiency of parse selection

a tree t which contains s should be better than t’ which is just like t except it has
s’ instead of s. However, instead of relying on such a requirement, we implemented
a variant of a best-first search algorithm in such a way that for each state in the
search space, we maintain the b best candidates, where b is a small integer (the
beam). If the beam is decreased, then we run a larger risk of missing the best
parse (but the result will typically still be a relatively ‘good’ parse); if the beam is
increased, then the amount of computation increases too. Currently, we find that
a value of b =4 is a good compromise between accuracy and efficiency. In table 2.1
the effect of various values for b is presented for a number of different treebanks.
In the first columns, we have listed the result on all sentences of the treebank with
up to ten words (1450 sentences). In the second column, we have listed the result
on a random sample of sentences from the treebank of up to twenty words (415
sentences). In the third column, we have listed the result on a random sample of
sentences from the treebank of up to thirty words (588 sentences). Per column,
we list the concept accuracy number (this metric is explained in chapter 5) as well
as the mean amount of milliseconds CPU-time per sentence, and the number of
sentences for which the parser could not find an analysis due to memory limitations
(in such cases the accuracy obviously is dropped too, since no correct result is
constructed).
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Chapter 3

Computational Grammar

3.1 Introduction

The wide-coverage computational grammar for Dutch developed within the project,
known as the Alpino grammar, consists of a collection of syntactic rules, defined
in terms of general principles, and a dictionary. Together, they cover a large and
non-trivial part of Dutch syntax. Below, we describe the grammar formalism, the
organization of the rule component, and the main principles used in the definition
of grammatical rules. We also describe how the construction of the dictionary,
which was to a large extent derived from existing resources.

3.2 Head-driven Phrase Structure Grammar

Head-driven Phrase Structure Grammar (Pollard and Sag, 1994; Sag and Wasow,
1999) is a linguistic theory which aims at formally explicit descriptions of natural
language phenomena. As computational considerations have played an important
role in the design of the formalism, the formalism is also widely in use in compu-
tational linguistics. Wide-coverage computational grammars based on HPSG exist
at least for English, German and Japanese. Analyses of various aspects of Dutch
grammar can be found in van Noord and Bouma (1994), Bouma and van Noord
(1998), Van Eynde (1996), van Eynde (1999), and Bouma (2000).

Linguistic knowledge is represented in HPSG in terms of attribute-value matri-
ces (avM’s). The dictionary consists of words which are assigned AvMs expressing
the relevant linguistic properties. Examples, for the words vrienden (friends) and
vraag (question) are given in figure 3.1. The AvMs are of type noun. This implies,
among other things, that an attribute such as NFORM is defined. The value [NFORM
norm] distinguishes between ‘ordinary’ nouns and expletives such as het (i) and er
(there). The type verb licenses the attribute VFORM. The value of the attribute Sc (for
subcategorization) is a list, specifying the linguistic properties of the phrases which
may occur as complements of the word. The infinitival form of the verb achter-
volgen (chase), for instance, selects a direct object. The noun vraag may select a
subordinate clause (which has to be either an indirect question introduced by a
WH-constituent or by the complementizer of (whether)). As the complement clause
may be extraposed, it is realized on EXTRA, instead of on sc. The attribute DT rep-



24

NWO Pionier Progress Report

a. vrienden: b. vraag:
[noun 1 [noun
NFORM norm NFORM norm
sc () sC ()
EXTRA () sbar
CAT n EXTRA (|C_TYPE ind-q V of|)
DT HD vriend DT (1]
I MoDS () CAT n
HD vraag
DT
vC (]
[MODS ()
c. achtervolgen:
verb
VFORM inf
noun
sc < CASE acc >
DT
EXTRA ()
CAT \Y%
HD achtervolg
DT
OBJ1
MODS ()

Figure 3.1: Words and their linguistic properties, encoded in attribute-value matri-
ces.

resents a dependency tree, which is a representation of the grammatical relations
in the phrase headed by this word. The construction of dependency trees in HPSG
is explained at the end of this section.

HPSG is usually seen as a (radical) lexicalist theory, i.e. as a theory which
combines general rule schemata with rich and detailed lexical information. In Sag
(1997), a variant of HPSG is proposed in which rules are much more construction
specific. Construction specific rules are useful especially in the description of con-
structions which are not determined exclusively by lexical material. The grammar
of relative clauses, for instance, and the analysis of headless relatives in particular,
requires syntactic structures which cannot be attributed to specific lexical heads.
By defining rules in terms of more general structures, and by defining structures
in terms of general principles, a rule component can be defined which contains a
potentially large number of specific rules, while at the same time the relevant gen-
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eralizations about these rules are still expressed only once. The Alpino grammar
is implemented along the lines of the proposal in Sag (1997). Apart from linguistic
considerations, and important argument in favor of such an implementation is the
fact that parsing using a grammar with specific rules appears to be more efficient
that parsing on the basis of general rule schemata.

Almost all rules in the grammar are instances of a so-called headed structure.
A headed structure consists of a mother node, a head daughter, and zero or more
non-head daughters. Every headed structure satisfies the following principles:

¢ Head-feature principle: The HEAD features of the mother and head-daughter
are unified.

e Valence principle: The AvM of a complement daughter must unify with the
first element on sc of the head. The sc value of the mother is the sc value of
the head daughter minus any selected complement daughter.

¢ Filler Principle: The AvM of a filler daughter must unify with the first element
on SLASH of the head. The SLASH value of the mother is the SLASH value of the
head daughter, minus any selected filler daughter. !

¢ Extraposition Principle : The AvM of an extraposed daughter must unify with
the first element on EXTRA of the head. The EXTRA value of the mother is the
EXTRA value of the head daughter, minus any selected extraposed daughter.

e Adjunct and Dependency Principle: The value of MODS on the mother equals
the value of MODS on the head daughter concatenated with the DT value of any
modifier daughter. The value of all other DT attributes is unified on mother and
daughter.

The head feature principle presupposes a distinction between head features and
non-head features. In standard HPSG, the distinction is implemented by grouping
the head features under a single attribute HEAD. In Alpino, the head features are
explicitly listed in the definition of the head feature principle.

A head-complement structure is a specialization of headed structure, which ad-
mits, apart from the head, exactly one dependent which acts as complement. In
that case, the valence principle states that the value of sc on the mother equals
that of sc on the head, minus the first element (which is unified with the comple-
ment daughter. As there are no filler, extraposed, or modifier daughters, the values
SLASH, EXTRA and DT/MODS will be identical on the mother and head daughter.

The head-filler, head-extra, and head-adjunct structures are specializations of
headed structure, which consist of a head and resp. a filler, extraposed or adjunct
daughter. The value of resp. SLASH, EXTRA, of DT/MODS will differ between mother
and head daughter, while the value of all other attributes is shared.

Most rules in the grammar are defined as instances of one of the structures just
mentioned. In most rules, only the category of the mother and the daughters and
their relative order needs to be specified. In the examples below, the head has been
underlined:

!See Bouma, Malouf, and Sag (2001) for a motivation of this head-driven approach to extraction.
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(1) a. head-complement-structure: v — np v
b. head-adjunct-structure: n — ap n

Note that the rules in (1) are instances of a head-complement-structure and a head-
adjunct-structure, respectively. During compilation of the grammar, all constraints
which apply, in order to satisfy the definition of these structures, are added to the
rule. This leads to the rules as given in (2). The attributes NFORM and VFORM are
head features. Some other head features defined for nominal and verbal categories
are left out. (H|T) represents a list consisting of a head H and a tail T, L& M
represents the concatenation of two lists L and M.

(2) a. [verb ] - -
VFORM VFORM [
sc @12
SC noun
7 SLASH
SLASH EXTRA
EXTRA
EXTRA [4@[5El
DT (6]
DT (6l L J
b. | noun noun
NFORM [1] NFORM
sc sc
adj
SLASH SLASH
EXTRA [@a3] — | EXTRA EXTRA
DT (9]
CAT (6] CAT (6]
DT HD DT HD
MoDs  ([9][8]) MODS

The rules license the VP in (3-a), as shown in (3-b) (irrelevant features have been
suppressed). The constituent oude vrienden is an instance of rule (2-b), while the
VP is an instance of rule (2-a).

(3) a. (Kim blijft) oude vrienden achtervolgen
(Kim continues) old friends chase

Kim continues to chase old friends
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[verb 1
SC ()
b. CAT verb
DT HD achtervolg
oBJ1
noun /ﬂ/#ﬂflgﬂfi#ﬂ\\\\\\\\\\\\\
CAT verb
noun
[ . sc [
DT HD vriend
DT
|_ MODS (2)) J
adj noun
CAT adj CAT noun achtervolgen
DT DT HD vriend
[ HD oud
MODS ()
oude vrienden

The rules in (4) license structures in which a verbal constituent combines with an
extraposed subordinate clause.

(4) a. head-extra-structure: n — n sbar

b. [noun noun
AGR [l AGR al
SC SC
— @[sbar}
SLASH SLASH
EXTRA EXTRA ((g|[4])
DT DT
c. head-extra-structure: v — v sbhar
d. [verb 1 [verb i
AGR [l AGR (]
sC sc
— @[sbar}
SLASH SLASH
EXTRA EXTRA ((d|[4))
DT DT

For the examples in (5-a) and (5-b), the rules above give rise to the structures in
(5-c) and (5-d).

(5) a. (Kim moet) de vraag wie het plan heeft opgesteld beantwoorden
(Kim must) the question who the plan has formulated answer
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Kim must answer the question who has _formulated the plan
b. (Kim moet) de vraag beantwoorden wie het plan heeft opgesteld

(Kim must) the question answer who the plan has formulated
verb
¢ sC
EXTRA ()
noun [verb "
SC >
EXTRA () |- J
EXTRA ()
[Z)O(I;ZA @) [2][shar] beantwoorden

de vraag wie het plan heeft opgesteld

verb
d. sc ()

EXTRA ()

verb /\b

sc () [2l[sbar]

EXTRA ([2))

1 [noun ] o«
EXTRA (2)) EXTRA () wie het plan heeft opgesteld

A beantwoorden

de vraag

For purposes such as parser and grammar evaluation and comparison, we have
extended the grammar with a level of representation called dependency structure.
The idea is that a dependency structure provides relatively detailed information
about the syntactic structure of a sentence, while at the same time it abstracts away
from all aspects of the syntactic analysis which are relevant for grammar internal
purposes only. A dependency structure encodes the grammatical relations within
a sentence or phrase. An example is given in 3.2. The nodes in the tree are labeled
with a grammatical relation (hd for head, su for subject, mod for modifier, etc.),
an optional index (the index 1 encodes that the subject of moet is identical to the
subject of beantwoord), and a syntactic category. Leaves consist of a grammatical
relation, a syntactic category, and the root of the word with a subscript indicating
the string position, or of a grammatical relation and an index only. An important
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property of dependency structures is the fact that they may contain phrases which
correspond to a discontinuous string at the level of word order. The dependency
constituent de vraag of Anne komt, for instance, corresponds to an NP and an
extraposed subordinate clause at the level of word order.

By being fairly general and easy to construct, dependency structures are pro-
vide an attractive level of representation for (semi-) manual annotation of test and
training material. In fact, a number of syntactic treebank projects have adopted
dependency relations. For us, the most important of these is the Dutch project
Corpus Gesproken Nederlands. The dependency structures produced by Alpino are
compatible with their standards. This has the advantage that we can build on the
annotation guidelines developed within that project, while at the same time material
annotated in the CGN project can be used as testing and training material for the
Alpino grammar. Our own annotation efforts are discussed in more detail in chap-
ter 5. Below, we will briefly describe how dependency structures are constructed in
the grammar.

Dependency structures are constructed by adding a feature DT (for dependency
tree) to lexical entries and rules. Verbs The DT value of a verb, for instance, speci-
fies the grammatical relations of the complements which the verb selects for. The
infinitival form beantwoorden, for instance, selects for a direct object (0BJ1). The
lexical entry for beantwoorden, including its DT attribute is given in figure 3.1. The
values for DT constructed by the grammar can be mapped deterministically onto
proper tree-like representations as given in figure 3.2.

3.3 The rule component

The current version of the grammar contains over 270 rules. Almost half of
them are head-modifier or head-complement structures. The other half consists of
head-filler-structures (voor topicalization, WH-questions, and relatives), head-extra-
structures (for extraposed relatives, complement clauses vps, PPs, and comparative
clauses), rules for coordination, appositions, verbal constituents introduced by a
complementizer, and some rule to cover typical spoken language constructs.

The examples below provide a global overview of the coverage and level of detail
of the rules.

Complements. The rules in (6) license verbal complements in positions left or
right of the verbal head. The label v-arg(left) denotes the disjunction of NP, PP, and
AP. The label v-arg(right) denotes the disjunction of S, PP, en VP.

(6) a. head-complement-structure : v — v-arg(left) v
b. een boek kopen (buy a book), in Sinterklaas geloven (believe in Sinterklaas),
aardig vinden (consider nice, like).
c. head-complement-structure : v — v v-arg(right)
d. geloven dat Sinterklaas bestaat (believe that Sinterklaas exists), geloven in
Sinterklaas (believe in Sinterklaas), proberen om te komen (try to come).

The rules in (7) define potential complements of prepositions, where p-arg is a dis-
junction over NP[NFORM norm], PP, AP, S, and VP. Rule (7-c) cover PPs containing a
preposition as well as a particle.
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top
smain
SuU hd
1 vC
verb .
noun moet, inf
ik —
h .
SuU d obj1
1 verb n
beantwoords p
—_— \
det mod hd ve
det adj noun c
des lastig, vraags P
cmp body
comp ssub
of7
/\
su hd
noun verb
Anneg kome

Figure 3.2: Dependency tree for the sentenceKim moet de lastige vraag beantwoor-
den of Anne komt (Kim must answer the difficult question whether Anne is coming).

(7) a. head-complement-structure : v — p p-arg
b. in Groningen (in Groningen), tot aan de rand (till at the edge), op rood (on red),
zonder dat het opvalt (without that it attracts attention, i.e. without attracting
attention), zonder te twijfelen (without to doubt, i.e. without doubt)
c. head-complement-structure : v — p p-arg part
d. naar Groningen toe (to Groningen_to, i.e. towards Groningen).

Comparatives. Comparative clauses introduced by dan or als) are complements
which are often not adjacent to the head selecting for such a complement. Heads
which license a comparative clause introduced by dan are adjectives in the com-
parative form (8-a)-(8-c), the adjectives meer en minder(8-d)-(8-g) (which can also
be used adverbially), and the nouns (niets, (nJiemand), (nJergens anders, niets/niks
(8-h)-(8-1). Heads which license an als comparative clause are combinations of even
+ adjective (8-j)-(8-1), (net) zo + adjective (8-m)-(8-0), the adverb evenveel (8-p), and
NPs containing the determiner hetzelfde or dezelfde (8-q)-(8-s).

(8) a. deze prijs ligt dichter bij het bod van Bayer dan bij dat van Petrofina
this price is closer to the bid by Bayer than to that of Petrofina
b. de internationale fondsen waren aan het slot alle lager dan
the international funds were at the end all lower than
bij opening
at the opening
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c. zeker nu hij tien kilo lichter is dan op de dag dat hij bij de
definitely now he ten kilos lighter is than at the day that he in the
Deventerkernploeg werd ingelijfd
Deventer-selection was incorporated

d. de gemeenten verkopen meer grond dan zij kunnen aankopen
the cities sell more land than they can buy

e. Leo is minder ijverig dan zijn broertje
Leo is less  hard-working that his kid brother

f. hoeden worden meer gedragen dan vroeger
hats are more worn that in the past

g. een programma waarmee hij zich als artiest minder kon afficheren
a program  with which he himself as artist less  could promote
dan als vakman
than as professional

h. Niks anders doen dan almaar ruw materiaal verzamelen
Nothing else do  but continuously raw material collect

i. over van Gaal niets  dan lof
about van Gaal nothing but good words

j. deze Kkoersen zijn even zeldzaam als witte raven
these races are as scarce as white ravens

k. Even duister en ondoorgrondelijk als het feit dat het kennelijk het
As dark and opaque as the fact thatit apparently the
verkeerde resumé was
wrong resume was

1. even belangrijk als een goed in elkaar getimmerd partijprogramma
as important as a good together constructed party programme

m.tenminste driemaal zo groot als tien jaar geleden
at least three times as big as ten yeas ago

n. niet meer zo goed als vroeger
not anymore as good as in the past

0. maar wij zijn net zo goed machteloos  als de regering en de
but we are equally without power as the government and the

Verenigde Naties
United Nations

p. Uitgeschakeld worden voor het Jaarbeursstedentoernooi zou
Eliminated  being for the Jaarbeurs-cities-tournament would be
evenveel betekenen als niet meer meetellen in het internationale voetbal

equal meaning as no longer count in the international soccer
g. jonge mensen uit dezelfde leeftijdscategorie als de werkende jongeren
young people from every  age category as the working youngsters

r. Dat was dezelfde als gisteren
that was the same as yesterday

s. Daar zat hetzelfde idee achter alsbij 't aderlaten
there was the same idea behind as with the bleeding
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In the grammar it is assumed that lexical elements which may license a comparative
clause contain an EXTRA value which contains a comparative phrase (COMPP). As
extraposed comparative clauses may be adjoined to Ap, NP, and VP nodes, we predict
that extraposition is possible within an (predicative) adjectival constituent (9-a) and
within a vP (9-b).

(9) a.
AP[EXTRA (COMPP[als])] COMPP[als]
ADV[EXTRA (COMPP[als])] COM@\
even zeldzaarn a S A
witte raven
b. VPROJ

VPROJ[EXTRA (COMPP[dan])] COMPP|dan]

ADV[EXTRA (COMPP[dan])] comp|dan] ADV

| |

meer gedragen dan vroeger

The comparative clause itself consists of the complementizer als or dan followed by
an NP, adverb, subordinate clause, VP, A (witter dan wit) or PP.

Note that this analysis uses the fact that all rules are subject to the extraposition
principle, and thuis instantiate the feature EXTRA. To implement our analysis of
extraposition of comparative phrases, we only have to assume that adjectives in
their comparative form as well as a number of specific lexical items select for a
comparative clause via their EXTRA attribute. The extraposition analysis subsumes
cases where the complement is actually adjacent to the licensing head (lager dan
bij de opening, niets dan lof] while at the same time it predicts that (non-vacuous)
extraposition is obligatory with heads such as even and zo (*even als witte raven
zeldzaam, *zo als vroeger goed).

Modification of nouns. In (10) we present rules for modification of nouns. We
distinguish between modification by an adjective, PP, or relative clause on the one
hand, and appositions on the other. The latter introduce a dependency relation
APP, and are therefore licensed by a head-app-structure. The category app-n defines
which nouns may occur as heads in constructions such as een zak aardappelen (a
bog (of) potatos).

(10) a. head-adjunct-structure : n — n pp
b. familie uit Amsterdam (family from Amsterdam)
c. head-adjunct-structure : n — nrel
d. familie die niemand kent (family who nobody knows)
e. head-adjunct-structure : np — np post-np-adv
f. Beerta senior/alleen/zelf/ook (Beerta senior/ only/himself/also), 2 februari
aanstaande (2nd (of) february next),
g. head-adjunct-structure : n — pnn
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h. Chevrolet programma (Chevrolet programme)
head-app-structure : n — app_nn

[y

j. een zak aardappelen (a bag (of) potatos), het medium film (the medium
movie),

k. head-app-structure : n — n np

1. de familie Balemans (the family Balemans), de Oostenrijker Hermann Nitsch

(the Austrian Hermann Nitsch), de hoofdstad Luxemburg (the capital Luxem-
burg)

Genitive Partitives. The following examples contain a special form of modification,
as they consist of a noun followed by an adjective with genitive -s inflection:

(11) a.’t Is me wat moois

It is me something special
This is quite something!

b. Dat belooft niet veel goeds
That promises not much good
That does not look very promising

c. Wat voor stoms  heb je nu weer uitgehaald?
What for stupidity have you now again been up to
What stupidity have you been up to this time?

d. Het is niets bijzonders
It is nothing special

There is a small class of nouns which license this construction: iets, wat, niets,
niks, niet veel, weinig, genoeg, allerlei, meer and wat voor). In the lexicon they
are defined as being of type iets_.n (12-a). This type only occurs in the rule for
genitive partitives (12-b). Apart from an iets_n noun the rules requires an adjectives
constituent where the head has a genitive -s ending. The genetive inflected forms of
adjectives are constructed during compilation of the lexicon and are distinguished
from attributive and predicative forms by the AFORM attribute, which takes as value
iets in this case (12-c).

(12) a. iets_n
. AGR thi&indef&sg
iets:
sC ()

NFORM norm
b. head-adjunct-structure: np — iets_n iets_adj

 lekkers: [ad] ) ]
AFORM iets

Although the genetive construction above has a a number of idiosyncratic aspects,
our analysis still uses general principles and lexical categories as much as possible.
For instance, as the adjectives in this construction are only distinct from regular
adjectives in their AFORM value, we predict that coordination of genetive forms is
possible, using the general rule for adjective coordination:
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(13) invallen, waarin ritme en melodie samenvloeiden tot
ideas in which rhythm and melody unite to
iets moois maar grilligs
something beautiful but capricious

The interaction of construction specific rules with general principles is illustrated in
(14-a). The NPniks anders is analyzed as a genitival partitive. As the rule licensing
such structures is an instance of a head-adjunct-structure, the value of EXTRA is
passed on as required. Without additional stipulations, it is therefore predicted
that the comparative clause license by anders can be extraposed.

(14) a. Niks anders doen dan almaar ruw materiaal verzamelen
Nothing else do  but continuously raw material collect
b. VPROJ[EXTRA ()]

VPROJ[EXTRA {(coMPP[dan])] COMPP[dan]

NP[EXTRA (COMPP[dan])] COMP|dan] SBAR

Nm (compp[dan])] doen dan

‘ ‘ almaar ... verzamelen

niks anders

Other rules. Instead of describing in detail some of the more involved aspects of
Dutch syntax, we will give some references to earlier work which has been used as
the basis of our implementation. Following Koster (1975), we assume a relationship
between finite verbs in first or second position in main clauses and the vp-final po-
sition which contains finite verbs in subordinate clauses. A non-transformational
approach to expressing this relationship is discussed in van Noord et al. (1999).
The analysis of Dutch verb clusters follows the analysis for German based on argu-
ment inheritance in Hinrichs and Nakazawa (1994) and applied to Dutch in Bouma
and van Noord (1998) and van Noord and Bouma (1997a). The most important
difference with the proposal in Bouma and van Noord (1998) is the fact that the
Alpino grammar does not make use of linear precedence constraints. Thus, word
order is encoded by means of ordinary rewrite rules. The computational burden
of using linear precedence constraints in this case was less attractive than the fact
that some generalizations are missed in the present implementation. Topicaliza-
tion, constituent questions, and relative clauses use the analysis of extraction as
proposed in Bouma, Malouf, and Sag (2001). The only difference is that Alpino does
not treat the selection of adjuncts lexically, and thus, extraction of adjuncts is also
implement in a non-lexicalist fashion. Again, computational considerations are the
reason for adopting this solution.

3.4 The dictionary component

Accurate, wide-coverage, parsing of unrestricted text requires a lexical component
with detailed subcategorization frames. A lexicon that is incomplete in this respect
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can seriously degrade parser performance. Carroll and Briscoe (1996) observe, for
instance, that for their initial system the largest source of error on unseen input is
the omission of appropriate subcategorization values for lexical items (mostly verbs).
Lexical databases providing subcategorization information are rare and there-
fore researchers have focused on the question of how to obtain such information
automatically from raw or annotated text. For Dutch, the tools or corpora to do
automatic acquisition are not available. On the other hand, at least two lexical
resources (The CGN/Celex database and the Parole dictionary) provide detailed
information concerning the syntactic valency of lexical items. In this section, we
address the question to what extent using these lexical resources can lead to an ad-
equate initial lexical component for the Alpino grammar. Below, we explain to what
extent detailed dependency frames can be extracted from the two existing, general-
purpose, lexical resources abd how the extracted information is incorporated in
Alpino, We also provide an indication of the coverage of the resulting lexicon.

3.4.1 Acquisition of Dependency Frames

For lexicalist grammar formalisms, the availability of lexical resources which spec-
ify subcategorization frames is crucial. In HPSG, for instance, phrase structure
schemata rely on the fact that each head contains a specification of the elements
it subcategorizes for. If such specifications are missing, the grammar will wildly
overgenerate.

Furthermore, to create lexical entries with dependency relations, the subcate-
gorization information provided by the lexical database must be relatively detailed.
For instance, to distinguish between a direct and indirect object, either a distinc-
tion between accusative and dative case must be made (for which there is no mor-
phological evidence in Dutch), or the relevant dependency label must be provided
explicitly. To distinguish between pPP-complements with the prepositional or loca-
tive/directional complement relation, detailed semantic information or an explicit
dependency label must be provided.

Lexica with subcategorization information are often not available or have very
limited coverage, and therefore researchers have attempted to extract the relevant
information from unannotated corpora automatically (Brent, 1993; Carroll and
Rooth, 1998; Briscoe and Carroll, 1998; Schulte im Walde et al., 2001). While
this has the potential advantage of giving frequency information for subcategoriza-
tion, it also has the drawback that considerable energy has to be spent on creating
a (shallow) parser able to recognize with sufficient accuracy the relevant syntac-
tic configurations. Acquisition of subcategorization information from a syntacti-
cally annotated corpus is much more straightforward, leading mainly to questions
whether a dependent is to be counted as a selected argument or an adjunct (Collins,
1999; Sarkar and Zeman, 2000), but obtaining reasonable coverage requires large
corpora.

3.4.2 Using Existing Resources

Currently the resources required to do automatic extraction of dependency frames
for Dutch are not available. However, two lexical resources exist which provide de-
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pendency frames. These have been used to create a lexicon for the Alpino Grammar
with detailed subcategorization and dependency information for verbs and nouns.
An overview of the 10 most frequent dependency frames for verbs in the Alpino
lexicon is given in table 3.1. All dependency frames are also defined for verbs con-
taining a separable verb prefix. The lexicon was too a large extent derived from
existing resources. Below, we describe the verbal entries in both resources.

Celex (Baayen, Piepenbrock, and van Rijn, 1993) is a large lexical database for
Dutch, with rich phonological and morphological information. For use within the
project Corpus Spoken Dutch (CGN), this database has been extended with depen-
dency frames (Groot, 2000). The dependency labels provided by the Celex/CGN
database are intended to support the syntactic annotation of the material collected
in the CGN project. As we adopted the CGN guidelines for syntactic annotation (i.e.
dependency trees with specific dependency relations assigned to the constituents),
the information in the Celex/CGN database can be used directly for constructing
lexical entries compatible with the Alpino grammar.

Some key figures are given in table 3.2. Note that there is considerable variation
in the distribution of dependency frames. A large number of frames is associated
with only a few verbs, with 300 dependency frame types being associated with only
a single verb.

The Dutch Parole lexicon? has been created as part of a project aiming at the
development of uniform lexical and corpus resources for a number of European
languages. The Parole lexicon comes with detailed subcategorization information,
but dependency relations differ from those in the CGN proposal. Key figures are
given in table 3.3.

While the mapping from Parole dependency frames into the CGN dependency
frames is mostly straightforward, there are also a number of problematic cases.
The ADV dependency relation in Parole, for instance, has no obvious corresponding
dependency relation in CGN, although manual inspection leads us to suspect that
in many cases it corresponds to the LD (locative/directional complement) relation.
Currently, verbs with dependency frames containing the ADV relation are not ex-
tracted. Another notable difference between the two sources is the relatively small
number of intransitive verbs in Parole. This is partly related to the ADV dependency
relation in Parole. Adverbial elements are often optional and subject to wide vari-
ation (i.e. adverbial pps are not restricted to a small set of pforms, and adverbial
dependents can often be both adverbs and pps. However, even if these elements are
counted as true modifiers (and thus not as part of the subcategorized-for depen-
dents of the verb), the number of intransitives remains relatively small.

3.4.3 Verbal entries in the Alpino lexicon

Dependency frames for the verbal lexicon of the Alpino Grammar have been con-
structed using the dependency information provided by CGN/Celex, Parole, and by
entering definitions by hand. The latter has been done mostly for auxiliary and
modal verbs, a small class of high-frequent elements which are exceptional in a
number of ways. The CGN/Celex dictionary is exceptionally large. As the Celex

2http:/ /www.inl.nl/corp/parole.htm
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Dependency frame Roots

Example

[SU:NP][OBJ1:NP] 3438

[SU:NP] 2158
[SU:NPI[LD:PP(pform)] 1389
[SU:NP][PC:PP(pform)] 1271
[SU:NP][OBJ1:NP][LD:PP(pform)] | 1013
[SU:NPJ[OBJ1:NP][PC:PP(pform)] | 855
[SU:NP][OBJ1:SDAT] 418
[SU:NP][OBJ2:NP][OBJ1:NP] 314
[SU:SDAT][OBJ1:NP]

274

[SU:NP][SE:NP][PC:PP(pform)] 248

zij aanvaardt het plan

she accepts the plan

hij bakent het plan af

he marks out the plan

zij aarzelt

she hesitates

hij barst los

he explodes

zij arriveert in Groningen

she arrives in Groningen

hij blijft weg uit Groningen

he stays away from Groningen

zij ageert tegen het plan

she agitates against the plan

hij barst in tranen uit

he bursts into tears

zij aait hem over de bol

she caresses him over the head

hij brengt de kinderen onder bij de buren
he takes the children to the neighbours
zij achtervolgt hem met het plan

she chases him with the plan

hij bereidt haar op het plan voor

he prepares her for the plan

zij aanvaardt dat het plan mislukt
she accepts that the plan fails

hij biecht op dat het plan mislukt.

he confesses that the plan fails

zij belemmert hem de doorgang

she blocks the passage for him

hij biedt haar het plan aan

he offers her the plan

dat het plan kan mislukken benauwt haar
that the plan might fail bothers her
dat het plan mislukt brengt onrust teweeg
that the plan fails causes distress

zij baseert zich op dit plan

she uses the plan as a basis

hij geeft zich over aan de politie

he surrenders himself to the police

Table 3.1: The 10 most frequent verbal dependency frames in the Alpino dictionary.
Frames are specified as a list of complements, where complements are specified as
function:category. The LD relation denotes a locative of directional complement,
and SE denotes an inherently reflexive complement.
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11800 Total number of verbal stems
21800 Total number of dependency frames
650 Dependency frame types
300 Unique dependency frame types
6574 [SU:NPJ[OBJ1:NP]
4188 [SU:NP]
1161 [SU:NP][LD:PP(pform)]
1021 [SU:NP][PC:PP(pform)]
826 [SU:NPJ[OBJ1:NP]J[LD:PP(pform)]
549 [SU:NPJ[OBJ1:NP][PC:PP(pform)]
408 [SUP:(het)][OBJ1:NP][SU:SDAT]
341 [SU:NP]J[OBJ1:SDAT]
275 [SU:NP][OBJ2:NP][OBJ1:NP]
274 [SU:NPJ[SE:NP]

Table 3.2: Key figures and the 10 most frequent dependency frame types for the
CGN/Celex lexical database. (Pform is a placeholder for various preposition forms.
SUP is the relation names for expletive subjects SDAT is the category for subordi-
nate clauses introduced by the complementizer dat).

database comes with frequency information, we currently only include those lexical
items whose frequency is above a certain threshold. For verbal stems, this means
that roughly 50% of the stems in Celex is included in the Alpino lexicon. All verbal
stems from the Parole lexicon with a dependency frame covered by the grammar
are included.

Extraction of verbs with a specific dependency frame from Celex and Parole
requires that a particular frame in the database is identified and given a definition
in the Alpino Grammar. Currently, for 28 different CGN/Celex dependency frames
a definition in the grammar has been provided. This covers over 80% of the verbal
dependency frames in the CGN/Celex database, 10,400 of which are sufficiently
frequent to be included in the Alpino lexicon. For 15 different dependency frames
in the Parole lexicon a definition in Alpino is present. Using these, we extract over
4,100 dependency frames.

As CGN/Celex is the larger database, one might suspect that this database is
more exhaustive than Parole. However, the union of the frames extracted from
CGN/Celex and Parole contains 11,700 frames, which means that Parole con-
tributes 13% of the frames in the Alpino lexicon. An overview of overlap and
non-overlap for the most frequent frames extractable from both sources is given
in table 3.4.

For transitive and intransitive verbs, we see that over 85% of the stems in Parole
are present in CGN/Celex as well. For most other dependency frames, however, the
overlap is generally much smaller, and a significant portion of the stems present
in Parole is not present in Celex. This suggests that, for more specific subcatego-
rization frames, both resources are only partially complete, and that not even the
union of both provides exhaustive coverage.
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3200 Total number of verbal stems
5000 Total number of dependency frames
320 Dependency frame types
190 Unique dependency frame types
1566 [SU:NP]J[OBJ1:NP]
474 [SU:NP][PC:PP(pform)]
378 [SU:NP][ADV:PP(pform)]
208 [SU:NP][OBJ1:NP]J[OPT:PC:PP(pform)]
205 [SU:NP]
204 [SU:NPJI[ADV:ADV]
204 [SU:NP][OBJ1:NP][OPT:ADV:PP(pform)]
163 [SU:NP][OBJ1:NP][PC:PP{pform)]
107 [SU:NP][SE:NP][PC:PP(pform)]
101 [SU:NP]J[VC:S(subordinate,dat)]

Table 3.3: Key figures and the 10 most frequent dependency frame types for the
Parole lexical database. Notation has been made conformant with the CGN/Celex
notation where possible. Optional complements are marked OPT.

As we are currently only using the most frequent 50% of the CGN/Celex
database in the Alpino lexicon, we also compared Parole with the complete
CGN/Celex database. Here we found that the absolute number of dependency
frames goes up dramatically only for transitive and intransitive verbs, and that
practically all intransitive and transitive Parole stems are included in the full
CGN/Celex database. For the other dependency types, however, the figures are
comparable to those given in table 3.4. The relatively high number of transitive and
intransitive verbal stems in Parole also present in Celex is therefore probably due
to the fact that in Celex these are assigned as a default to most verbal stems. This
also explains why the low frequency verbs consist almost exclusively of stems with
transitive or intransitive dependency frames.

A more direct method to establish coverage of the lexicon is to see to what
extent the dependency frames present in a treebank are covered by the lexicon.
For a small dependency treebank, annotated according to the format presented in
section 2, we extracted all verbal heads, together with their non-modifier depen-
dents. Sets of dependents were identified with specific dependency frames. For
instance, if a verb occurred with an NP subject and a PP with the PC dependency
relation and prep as head, it is assumed that this verb must be associated with the
[SU:NP] [PC:PP(prep)] dependency frame. Coverage can now be tested by counting
how often a dependency frame in the treebank also occurs in the lexicon. Extrac-
tion of dependency frames is mostly straightforward. Problematic cases are those
where one dependency frame is more general than another. For instance, a verb
occurring with a VP-dependent introduced by the complementizer om might be as-
sociated with a dependency frame selecting for an om-VP, but also with a more
general dependency frame selecting for a VP (with or without complementizer). In
such cases, we check whether at least one of the potential frames occurs in the
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Dependency Frame Overlap Celex only Parole only Total
[SU:NP][OBJ 1:NP] 1810 1211 240 3261
[SU:NP] 257 1697 42 1996
[SU:NP][PC:PP(pformy] 337 541 273 1151
[SU:NPJ][OBJ 1:NP][PC:PP(pform)] 129 375 308 812
[SU:NP][VC:S(subordinate)] 103 136 103 342
[SUP:NP(het)][OBJ 1:NP][SU:CP] 7 247 5 259
[SU:NP][OBJ2:NP][OBJ1:NP] 65 171 28 264
[SU:NP][SE:NP][PC:PP(pform)] 65 62 102 229
[SU:NPJ[SE:NP] 49 137 65 251
[SU:NP][VC:VP] 10 16 37 63

Table 3.4: Dependency Frames and the number of stems occurring with this frame
in both resources, in CGN/Celex only, in Parole only, and the total number of stems
with this dependency frame in the resulting Alpino Lexicon.

lexicon.

We applied the evaluation method described above to a treebank, constructed for
grammar evaluation purposes, consisting of 424 short sentences (up to 10 words)
selected from the Eindhoven-corpus (Uit den Boogaart, 1975), with a total of just
over 2,200 words. The test-set contained 473 verbal heads, 417 of which (88%)
occurred in a dependency configuration which was also present in the lexicon. Al-
though one obviously would like to obtain figures from a larger test-set, we believe
that this is an encouraging result. Carroll and Briscoe (1996), for instance, report
that in a small test set 12% of sentences failed to parse due to missing subcat-
egorization information in their ANLT lexicon (which is comparable in size to our
lexicon, and contains subcategorization information extracted automatically from
a learners dictionary). Coverage seems higher than what can be achieved by meth-
ods based on automatic extraction of subcategorization frames. Briscoe and Carroll
(1997), for instance, estimate a token recall (i.e. the percentage of true positives of
the learned frames in a corpus) of 81%.

We have extracted dependency frames for nouns, but have not carried out a
systematic evaluation for these dependency frames. Currently, we are extracting
almost 2.000 dependency frame tokens for nouns selecting prepositional comple-
ments, more than 1.000 dependency frame tokens for nouns selecting verbal (infini-
tival or finite sentential) complements, and over one hundred frames for measure
nouns and titles (vice-president Jansen).

3.5 Grammatical Coverage

We performed various experiments to gain insights in the performance of the gram-
mar and disambiguation component of the Alpino system. The quantitative results
of these experiments are discussed elsewhere in this report. A manual, qualita-
tive, error analysis learns that the most important linguistic phenomena which are
problematic for the grammar are:
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¢ Ungrammatical sentences and spelling errors:

(15) a. Het EEGtoporgaan heeft besloten WestDuitsland zijn beperkende maa-
tregelen moet opheffen.
The EEG-institute has decided (that) West-Germany must remove its re-
strictions.

b. Ruim dertig percent van de tientallen mijoenen Japanse tv-kijkers slaat

nooit een aflevering over.
Over 30% of the tens of mi(l)lions Japanese tv-viewers never misses a
show

¢ Unknown words not properly analyzed by the heuristics:

(16) Langzaamaan werden we bekend.
Slowly, we became known

The word langzaamaan was erroneously analyzed as a noun.

¢ Complex compounds:

(17) a. de 8 procent staatsleningen
the 8% loans
b. de 4 x 200 meter ploeg
the 4 x 200 meters team

¢ Interjections and other inserted material:

(18) a. De Nachtwacht van Rembrandt kun je, plus hondje, in levende lijve

tegenkomen in Berg en Terblijt.
Rembrand’s Nachtwacht you may, with dog, encounter alive in Berg and
Terbljjt

b. Weinig goeds, zo heeft Leo Ferre ondervonden in Vichy.
Not much good, so Leo Ferre has experienced in Vichy

c. "Ook over de wijk waar ik zelf woon (Buitenveldert in Amsterdam) wor-
den de meest krasse veroordelingen uitgesproken.”
About the part of town where I live myself (Buitenveldert in Amsterdam)
one hears the most outrageous statements.

e Missing lexical valency frames:
(19) Dit jaar ziet men zich al voor problemen gesteld.
this year sees one oneself already for problems posed

this year, one already sees oneself confronted with problems

The verb zien apparently selects of an inherent reflexive as well as a past
participle phrase in this case.
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¢ PP-complementation of nouns and extraposition and topicalization of PP-

complements selected by nouns:

(20) a. Bij de minister werd veel begrip gevonden voor de bij de vakbeweging

levende wensen.
The minister showed much sympathy for the demands of the union

b. Op bijna alle brieven hebben we geen reacties ontvangen.
At almost all letters, we got no response

c. Van 't woonhuis bleef een groot gedeelte gespaard.
Of the house, a large part remained intact

d. Van dat alles bleef niets heel.
Of it all, not much remained intact

Recognizing predicative modification (bepaling van gesteldheid):

(21) Gebouwd op een wielbasis van 2,95 m is de wagen 23 cm korter dan een
Impala Coupé en ook 10 cm smaller
Built on a basis of 2.95 meters, the car is 23 cm shorter than the Impala
Coupé and 10 cm less wide.

Floating quantifiers

(22) De kostelijke ladingen werden allemaal afgekeurd, [. . .|
The valuable cargos were all rejected

Clefts:

(23) a. Het zijn overigens niet de eerste plaatsen die haar het meeste plezier
hebben gedaan.
It are, by the way, not the first places which gave her most pleasure
b. Het zijn de spellen zelf die de gemoederen in beweging brengen.
It are the games themselves which cause a commotion

Elliptic constructions, some coordinations, extraposed conjuncts:

(24) a. Kantfluweel en in combinatie met lurex is zijn bescheiden doorkijkma-

teriaal voor de avond
velvet and, in combination with, lurex is his modest transparent material
Jfor the evening

b. De vertegenwoordigers van het gas- en electriciteitsbedrijf zouden van-
daag en die van de mijnwerkers overmorgen hun stakingsplannen bek-
end maken |[...]
The representatives of the gas and electricity companies would an-
nounce their plans today and the miners the day after tomorrow

c. Er worden bloembakken gewenst, goede gordijnen, en sfeervolle ver-
lichting.
One wants flower pots, good curtains, and fancy lights
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3.6 Future Work

We have already made significant progress towards the goal of developing and im-
plementing a wide-coverage grammar of Dutch. In the remainder of the project, we
will focus our attention at a number of specific issues which we think will increase
the coverage of the grammar even further.

First of all, lexical coverage can still be improved. The most important issue
for our lexicalist grammar is to improve the coverage of valency patterns. Using
existing resources, we managed to construct a lexicon which covers approximately
88% of the valency patterns of verbs found in real text. We hope to improve on
this number by deriving valency patterns from annotated treebanks (i.e. our own
material as described in chapter 5 and the syntactically annotated part of the CGN)
and by means of automatic acquisition of valency from larger (but unannotated)
corpora.

Second, idiomatic, more or less fixed, expressions turn up very frequently in
the treebank. At the moment, we only deal with a fraction of these expressions.
To improve coverage of such expressions, we expect that the lexicon needs to be
extended with the relevant lexical items, and that in some cases the grammar needs
to be adapted in order to account for the fact that some idiomatic expressions
exhibit irregular syntax. The work on idiomatic expressions is described in more
detail in the next chapter.

Finally, we hope to improve on our coverage of coordination and elliptical con-
structions. The error analysis in the previous section pointed out that complicated
forms of coordination, as well as most aspects of ellipsis, are outside the scope of
the current grammar. Below, we outline how we hope to make progress on the
treatment of ellipsis in the grammar.

The resolution of elliptical structures requires a method for determining which
constituents in one part of an utterance have to be considered as elided in a sec-
ond part of the utterance. In addition, we have to determine which constituent a
non-elided phrase is parallel with. Our goal is to determine a list of parallelism con-
straints that contains (1) the hard constraints that have to be met in order to have
a grammatical elided phrase and (2) the soft constraints that reflect the probability
of certain reconstructions of elided phrases. These constraints should be ordered
according to their violability. In a followup, the hard constraints should be imple-
mented in a grammar for elliptical structures and the soft constraints should be
implemented in a probabilistic postprocessor. We expect that these soft constraints
are applicable in other contexts as well, e.g., for the disambiguation of ‘ordinary’
coordination.

In the literature on ellipsis, some constraints can be found. These are hard con-
straints, mainly on English elliptical structures. Dalrymple, Shieber, and Pereira
(1991) for example illustrate the existence of parallelism constraints with some ex-
amples. The examples they give of parallelism constraints are stativeness of verbs
(25-a), pleonasticity of nouns (25-b) and the constraint on depth of embedding
(25-c). These are constraints on elements in the source clause and their corre-
sponding elements in the target clause. Kehler adds to this two constraints on
parallelism between the elided phrase and the antecedent in the source clause in
symmetric coordinations (Kehler, 1994). The two elements should be of the same
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voice (25-d) and the antecedent of an elided verbal phrase should be verbal as well
(25-e). However, these constraints on English elliptical structures can not straight-
forwardly be translated to Dutch. For example, in Dutch the constraint on identical
voice is not valid (26).

(25) a.*Dan likes gold and George is too

b*It is raining and George is too

c.*The major of Washington left, and New York did too

d*The decision was reversed by the FBI, and the ICC did too [reverse the

decision]

e.*This letter provoked a response from Bush, and Clinton did too [respond]
(26) Deze week is de oude president vertrokken en de nieuwe benoemd

this week is the former president left and the new  appointed

This weelk, the former president left and the new one was appointed

From the standard work of Dutch descriptive grammar, the following hard con-
straints on Dutch ellipsis and parallelism can be extracted (Haeseryn and et al.,
1997):

¢ an elided verb does not have to agree with the antecedent in person or number

(27) Jullie komen vandaag en ik morgen pas
you come today andI tomorrow only

You are coming today and I will only come tomorrow
¢ an elided noun does not have to agree with the antecedent in number

(28) Hij koopt twee boeken en ik een
he buys two books andI one

He buys two books and I buy one book

e in forward contraction, only constituents are elided, except for measure
phrases or wh-heads.

(29) a*Piet ligt onder de bank en Marie ligt op
Piet lies under the couch and Marie lies on
Piet lies under the couch and Marie lies on the couch
b. Piet koopt een pond andijvie en Marie een kilo
Piet buys a pound endive and Marie a kilo

Piet buys a pound of endive and Marie buys a kilo of endive

(30) Piet weet hoeveel jongens er meegaan en Marie hoeveel
Piet knows how-much boys  there go-with and Marie how-much
meisjes
girls
Piet knows how many boys are coming with us and Marie knows how
many girls are
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¢ if a finite verb is a parallel element, the verbal and predicative complement
must be realized as well

(31) *Wij zullen jullie niet kunnen helpen en jullie zullen ons ook niet
we will you not can help andyou will us too not
kunnen
can

We won’t be able to help you and you won’t be able to help us either

(32) *Ik was gisteren ziek en jij was eergisteren
I was yesterday ill and you were the-day-before-yesterday
Yesterday I was ill and the day before you were ill

e in a subordinate source clause with a subject and a direct object, a noun
phrase in the target clause can only be parallel with the subject in the source
clause if the object in the target clause is parallel with some clause too

(33) a.*Hij zegt dat hij tulpen haat en zij
he says that he tulips hates and she

He says that he hates tulips and she too
b. Hij zegt dat hij tulpen haat en =zij rozen
he says that he tulips hates and she roses

He says that he hates tulips and that she hates roses

Furthermore, the following soft constraints are mentioned:

¢ In both main clauses and subordinate clauses, parallelism of noun phrases
with subjects is dispreferred

(34) Jan vindt Marie schuldig en Frans onschuldig
Jan finds Marie guilty = and Frans not-guilty

preferred: Jan judges Marie guilty and Jan judges Frans not guilty
dispreferred: Jan judges Marie guilty and Frans judges Marie not guilty

e A non-stressed pronoun is preferred not to be parallel to a noun phrase

(35) Jan geeft me een stuiver en Piet een dubbeltje
Jan gives me a penny and Pieta dime

Jan will give me a penny and Piet will give me a dime

This also illustrates the fact that a certain ranking exists in the soft constraints:
the first one mentioned above is in conflict with the second one, but apparently,
the second is stronger (in (35), the subject is parallel, which is dispreferred by the
first soft constraint).

We expect to find more constraints in the Dutch literature on elliptical struc-
tures. Another important source of information is corpora. The examples of ellipses
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that we have already collected and that we will find after a corpus search provide a
good source of information on what elliptical structures can be found. Information
from corpora is especially important for finding soft constraints and ranking them,
for only corpora can provide information on the use of different types of ellipses and
their frequency.

The next step would be to rephrase the constraints in terms that are compatible
with an HPSG framework. We hope to be able to make generalizations over the
observed data. During this formalization, we will have to keep in mind that the
account is to be implemented in Alpino. On the one hand, this means that we
have to think about the computational aspects of our account. On the other hand,
the Alpino grammar as it is right now contains information that can be used in
parallelism constraints. For instance:

e an adverb is preferred to be parallel with an adverb with the same value for
the feature TMpPLOC, which specifies if it is temporal or locative. Else, it is
preferred not to be a parallel element at all

For evaluation of our account, we will again use a corpus. The Alpino De-
pendency Treebank already contains enough occurrences of ellipsis to give a first
impression of the quality of an analysis. For a thorough quantitative analysis, a
test suite of elliptical structures should be constructed.



Chapter 4

Modification in Dutch semi-fixed
phrases

4.1 Overview

Phrases that exhibit irregular syntax and semantics pose difficulties for a com-
putational parser. Currently, the Alpino parser fails to find a correct syntactic
representation (parse) for idiomatic expressions due to missing lexical entries and
subcategorization frames of frequent verbs (e.g. hebben) that may also be part of
idiomatic phrases.

(Semi-)fixed phrases exhibit idiosyncratic behavior in their syntactic distribu-
tion, and they may often have two different semantic interpretations: a literal and
an idiomatic one.

Saying that fixed phrases exhibit idiosyncratic syntax means that it cannot be
easily predicted when an idiomatic expression undergoes passivization, raising, in-
sertion of modification, ‘it-cleft’, etc. This supports the argument that fixed phrases
cannot always be built by regular grammar rules (Sailer, 2000; Riehemann, 2001).

To distinguish which interpretation is the correct one, a parser may assign a
different syntactic representation to a sentence depending on which semantic in-
terpretations the sentence entails.

To illustrate this, consider example (1).

(1) Ze hebben weer een nieuwe machinatie in petto
they have againa new  plot in store

‘They have a new plot in store.’

A computational parser will, most likely, assign the syntactic representation
in (2) to the sentence in (1); the parser will take een nieuwe machinatie as direct
object of hebben and in as head of an adjunct PP. Unfortunately, the word petto
would not be recognized at all (see (2)). Petto does not occur in other expressions in
the language and, therefore it needs to be included in the lexicon. It is unclear what
word category should be assigned to petto. Since petto seems to be the complement
of the preposition in, let us assume that petto is a noun even though, petto shows
no modification, no plural morphemes nor determiners. If some words inside the
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sentence are missing in the lexicon, parsing of the sentence might fail.’

(2) S
,/\
NP VP
|
Ze \Y% AdvP NP PP
! \ — T
hebben weer p ?
een nieuwe machinatie [ [
in petto

However, ensuring parse completion is not simply a matter of expanding the
lexicon with all words found in a given corpus. In (1), in petto together with hebben
form an unsaturated ‘phrase’ whose meaning is ‘to have something (surprising)
in reserve’. Independently of the syntactic representation we choose, the phrase
in petto hebben should be assigned meaning as if it were a single lexical entry in
a dictionary; on the other hand, in syntax, a parser should not treat the string in
petto hebben as a single constituent because in petto is often separated from hebben
(1). Past research on idiomatic expressions in language engineering proposed that
the fixed complement be entered as a ‘multi-word lexeme’ in the lexicon (Breidt,
Segond, and Valetto, 1996). For the time being, we adopt this solution and label in
petto as a special fixed phrase selected by the verb hebben and thus, inserted as a
multi-word unit in a lexicon. A possible syntactic representation is given in (3).

(3) S
N
Z‘e A% AdvP NP FixedPhrase
heb'ben We‘,er A

een nieuwe machinatie in petto

In petto hebben is one of many fixed expressions in Dutch which shows idiosyn-
cracies in morphology, syntax and semantics. These idiosyncracies of fixed ex-
pressions require that fixed expressions be treated differently from regularly built
phrases. If we treat fixed expressions as regular phrases, a parser used for nat-
ural language generation would allow such expressions in any syntactic context
and with unlimited modification (overgeneration); on the other hand, treating fixed
expressions as totally fixed units would not allow modification or distributional
variation of those fixed expressions that allow passivization, adjectival modifica-
tion, etc. (undergeneration). Ultimately, we want to avoid problems of both, over-
and undergeneration.

Fixed expressions are difficult to formalize in a computational grammar. Be-
cause of their non-uniform syntactic properties and distribution, fixed phrases are
treated as lexicalized phrases included in the lexicon. This measure helps to con-
strain the syntactic contexts of fixed phrases.

Work done on idiomatic expressions in theoretical linguistics proposed to treat
complement-like phrases selected by the verbal head in an idiomatic expression as

!Section 2.1 describes the heuristics used to guess word categories of unknown words.



Algorithms for Linguistic Processing 49

a fixed lexicalized unit. This ensured that some grammar rules apply only to fixed
phrasal units which combined with a given verb license an idiomatic expression.
If either complete fixed expressions (VPs) or their fixed constituents were to be
formalized as a fixed multi-word-unit, we should have evidence that no internal
modification, no extraction nor any sort of variation is possible.

We carried out a case study that investigated the automatic identification and
extraction of Dutch voorzetsel uitdrukkingen (Paardekooper, 1962) such as the ones
in (4). Voorzetsel uitdrukkingen correspond to phrases that exhibit the pattern |
preposition NP preposition | and their meaning is not always compositional. Often
the NP is realized by an abstract noun without any quantifiers or modifiers (4); this
noun sometimes exhibits idiosyncratic morphology. Because of these features, one
possibility is to consider these ‘fixed’ expressions as lexicalized multi-word units
and add them as such in the lexicon.

One might suppose that these strings are proper instances of fixed expres-
sions and therefore, need to be separate from other slightly more flexible expres-
sions. However, our case study revealed that limited modification is possible within
voorzetsel uitdrukkingen.? In fact, some expressions claimed to be totally fixed can
be split by adverbial modifiers or sometimes, discourse markers (5).34

(4) op advies van, op initiatief van

(5) a. De teneur is dat Camus ’niets aan actualiteit heeft ingeboet’, in tegenstelling
mischien tot andere ‘existentialisten’ in het naoorlogse Parijs . ..
b. Economisch rekenen kunnen de ambtenaren al 47 jaar, in tegenstelling dus
tot de dames en heren van ...
c. met dank natuurlijk aan Shakespeare
d. met dank ook aan Juan Moredo Ramos en ...

Supposed ‘fixed’ chunks within fixed expressions are not always totally fixed.
Flexibility needs to be allowed inside the ‘fixed’ phrases. Fortunately, recent work
on idiomatic expressions emphasize the need to allow for variation within the id-
iomatic constituents (Riechemann, 1997; Sailer, 2000; Sag et al., 2001).

We have presented the framework that prompts the need to study modification
within fixed phrases in Dutch. We have briefly explained why fixed phrases are
problematic for a computational parser. Finally, we tried to show the need to look
into modification. In section 4.1.1 we enumerate the goals and objectives of this
study.

4.1.1 Goals and objectives

The Phd project being described here aims to understand the grammar of fixed and
semi-fixed expressions in Dutch, particularly their potential for modification.

To achieve a thorough understanding of allowable modification within (semi-
)fixed phrases, we aim at

2Section 4.4 gives a complete description of this case study.

3Previously, Paardekooper (1973) pointed this out.

“The Dutch data used in this section is taken from De Volkskrant op CDROM 1997; otherwise the
original source will be explicitly cited.
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¢ identifying several classes of fixed phrases in naturally occurring Dutch text.
Our initial targets are four types of fixed phrases: (i) [PP copular verb], (ii) [NP
copular verb], (iii) [ laten infinitive VP | and (iv) support verb constructions
(verbs: hebben, malken, houden and doen).

e determining what sort of modification (if any) is allowed within fixed phrases
and whether some sub-classes emerge regarding the allowable modification

e motivating the lexical representation of fixed phrases in the lexicon and the
grammar rules and constraints that will license them in the appropriate con-
texts

In short, we aim to propose an accurate lexical representation with the neces-
sary linguistic constraints affecting the modification of the mentioned types of fixed
phrases in Dutch. To achieve these goals we will investigate and develop statisti-
cal models to automatically extract from large corpora the 4 types of fixed phrases
studied. The output of the statistical model should facilitate the statement of gen-
eralizations about the presence of modification in the phrases at stake.

Questions we seek to answer are:

e What data-driven models are useful to automatically acquire fixed expres-
sions?

e How do models improve if the extraction data is annotated with rich linguistic
information? What features or linguistic information are most helpful?

e Applying corpus-based techniques, can we discover what modification is al-
lowed within fixed phrases and infer the linguistic description?

e In order to handle modification within ‘fixed’ expressions what features and
linguistic constraints need to be specified in a computational grammar?

With this investigation we aim at providing: (i) a characterization of the 4 types
of Dutch fixed phrases, by proposing the required lexical representation and gram-
matical description under a lexicalist grammar framework; (ii) a feasible statistical
model for their extraction and identification and (iii), evaluation of the extraction
models and evaluation of the improvement in the Alpino parser’s coverage.

4.2 Fixed expressions

Before attempting the formalization of the linguistic analysis of fixed expressions
in the Alpino grammar two requisites need to be satisfied: (i) enumeration of lin-
guistic properties and constraints that model fixed expressions and (ii) a detailed
description of the syntactic behavior of fixed expressions.
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4.2.1 Terminological remark

The terminology used in the literature to refer to idiomatic expressions (Sailer, 2000)
is most varied. Terms such as idiom (Katz, 1973; Schenk, 1994; Riehemann,
2001), fixed expression (Moon, 1998), idiomatic word combination (Nunberg, Sag,
and Wasow, 1994), multi-word lexeme (Breidt, Segond, and Valetto, 1996), colloca-
tion (Krenn, 2000) and multi-word-expression (MWE) (Sag et al., 2001), all somehow
subsume the type of objects that will be investigated.

A uniform definition of fixed expression is difficult to provide,® the reason being
that there is not yet a well-established enumeration of their properties and char-
acteristics nor an exhaustive classification of these linguistic entities (Sailer, 2000;
Krenn, 2000; Riehemann, 2001; Sag et al., 2001).

A common feature of fixed and semi-fixed phrases is the mutual lexical selection
that takes place between the lexemes in the phrase. Krenn (2000) proposes ‘lexical
selection’ as the property of collocational expressions in which word co-occurrence
is determined by lexical rather than semantic criteria.

The difference between fixed and semi-fixed phrase pertains to their syntactic
flexibility and also their semantics. A fixed phrase is characterized by having com-
pletely rigid syntax which does not allow internal modification (adjectives, adjunct
prepositional phrases nor relative clauses) or extraction. Examples are in petto ‘in
store’, ten opzichte van ‘with respect to’ or per slot (in Dutch) and by and large (En-
glish). Nevertheless, larger fixed phrases may exhibit tense inflection of the head
verb.

Semi-fixed phrases may allow insertion of (limited) modification, quantification,
morphological variation and lexical rules such as passivization, raising, topicaliza-
tion may apply. Semi-fixed phrases may have a compositional or non-compositional
semantics. The more syntactic flexibility allowed in the constituents of a semi-
Jfixed phrase, the more compositional it is (Nunberg, Sag, and Wasow, 1994; Sailer,
2000)(cf. Abeille (1995)). A tricky aspect observed in semi-fixed phrases pertains
to the fact that not all of them appear in the same syntactic contexts or allow the
same degree of flexibility.

4.2.2 Data

This section gives a general description of the facts about fixed phrases that the
analysis needs to account for. The purpose is to highlight relevant properties of
fixed phrases that distinguish them from regular phrases. In the course of this
project, we aim at gathering more observations on the syntactic variation and dis-
tribution of fixed expressions by using data-driven methods. These observations
will be used as the basis of the classification of fixed phrases and the deep linguis-
tic analysis of fixed expressions in the Alpino grammar.

Non-homomorphism The argument structure of the main predicate in a sentence
is often used in lexicalist grammars to build the skeleton of the syntactic repre-

5T avoid using the term idiom because it often refers to a phrase that exhibits non-compositional se-
mantics (Perlmutter and Soames, 1979; Culicover, 1976). In the remainder the term fixed expression
refers to the group of fixed and semi-fixed phrases.



52 NWO Pionier Progress Report

sentation of such sentences. The predicate argument structure of an idiomatic
expression does not always mirror the syntactic constituency of the verbal head
(non-homomorphism). An example will illustrate this better.

The Dutch expression uit de weg ‘out of the way’ may combine with the verb
gaan ‘to go’ regularly, where gaan has an intransitive use (6).

(6) Als John uit de weg gaat ...
if John out of the way goes

‘If John goes out of the path ...’

The phrase uit de weg also combines with gaan in a different context (idiomatic
use) where gaan is transitive (7). In this case, the PP uit de weg is not simply a
locative adjunct since, removing the phrase uit de weg brings up ungrammaticality
(8). The interpretation of the expression in (7) differs from that of (6).

At a descriptional level, non-homomorphism between the argument structure of
the main predicate in a fixed expression and its syntactic valence is a consequence
of the fact that the fixed expression exhibits non-compositional semantics.

Non-compositionality The figurative meaning ‘John avoided the problems’ con-
veyed by the expression in (7) cannot be derived from the individual meanings of the
constituents inside the phrase.® The interpretation of the expression is not totally
compositional.

(7) John ging de problemen uit de weg.
John went the problems out of the way

‘John avoided the problems.’

(8) *John ging de problemen
John went the problems

A few tests proposed by Sailer (2000) serve to check the idioms’ semantic non-
compositionality. First, the noun inside the phrase uit de weg cannot be replaced by
a synonym since the whole sentence becomes nonsensical (9). Second, adding an
adjective or a relative clause inside the phrase uit de weg brings up ill-formedness
(see (10)) and (11) respectively).

(9) *John ging de problemen uit de straat/het pad
John went the problems out of the street/the path
(10) *John ging de problemen uit de goede/gladde weg
(11) *John ging de problemen uit de weg die naar een plein leidde

John went the problemen out of the way that to  the square led

In spite of the restricted semantics of the phrase uit de weg shown above, the
phrase can occur in a related semantic context next to the verb ruimen ‘remove’
(12). It seems reasonable to conclude that, the meaning of the phrase uit de weg in

SNotice that the glossed literal translation makes no sense in English. This is not surprising since
some idioms cannot be translated compositionally (Schenk, 1994).



Algorithms for Linguistic Processing 53

the expression is not completely opaque and some parts of the VPs iets uit de weg
gaan and iets uit de weg ruimen, still carry meaning.

(12) Graag wil ik even een misverstand uit de weg ruimen.
Willingly want I just a misunderstanding out of the way to-remove
‘I would like to get rid of a misunderstanding’.

Often, internal modification is not admitted inside the phrase uit de weg without
altering the original figurative meaning of the whole expression (10),(11). Neverthe-
less, addition of internal modification inside idiom constituents is possible in some
cases (13)). Itis commonly agreed that in semantics the adjective modifies the whole
idiom (13-a),(13-b) (Nicolas, 1995; Abeille, 1995). However, claims that idiomatic
parts with internal modification necesitate a referent are well-founded given exam-
ples (in German) like (13-c) taken from Fischer and Keil (1996) or in Dutch (13-d).”

(13) a.John kicked the social bucket
b. make rapid headway (taken from Nicolas (1995))
c. Tom hat auf der Sitzung einen grossen Bock geschossen
Tom has on the meeting a big buck shot

‘Tom made a big mistake in the meeting.’

d. Dupuis gooit in het debat over de gezondheidszorg verschillende
Dupuis throws in the debate about the healthcare different
knuppels in het hoenderhok
sticks in the hen-house

‘Dupuis dropped a bombshell in the debate about healthcare.’

Examples in (13) show that fixed expressions allow insertion of modification;
furthermore, such modifiers alter the idiomatic meaning, therefore parts of fixed
expressions need to be assigned meaning in a formalization of fixed expressions.

The existence of instances of uit de weg with similar meaning but combined with
a different verb (ruimen) prove that this constituent is not semantically opaque.
Clearly, semantic transparency of a constituent does not necessarily imply that the
meaning of that constituent contributes to the idiomatic interpretation of the whole
expression.®? This points to a difference between literal expressions and some id-
iomatic ones. The interpretation of literal expressions follows from combining the
meaning of each constituent via general combinatorial semantic rules. In contrast,
a large number of fixed phrases introduce obligatory (syntactic) constituents that
are ‘meaningless’ in the argument structure of the main verb due to the predicate’s

“In (13-a), bucket does not have a referent of its own; social modifies the complete idiomatic deno-
tation of the VP; the sentence means ‘John disappeared from the social spheres.” In contrast, gross
in (13-c) modifies only the idiomatic meaning of Bock, that is, ‘mistake’.

8Schenk (1994) highlights the importance of keeping semantic transparency separate from compo-
sitionality. The former implies that the meaning of a word inside a phrase is literal at an observational
level; the latter pertains to grammar internal mechanisms to derive the meaning of word combina-
tions.

°In the expression Peter sawed logs all night both ‘sawed’ and ‘logs’ are semantically transparent.
However, in the idiomatic interpretation combining ‘sawed’ with ‘logs’ gives ‘snored’. The semantically
transparent meaning of each constituent does not transfer to the idiomatic interpretation of the idiom.
The idiom is not compositional.
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non-compositional nature.
See examples of non-compositional idioms in English (14).

(14) a.John’s father kicked the bucket (‘(John’s father died’)
b. They kept tabs on John (‘They observed John’)
c. They pulled John’s leg (‘They teased John’)

We want to emphasize that non-compositionality is not a constant property of
fixed expressions given the existence of idiomatic expressions like (15).

(15) a. Marie spilled the beans (‘Marie revealed the secret’)
b. Wij zitten in het vaarwater van andere onderzoeken
we stand in the way of other research
‘We are poaching on other research’s territory.’
c. De bondskanselier zelf heeft nog niet in zijn kaarten laten kijken
The federal chancellor in person has yet not in his card let look

‘The chancellor plays his cards close to his chest.’

A syntactico-semantic treatment needs to handle this non-homomorphism be-
tween syntactic constituency and semantic argument structure. Such approach
also requires that individual lexemes of compositional fixed expressions be assigned
a semantic variable since they may accept modification (in elkaars vaarwater) and
their specifiers may participate in scope relations. On the other hand, the idiomatic
meaning of non-compositional fixed expressions may not be split among its individ-
ual lexemes but, in syntax some mechanism needs to allow insertion of modification
that modifies the meaning of the expression as a whole (13-a).

Syntactic versatility Non-compositionality in deriving the semantic interpreta-
tion of idioms has been used to explain irregularities in their syntactic distribu-
tion (Nunberg, Sag, and Wasow, 1994). Diagnostic tests such as topicalization,
extraction, passivization, raising, control, pronominalization, etc. are often ap-
plied to determine whether certain constituents behave as regular constituents in
a non-idiomatic sentence. The more syntactic rigidity shown by phrases, the more
evidence is gathered to account for their non-compositional nature. We explore
whether the constituents inside a fixed phrase behave as other phrases in normal
contexts.

Topicalization refers to the realization of a constituent (other than the subject in
SVO languages) in initial position in a sentence. The referent of a topicalized con-
stituent receives emphasis and therefore it is assumed that it must carry semantic
content. Applied to our example fixed phrase uit de weg gaan the object NP may
occur in topic position (16). The fixed part could occur in topic position if we enrich
the context as in (17) (cf. (18).1°

(16) Een rechtstreekse aanval op de vorstin ging Colijn echter uit de weg
A direct attack on the queen went Colijn out the way

‘A direct attack on the queen, Colijn avoided.’

19Some speakers find (18) acceptable if negation follows the matrix verb.
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(17) Colijn ondernaam weinig actie; maar uit de weg ging Colijn
Colijn undertook little action; but out the way went Colijn
een rechtstreekse aanval op de vorstin echter wel
a direct attack on the queen ..
‘Colijn undertook little action; but he av01ded a direct attack on the queen.’

(18) * Uit de weg ging Colijn een rechtstreeks aanval op de vorstin echter
Out the way went Colijn a  direct attack on the queen

Here, the focus lies on the syntactic properties of fixed expressions, therefore,
we simply assume that the fixed part of the idiom may be topicalized independently
of it carrying meaning on its own or not (cf. Schenk (1994)).!! Nunberg, Sag,
and Wasow (1994) observe that Dutch and German allow topicalization of idiomatic
constituents that are part of non-compositional idioms; however, they argue that
since the topicalized constituent receives no emphasis, it is only viewed as a syn-
tactic phenomenon. This property points at a similar behavior between idiomatic
and non-idiomatic expressions in syntax (even if the topicalized sentence is really
marked).

The object NP may promote to subject of a related passive sentence (19), (20).
This shows that the object NP conveys meaning on its own and also that this use
of gaan is transitive. Thus, the argument structure of the idiomatic use requires at
least one more dependent than the argument structure of the (intransitive) literal
use and it resembles transitive predicates.

(19) Principié€le keuzes worden uit de weg gegaan
Essential choices were out the way gone
‘Fundamental choices were avoided.’

(20) Harde overtredingen werden niet uit de weg gegaan
Strong offences were not out the way gone
‘Strong offences were not avoided.’

A fixed complement (gevolg) may also be subject of a passive sentence (21).
Similarly, some fixed constituents can realize the subject of a raising construction
(22) or the subject of a control VP (23).12 This also shows that idiomatic phrases
may occur in embedded contexts.

(21) Maar er werd nooit gevolg aan gegeven.
But there was never consequence on given

‘But they never suffered any consequences.’

22) (...) omdat er schot lijkt te zitten in de
...... because it progress seems to  sit in the arrangements
regeling (...)

""The decision whether a topicalized fixed constituent carries meaning or not, is crucial in a syntax-
semantics analysis since one needs to assign the (formal) semantic representation to the topicalized
constituent. In the example Marie’s hart brak Piet from (Schenk, 1994, ex.67), part of the topicalized
constituent obligatorily carries meaning.

12Example found at http://www.auburn.edu/student _info/plainsman/archives/97FA/1009/front.html.
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‘...because it seems that there has been progress in the arrangements ... .

(23) The lawsuit over contested seats on the Auburn Board of Trustees may be
over, but now the piper wants to be paid.

The fact that some fixed phrases cannot occur in certain distributional contexts
is not enough evidence to argue that fixed phrases are always non-compositional.
There are fixed phrases whose semantic interpretation may be derived composition-
ally and in syntax, they may exhibit restrictions on their syntactic distribution. uit
de weg gaan is syntactically rigid but its semantics is rather compositional.

Flexibility within sentence boundaries The constituents inside the phrases
zich ten doel stellen (‘to set as a goal’) and op zoek zijn/gaan naar('seek’) may occur
in different locations, thus ruling out a linear fixed ordering of the constituents. The
fixed part ten doel or op zoek may immediately follow the reflexive NP (24), occur at
the end (25),(26), precede the verb in nonfinite embedded contexts (27),(28),(29) or
be separated from the finite verb by an adverbial (30),(31).

(24) Hij stelde zich ten doel Nederlands talent te verzamelen.
‘He set as a goal to bring together Dutch talent.’

(25) We stellen ons tegelijkertijd academische uitnemendheid ten doel.
‘At the same time we aim at achieving academic perfectness.’
(26) Als ik het doe, probeer ik het zo goed mogelijk, stelde De Boer zich vervolgens
tot doel.
‘After this De Boer set the following as a goal: if I do it, I'll try my very best.’
(27) Nissan heeft zich ten doel gesteld de productiviteit jaarlijks met 10 procent te
verhogen.
‘Nissan aims at a 10 per cent increase of its productivity each year.’

(28) Ik heb gehoord dat vijftien geheime agenten naar mij op zoek zijn.
‘I have heard that 15 secret agents are looking for me.’

(29) Naar een pure resultaattrainer zijn we niet op zoek gegaan.
‘We've started looking for a new top-trainer.’

(30) Ze zou slechts op zoek zijn naar huisvesting in een rustiger, veiliger deel van
de stad

‘She would only be looking for living space in a quieter, safer part of town.’

(31) Joep is naarstig op zoek naar nieuw en geschikt personeel voor zijn helpdesk.

‘Joep is in a hurry to find a new and suitable personnel for his helpdesk.’

Pronominalization NPs inside PP complements of fixed phrases may be
pronominalized into an R-pronoun. In the support verb construction last hebben
van (‘have trouble with’) (32), the NP complement of van may pronominalize into an
R-pronoun. If pronominalization has taken place, the R-pronoun may be realized
next to the preposition (one word) (33) or separate (34).
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(32) ‘Wij hebben minder last van de slechte Russische infrastructuur dan
we have less trouble from the bad Russian infrastructure than
andere bedrijven’, zegt pr-manager.
other business said pr-manager
“We have less trouble with the Russian infrastructure than other companies”,
said the pr-manager.’

(33) Wij hebben minder last ervan dan andere bedrijven.
we have less trouble it-from than other companies

‘We have less trouble from them than other companies.’

(34) Wij hebben er minder last van dan andere bedrijven.
we have it less trouble from than other companies

‘We have less trouble from them than other companies.’

A last example (35) shows that wh-extraction of the NP object of a preposition is
possible; the preposition occurs separate from its complement.

(35) waar zat ik ook alweer mee in mijn maag ?
what sit I also with in my stomach ?

‘What concerned me a lot?.’

A difficult aspect in every study of idiomatic expressions is to find generaliza-
tions on their syntactic distribution. On one hand, some fixed phrases only occur
in particular syntactic contexts (e.g. het pleit is/wordt beslecht (‘the argument was
settled’)). On the other hand, constraints observed in normal non-idiomatic expres-
sions also hold for idioms (Katz, 1973; Abeille, 1995; Nunberg, Sag, and Wasow,
1994). For example, passivization applies to transitive verbs (but also impersonal
verbs); control is sometimes possible if the fixed constituent denotes an animate
referent, etc.

A uniform account of the syntax of fixed phrases cannot be easily formalized
given that not all fixed phrases exhibit the same degree of flexibility nor occur in
the same syntactic contexts. The analysis of fixed expressions needs to plan an ad-
equate lexical representation of the lexemes involved, and to state what constraints
and grammar rules license the syntactic distribution.

It is worth mentioning a few remarkable characteristics of some fixed phrases
in Dutch. Our aim is to present evidence that suggests that the syntactic relations
between lexemes which are part of idiomatic expressions are complex, not simply
selectional preferences.

Idiosyncratic morphosyntax Another feature of some Dutch fixed phrases is the
presence of frozen words that only occur in such type of phrases in the language.
One example is iets in petto hebben (‘to have something in store’); in petto exclusively
occurs with the verbs hebben and houden, nowhere else in the language. This sug-
gests that some enforced co-occurrence restrictions take place between the phrase
and these two verbs.

Petto derives from Italian petto (‘heart’) (Geerts and Heestermans, 1992). It is a
loanword that, according to its morphological variations in Dutch, seems not very
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productive. Assuming that petto is a noun, it shows many irregularities: addition
of determiners is not possible (37), it fails to admit any type of modification (38),
the noun cannot be replaced by a synonym (39) and, it has no plural counterpart.
The phrase in petto is required by the verb; removing in petto changes the meaning
of the transitive verb hebben (40).

(36) Ze hebben weer een nieuwe machinatie in petto
they have againa mnew  plot in store

‘They have a new plot in store.’
(37) *Ze hebben weer een nieuwe machinatie in een petto
(38) *Ze hebben weer een nieuwe machinatie in veilig petto
(39) *Ze hebben weer een nieuwe machinatie in zak

(40) Ze hebben weer een nieuwe machinatie
they have againa new  plot

‘They have a new plot.’

At the sentence level in petto hebben exhibits similar restrictions to topicaliza-
tion, passivization, raising and control as uit de weg gaan. The difference between
uit de weg gaan and in petto hebben thus pertains to the idiosyncratic morphology
affecting the ‘noun’ inside the fixed constituent.

Idiosyncratic morphosyntax is also found in ten gevolge hebben (‘to cause’), ten
goede komen (‘help, contribute to’), ten beste geven (‘demonstrate, show’), ter sprake
lkcomen/brengen (‘come up/bring something up’), ten laste leggen (‘charge someone
with something’) given in (41).

(41) a. Dit had een ongeluk ten gevolge.

. De opbrengst komt ten goede aan onderzoek naar kinderziekten.
. Dat komt de prestaties niet ten goede.

. Hij gaf een concert ten beste.

. Het kwam ter sprake.

Een van hen wordt doodslag ten laste gelegd.

S o0 TR

‘Frozen’ words found inside fixed phrases do not provide much morphological
and categorial evidence. Their limited productivity and restricted use justify the
decision to consider the fixed chunk (e.g. in petto) a multi-word lexeme inserted
in the dictionary. Note that fixed lexemes do show morphological variety in many
fixed expressions.

Agreement between subject and determiner inside fixed phrase In the fixed
phrase described above, we claim that the fixed part often exhibits little syntactic
flexibility even to the extent of blocking the insertion of modifiers and NP extraction.
Rare cases exist where the subject agrees with a possessive determiner inside a
fixed constituent. Agreement between the subject and a complement inside the VP
is important to get the correct semantic interpretation of a sentence with a fixed
phrase. In (42), the possessive determiner in in haar maag is co-referential with the
NP De Italiaanse regering.
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(42) De Italiaanse regering zit lelijk in haar maag met de vluchtelingen.
the Italian government sits nasty in her stomach with the refugees

‘The Italian government has a big problem with refugees.’

From a syntactic point of view, this property entails the sharing of agreement
between two NPs inside the sentence. In more formal terms, this feature raises the
question of the locality constraints affecting the complements of a lexical head. It
is taken for granted that a lexical head and its subject share agreement values, and
since the NP subject and the VP phrasal nodes are sisters, they belong to the same
local tree. The agreement exemplified in (42) requires the subject NP node and an
NP object of the preposition among the verbal complements to share agreement
values.

Subject idioms The idiomatic expression schot zitten in exhibits a ‘fixed’ phrase
subject that can admit a restricted set of modifiers (geen) (43).

(43) In deze zaak zit geen schot
in this case is no progress

‘There is no progress in this case.’

Idiomatic expressions with a fixed subject have been classified as subject idioms
(Schenk, 1994). According to (Schenk, 1994), subject idioms are sentence level
idioms and they do not admit tense variation nor exhibit free arguments. In our
example, the idiom still has a free argument, thus it seems different from subject
idioms proper. We assume that this expression is an instance of a semi-fixed phrase
since the preposition in introduces a free argument, therefore the idiom is not totally
fixed.

Data showing the relevant facts about the syntactic behavior of Dutch fixed
phrases was discussed. In order to determine the syntactic variation of individual
(semi-)fixed phrases, a more detailed analysis of their contextual distribution in
corpora is to be pursued in future work. This has been done for English idiomatic
expressions by Riehemann (2001). Riehemann (2001) claimed that 25% of the
occurrences of decomposable idioms and 7% of non-decomposable ones exhibit
some variation. In Riehemann’s opinion, the percentages are significant enough to
be ignored.

4.3 Related work

In the previous section we described the relevant properties that Dutch fixed ex-
pressions exhibit. Section 4.3.1 reviews recent proposals to formalize idiomatic
expressions in the HPSG framework. Section 4.3.2 comments on approaches to
extraction of multi-word lexemes and collocations.
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4.3.1 Formalization of idiomatic expressions

To explain the difference between the two approaches taken to formalize idiomatic
expressions, we set out with some background information about the HPSG frame-
work. This will help to understand the limitations that these approaches face.

HPSG Background The basic unit of linguistic description in standard Head-
Driven Phrase Structure Grammar (HPSG) is a sign (Pollard and Sag, 1994). The
properties of signs are stated via attribute-value pairs. These properties can also
be thought of as constraints over the feature structures used to represent signs.

In practice, when we enter a word in the lexicon, this word must belong to
some type, e.g. noun, adjective, preposition, etc. Each of these types exists in a
type hierarchy where the relationships between types and subtypes are declared.
Each type is defined in terms of syntactic, semantic, phonological and pragmatic
properties that are appropriate. In addition, general principles of language are
stated to license combinations of signs to form larger structures.

Standard HPSG postulates two subtypes of sign: word and phrase. Simplifying,
most of the research done on idiomatic expressions struggles around the question
of What licenses an idiomatic expression: a word or a phrase (sign)? Earlier HPSG
proposals favored a word-level approach (Krenn and Erbach, 1994). In contrast,
Riehemann (2001) adopts a constructional HPSG approach to idioms (phrasal ap-
proach).

A word-level approach to fixed expressions

Krenn and Erbach (1994) attempt to account for the idiosyncracies of fixed phrases
in the lexicon. In standard HPSG a head can only select for SYNSEM objects that
declare the syntactico-semantic information of the head’s complements. Krenn
and Erbach (1994) allow the verbal head within an idiomatic expression to select
for whole signs, rather than only SYNSEM information of its complements. This is
needed to specify the phonology of the fixed lexemes that together with the verbal
head constitute the idiomatic expression. Furthermore, to achieve the adequate
interpretation of non-compositional idiomatic expressions, fixed lexemes selected
by the verbal head contribute no semantic load to the semantic interpretation of
the whole idiom.

Consider example (44). The relaxation of subcategorization requirements allows
the verbal head (hebben) to select for the phonology of its fixed complement (in
petto).!3 This ensures that hebben is idiomatic only when in petto is present among
its complements. Assuming that in petto is entered as a special phrase (multi-word
unit) in the lexicon, this constituent has null semantics. No semantic variable is
reserved for the contribution of in petto in the head’s CONTENT description. In-
stead, the idiom is assigned semantic interpretation as a whole: an in_petto_hebben
relation.

13The feature structure is incomplete in (44). Only relevant parts for the discussion are included.
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(44) [PHON Ze hebben weer een nieuwe machinatie in petto

IVCAT [SUBCAT ()} -|
LOC RELATION inpetto_hebben
SYNSEM CONTENT | ACTOR

UNDERGOER

NONLOCAL |]

HEAD HEBBEN

H-DTR | SS | LOC| CAT .

SUBCAT ( [0, [2], PP[PHON in petto}
HEAD NOUN

CAT

[ |ss | Loc CASE NOM

DTRS | HD-COMP-ST CONTENT [INDEX ]

COMP-DTRS HEAD NOUN
CAT

ss ‘ LOC CASE ACC ,

CONTENT [INDEX }

PP{PHON IN PET’I‘O}

With these changes Krenn and Erbach (1994) may account for idiosyncratic selec-
tional requirements of the verbal head within idioms. Since in petto is a multi-word
fixed lexeme, it is predicted that neither modification of petto nor extraction out of
the fixed chunk is possible. This proposal would be relatively successful for fixed
expressions whose fixed lexemes allow no modification. However, as we argued in
Sections 4.1 and 4.2.2 fixed expressions allow variation.

In this approach, the verbal head imposes restrictions on the internal structure
of fixed complements that make up the idiomatic expression. To allow modification
of fixed (idiomatic) lexemes, Krenn and Erbach (1994) introduce a HEAD feature
LEXEME inside INDEX. This forces the fixed complement to have the value of LEXEME
as its head but allows the insertion of specifiers and modifiers. As illustration,
adjectival modification is possible in the fixed expression onder ... druk staan (45).
Under this approach, the verbal head staan specifies druk as head LEXEME of the
fixed complement and declares no constraint on what modifiers may occur next to
druk (46).

(45) a. De ECB komt dan onder grote druk te staan om het enige instrument in te
zetten dat . ..
b. Maar de onderhandelingen zijn onder zware druk komen te staan door de
recent bekend ...
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(46)

[PHON staan

SS

LOC

HEAD STAAN

CAT
SUBCAT ( [3], PP

RELATION

CONTENT
ACTOR

NONLOCAL |]

HEAD ONDER

SUBCAT <NP{. .. INDEX {LEXEME DRUK}

onder_druk_staan

)

Allowed adjectives modify the meaning of the fixed expression. An approach that
reserves no semantic variable for the ‘fixed’ constituent will be too restrictive to deal
with data like (45). A different mechanism to license the compositional semantics of
fixed expressions is needed. In this case, a semantic variable needs to be assigned
to parts of the fixed expression.

In a word-level approach, all fixed words that appear within idiomatic expres-
sions need a special lexical entry stating their idiosyncratic properties when used
idiomatically. Finally, a mechanism that ensures that these words cannot occur
by themselves is required to avoid expressions like iets in petto zitten. In addi-
tion, somehow one needs to restrict the modifiers and specifiers that may occur
within fixed expressions. Also, some features would be needed inside the verbal
head that licenses the fixed expression to restrict the application of lexical rules
like passivization, raising, control, etc. and extraction phenomena.

A phrasal-level approach

Riehemann (1997) represents idioms as idiomatic phrases which are subtypes of
phrase. To the type phrase, we add a new attribute WORDS whose value is the set
of all idiomatic words dominated by the idiomatic phrase. The WORDS set includes
signs of idiomatic-words which inherit their description from the corresponding ‘or-
dinary literal lexical entry’ via default unification(Riehemann, 1997, p.8). The effect
of the WORDS feature is to provide local access to the words within an idiom. Mod-
ification and syntactic variation of parts of the idiomatic phrase is inherited from
the literal counterparts of the idiomatic words unless otherwise specified. By sub-
typing, that is, cross-classification of idiom phrases and constructions Riehemann
(1997) licenses the syntactic distribution of idiomatic phrase in contexts of topical-
ization, raising, relativization, passivization, etc. (Riehemann and Bender, 1999).
Riehemann’s approach nicely states regularities between the syntax of literal
and idiomatic uses of (idiom) phrases.!* The idiomatic verb inherits its subcatego-
rization information from the literal counterpart lexeme. This poses no problems
for those idiomatic verbs whose SUBCAT is enlarged with fixed constituents that are
not selected dependents of the literal verbal head (hebben in iets in petto hebben)
because defaults can be overwritten. Consider example (47). Note that (47) does
not include syntactic information about the canonical complements of the lexical

This is enforced by the ‘<’ symbol in (47).
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head hebben. WORDS lists the required fixed lexemes of an idiomatic phrase.

(47) [in_petto_hebben_idiom-phrase
[i-word
...COMPS <{ ..KEY [2], KEY ]> < {HEBBEN},

|. .. KEY empty.rel

[i-word < {IN]
.. .KEY [2l empty rel|~ ’

WORDS

[t-word < {PETTO}
... KEY 3] empty.rel|~

in_petto_hebben_rel
CXCONT | LISZT< ACT[1] >
UND

To restrict the application of lexical rules to the idiomatic phrase, location of canon-
ical arguments of the verbal head need to be explicitly described. For instance, if
the idiomatic phrase above did not allow passivization, then the object complement
een machinatie has to be specified within SUBCAT. When passivization is possible,
it applies before the idiomatic verb inherits syntactic constraints from the literal
counterpart. In this particular case, the verb within the idiomatic phrase would
not specify the requirement that coMpPs contains the accusative NP.

Constructional rules (topicalization, wh-extraction, etc.) can also be handled by
this approach. If a constituent is topicalized, a WH-construction rule will license the
adequate configuration of the phrase. The local value of the topicalized constituent
is specified within NONLOCAL of head verb. But its semantic index is co-referential
with the value of the corresponding semantic role (within LOCAL CONTENT). We get
the correct semantics of the phrase, independently of the syntactic configuration.

The semantics of the idiomatic phrase is described using Minimal Recursion Se-
mantics (MRS). The CONTENT value of an idiomatic word is related to the CONTENT
value of the non-idiomatic counterpart except for its main semantic contribution
(KEY value). Duplication of lexical entries is thus avoided. The meaning of id-
iomatic phrases with internally regular syntax is derived compositionally. To derive
the meaning of non-compositional idioms, Riehemann (1997) inserts a new feature
CONTXT. The use of CONTXT requires that the relation value of the constituent words
be of type empty-relation. This attribute provides the meaning to the whole phrase.

Riehemann (1997, p.5) justifies her departure from word-level approaches due
to the difficulty to state subcategorization requirements of the lexical head with-
out violating the subcategorization principle and difficulties in restricting the oc-
currences of idiomatic words e.g. spills exclusively to constellations where other
idiomatic words e.g. beans are also present. The phrasal approach proposed by
Riehemann (1997) handles the subcategorization problem but it is not clear how it
can solve the problem with limited modification mentioned in Section 4.3.1.
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4.3.2 Corpus-based methods for automatic extraction

Attempts to automate lexical acquisition of fixed expressions may benefit from prior
experiences on acquisition of lexical and structural collocations and also, acquisi-
tion of verb subcategorization information. In this section, we focus on automatic
acquisition of collocations.

Approaches to automatic extraction from corpora can be divided into two:

e Statistics-based approaches

¢ Linguistically-informed statistical approaches (also known as hybrid ap-
proaches (Krenn, 2000))

Statistics-based approach

This approach relies on the fact that co-occurrence frequency is a good indicator of
collocativity. Collocations are identified on the basis of frequency of word combi-
nations in corpora. To build the datasets, word n-grams are extracted. A numeric
span is used to either extract adjacent words or tuples of words selected by apply-
ing various spans (or window sizes). Then, the lexical association between words
inside the n-grams is measured by applying statistical measures such as: mutual
information, dice coefficient and log-likelihood. To evaluate the performance of the
different statistics, significance tests like Z-score or t-score are applied.

Three problems weaken the effectiveness of this approach. The first drawback
is known as the sparse data problem: rare collocations will not be selected on the
basis of mere co-occurrence frequency. Secondly, many highly frequent word com-
binations are selected as strong candidates although they have a non-collocational
status. Finally, a lot of noise pervades in datasets (e.g. combinations of determiner
and noun, or a preposition and a determiner, etc.) which consequently degrades
performance of statistical tests.

To improve performance of a purely statistics-based approach, Weeber, Vos,
and Baayen (2000) claim that considering only window-size as a parameter is not
enough to reach an optimal recall in the extraction task. The reason is that tests
such as log-likelihood or Fisher’s test reach several high peaks (high recall) at dif-
ferent window-sizes. They suggest a ratio that compares the frequency of a target
collocation in subcorpus W'® with the frequency of that target in subcorpus C.
They name this ratio the W/C ratio. Weeber, Vos, and Baayen (2000) report posi-
tive results with low frequency data. The task involves the extraction of verbs that
occur with the particle af in Dutch. When the window size is 8 and the W/C ratio
is 0.6689, their model achieves results that suggest that both log-likelihood and
Fisher’s test perform relatively well on low-frequency data (46% and 46.7% (recall)
respectively).!® However, one still needs to find out how their approach would work

5This consists of all instances of words occurring next to a seed term within a specific window size.
For instance, with a window size of 10, all the words occurring within 5 words to the left and right
of the seed term are included. The rest of the words falling outside that window are included in a
complement subcorpus C.

18 After removing all hapax legomena.
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in a large scale collocation extraction task that does not attempt extraction of col-
locations with specific seed terms.

Hybrid approaches

These approaches combine the use of rich linguistic information throughout the
whole extraction and identification processes with statistical models. In this sec-
tion, we first describe what kind of linguistic information is used in current method-
ology to aid extraction of datasets. The next paragraphs describe different models
that we split into standard and non-standard models with emphasis on three pro-
posals by Lin (1998), Krenn (2000) and Blaheta and Johnson (2001). To conclude
the presentation of hybrid approaches, we report on how evaluation of these models
is carried out.

e BUILDING DATASETS: WHAT LINGUISTIC INFORMATION IS USEFUL?

Extraction of datasets from naturally occurring text in corpora is facilitated by
adding linguistic information encoded as POS tags, lemmas, syntactic information
about phrasal constructs and dependency relations. Already Church and Hanks
(1990) proposed that preprocessing the corpus with a part of speech tagger im-
proves the leverage of the datasets. Given the significant improvement in parsing
efficiency and accuracy, most current work on collocation extraction from English
corpora performs extraction of datasets from fully parsed data (Lin, 1998; Lin,
1999; Blaheta and Johnson, 2001; Pearce, 2001; Pearce, 2002).

Dependency relations Lin (1998) uses fully parsed data originally part of the
Wall Street Journal corpus. Using a parser, Lin (1998) extracts dependency triples
of the form ( head POS:dependency relation:POS dependent) (e.g. have V:subj:N I).
Lin (1998) aims to extract the following types of collocations: subj-verb, verb-object,
adj-noun and noun-noun.

Phrasal chunks One solution to avoid skewed frequencies in datasets is to
use rather shallow annotation of phrasal chunks and simply extract all instances
that satisfy the pattern we are interested in. Krenn (2000) extracts PNV (Prepo-
sition Noun Verb) triples out of the pos-tagged NEGRA corpus that also includes
basic syntactic structure. Krenn (2000) decides against using complete syntac-
tic annotation because that would increase the number of structural patterns and
consequently, the variation of grammatical functions in datasets.

Also, Blaheta and Johnson (2001) in an attempt to identify multi-word verb-
particle combinations, they extract all the prepositions and particles that are sib-
lings to a verb within a sentence. Later in the identification process, those combi-
nations that have non-collocational status will be discarded because of their weak
association score.

Lemmas A lemmatizer is often used to merge different morphological realiza-
tions of component lexemes within collocation candidates (Krenn, 2000; Blaheta
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and Johnson, 2001). After lemmatization, the number of different candidate collo-
cation types is reduced and consequently the type’s frequency is increased.

One can see that the linguistic annotation encoded in the extraction data is
partly determined by the type of collocations to be extracted and the ultimate ap-
plication of the list of collocations identified. Krenn (2000) investigated the very
specific syntactic pattern (PNV) and showed that having access to the grammatical
relation fulfilled by the PP would not help.17 In contrast, Lin (1998) applies the list
of extracted collocations as a test of word similarity and to compile a thesaurus.
Capturing the most salient dependency relations between two words throughout a
large corpus brings about a double benefit: grouping words into collocations and
determining synonymic relations between words which fulfill a certain dependency
relation with respect to a head word.!®

Rich linguistic annotation in input data facilitates the extraction of non-
contiguous word combinations with specific syntactic properties. Ultimately, the
gain of adding linguistic information is a decrease in noise in datasets and hope-
fully, a more efficacious identification algorithm.

Extraction aids In case fully parsed data were not available, one could follow
Lapata (1999) who uses a corpus query tool called Gsearch (Corley et al., 2001)
to extract the datasets. In combination with a left-corner parser, Gsearch uses a
context-free grammar whose rule terminals correspond to POS-tags of the tagset
used for the corpus annotation.

e IDENTIFICATION MODELS

For identification of true collocations, models differ with respect to underlying
assumptions on the properties of collocations and statistical scores used to mea-
sure the association between collocate words. For explanatory reasons, we divide
the identification models in standard and non-standard models.

Standard models The input to the models are contingency tables that represent
the frequency of the extracted candidates (n-grams) and of the component uni-
grams. Among the standard association measures applied to datasets are mutual
information (Church and Hanks, 1990), Pearson’s xz test and log-likelihood ratio
(Dunning, 1993; Lapata, 1999).'°

It is well-known that mutual information is rather sensitive to low frequency
data and it overestimates the association score of low-frequency candidates. To
correct the poor performance of mutual information with low-frequency data a fre-
quency cut-off may be applied. This cut-off should not be too high, otherwise a

71 think that the reason is the difficulty to distinguish an adjunct PP from a real verbal argument
PP.

18Shortly, Lin (1998) measures word similarity by computing the mutual information score between
a verb and a noun. Synonyms of say, a noun, are found by substituting that noun by another one
which stands in the same relation (object of) to the verb and, exhibits a similar mutual information
score. In this way, Lin (1998) successfully creates a thesaurus which he will use to extract non-
compositional collocational phrases. Refer to Lin (1999) for further details.

9These three measures are used in a case study described in Section 4.4, so we will discuss them
extensively there.
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large percentage of candidate collocations (rare) in datasets will be removed (Wee-
ber, Vos, and Baayen, 2000).

Pearson’s x> and log-likelihood tests are less sensitive to low-frequency data.
Weeber, Vos, and Baayen (2000) and Pedersen (1996) claim that Fisher’s score per-
forms well even with low-frequency data. Weeber, Vos, and Baayen (2000) report a
46 % and 46.7% recall in low-frequency data and high frequency data, respectively,
excluding hapax legomena only; these results show that the test is not as sensitive
as mutual information to low-frequency data.

Mutual information an example model: Lin 1998 Mutual information is
easy to apply to lower-order n-gram models. In addition, if more effort is put into
extracting more homogeneous datasets, then the test may still be a good score to
identify collocations. Lin (1998) extracts all dependency triples that exhibit a given
dependency relation (e.g. subject of) and automatically corrects parser mistakes.
The datasets list all found dependency triples with a frequency greater than 1 in
the extraction corpus (699,219 pairs of words). Lin (1998) assumes that the depen-
dency relation determines the part-of-speech of the head word and the modifier in
a triple. The mutual information of candidate triples is computed as:20:2!

¢ Mutual Information of (Head,Dependency_relation,Modifier) triple:

P(H,D,M)
(HD)P(MID)P(D)

MI(H,D, M) = log,

e P(H,D,M)

P(H. D, M) = Wnrelwal —¢

[, %, |

To evaluate the model, Lin (1998) compares the list of dependency triples iden-
tified as collocations to a list of dependency triples with the same relation type
extracted from the SUSANNE corpus. Lin (1998) reports a 65.3% recall and 98.6%
precision in extraction of subj-verb, verb-object, adj-noun and noun-noun colloca-
tions.

Lin’s 1998 approach is straightforward provided a large and fully parsed corpus
is available. He used a 100 million word corpus with an estimated parsing accuracy
of 95%. The simplicity of the identification model contrasts with the difficulty to
evaluate its performance. Evaluation proves to be hard given the lack of a gold
standard list of collocations. The biggest drawback to reproduce this approach for
languages other than English is to gather such large fully parsed corpora.

Non-standard models Non-standard models combine two or more statistical
scores to split apart collocational and non-collocational extracted candidates. The
two models we describe below depend on data annotated with either shallow-parsed
or fully parsed syntactic information.

2%The constant c is used to adjust ranks of triples that occur only once. |, , | denotes the counts
of all dependency triples in the extracted datasets.

2lWhere H=head word, M=head of constituent satisfying the dependency relation D and P the prob-
ability.
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Krenn 2000 Section 4.2.2 emphasizes the limited variation and modification
that constituent parts in fixed expressions may allow. Krenn (2000) uses the re-
striction on variation inside potential collocations as a measure to identify colloca-
tions.

Aiming at finding [Preposition Noun Verb] (PNV) collocations which correspond
to figurative expressions and/or support verb constructions, Krenn (2000) proposes
phrase entropy as a suitable method to model the variation of PP instances related
to a particular tuple (Preposition, Noun).

Let us first show how entropy and phrase entropy relate to each other. Entropy
is defined as the average uncertainty of a single random variable (Manning and
Schiutze, 1999, p.61). Put differently, the entropy measure reflects the amount of
information we have about a random variable. The entropy H(x) formula is:

H(p) = H(x) = =) p(x)log,p(x)
xeX
Phrase Entropy calculates the entropy observed in (prepositional) phrases that
may be collocates inside a larger phrase. Krenn (2000) extracts triples consisting
of (Prep,Noun, Verb) and measures the rigidity within the tuple (Prep, Noun) taking
into account (pre/post)modification, quantification, etc. To compute the phrase
entropy score of a tuple (P,N) (e.g. (in,spanning)) the formula proposed is

k f(PPinstanceiPN' ) f(PPinstanceiPN' )
PE(P,N) = — | !
(P,N) Z] PN 8T fPN;)
where f(PPinstance;) = m and m corresponds to the number of occurrences of

PPinstance; (€.8. PPinstance; 1S in grote spanning, PPinstance, 1S in spanning, etc.) in the
extraction corpus, and f(PNj) the number of (P,N) tuples j (i.e. total number of all
PP instances of (in,spanning)) in the extraction corpus.

Krenn (2000) establishes the threshold t = 0.7 as the entropy value that divides
collocational (P, N) tuples from non-collocational. Tuples with t < 0.7 are considered
to be collocates.

In identifying support verb constructions, the results achieved by this model
reach a recall between 51.7% and 39.8% in triples (support verb construction)
where the verb has been lemmatized to its base form in datasets. In figurative
expressions, recall ranges from 52.1% to 45.8% for decreasing frequency thresh-
olds. The recall of support verb constructions gets worse for low-frequency data
(f < 3). Krenn (2000) also applied the mutual information score (among others)
and reported that phrase entropy achieves better results than standard association
measures in medium and high frequency data.

Krenn’s results are worse than Lin’s 1998. In our opinion, the identification of
PNV collocations (support verb constructions or figurative expressions) is harder
than the identification of subject-verb, verb-object, adj-noun or even noun-noun
pairs among dependency triples extracted from fully parsed data and manually
corrected. Note also that these two models were applied on different languages,
one of them (German) exhibits more free word order and richer inflectional mor-
phology. Inflectional variations of the verb do have an effect on the distribution of
candidate triples in datasets (Krenn, 2000). This could have repercussions on the
performance of the model.
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Log-linear model: Blaheta and Johnson 2001 Blaheta and Johnson (2001)
attempt the extraction of particle-verb word combinations in English from 30 mil-
lion words of a fully parsed section of the Wall Street Journal corpus. To build the
datasets, for every verb (VB) in the corpus, the verb is tallied with every particle
(PRT) or preposition (PREP) which occur as siblings to the verb within a sentence.

Blaheta and Johnson (2001) propose a log-linear model that does not assume
a normal distribution of the data but a ‘multinomial or Poisson distribution’; this
model, they claim, should result in a better fit to count data. This type of model
does not assume independence between component words, rather it models the
dependences (interactions) between them. Their model (i) discounts the probability
of low-frequency items, and (ii) estimates the likelihood of seeing given n-grams
while discounting those n-grams that are only likely due to their component parts.

Step 1: representation of candidate n-tuples

N-tuples consist of a verb and its siblings in a sentence which happen to be
particles or prepositions.

e Each n-tuple is represented as a sequence of random variables X; ... X;, where
Xi ranges over the ith component of the tuple; thus, X; ranges over verbs and
Xi, s.t. 2 < i < n ranges over particles and the null symbol 'T7". ' fills the
value of Xj, i > n+ 1. This symbol serves as an end delimiter in tuple. Finally,
a tuple is considered as a conjunction of equalities or inequalities of random
variables.

- Example: The sequence of equalities representing the English verb parti-
cle combination look up to would be X; = look A Xy, =up AX3 =to A Xy =0
with n = 4. The equality X4 = [0 denotes that the tuple is not followed by
any other particle or preposition.

Step 2: collect counts of possible subtuples of the n-tuple

¢ Each possible combination of equalities and inequalities of variables is rep-
resented with an ‘n-bit integer b, 0 < b < 2™ — 1. For example, a few of the
possible subtuples of look up to will be represented as:

b=0: Xy Zlook AXy Zup A X3 #toNAXy#£0
b=1: Xy #look AXog Zup AXz#toAXy =0

*

*

x b=14: X3 =1look A Xy =up AXz3=to A Xy #0

* b=15: Xy =1look A Xy =up AXs3=toAXy =0

e For each tuple X ... X, Cp is the number of times the conjunction of equal-
ities and inequalities represented by b is encountered in training data. In
example above, Ci; is the number of times that look up to is followed by a
particle or a preposition in the corpus.

e Finally, given that each combination of equalities and inequalities is repre-
sented as ‘an n-bit integer b’, b is a sequence of 0 and 1 bits, such that if only
one X; = x; then the number of true equalities, #(b), is 1. In example above,
#(14) = 3, #(0) = 0, etc. This is needed to calculate the values of A and A;.
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Step 3: Two different measures of association: | and

pn and pg are estimates of A and Aq, respectively, which are particular parameters
of certain log-linear models’ (Blaheta and Johnson, 2001). To prevent low-frequency
data from being assigned high A and A; values, Blaheta and Johnson (2001) dis-
count the standard error o and o of A and Ay respectively and set:

e All subtuples measure:
u=A—32%

¢ Unigram subtuples measure:
W = }\1 - 3.290‘]
They also add % to each Cy to correct for small counts and to avoid problems

with zero counts while computing the association measures. Thus, A, A\; and the
respective standard errors o and o, are given by:

A= > (=) *MIogCy

b=0,..2n —1

At =logCox_1— Y logCp+(n—1)logCo
#(b)=1

01 =

Con 1

To compute A; the relevance of the individual unigram components of the n-tuple
is subtracted.

After computing A, Ay and the respective standard errors ¢ and o, collocations
are scored by calculating p and py. Subtracting the standard error has the effect of
trading recall for precision (Blaheta and Johnson, 2001).

Results No recall and precision figures are given by Blaheta and Johnson
(2001), thus it is hard to compare how good the model is. The authors claim
that ‘the collocations are almost all good for several hundred, and good collocations
continue to appear well into the thousands.” To get a better idea of the model’s
performance, in a comparative evaluation of collocation extraction models Pearce
(2002) reports that Blaheta and Johnson’s method reaches an 80% recall and less
than 2% precision after 40% of N-best candidates have been seen. Precision reaches
0.5% when 80% of N-best candidates have been evaluated. The task was to find
two-word collocations ((Adj,Noun) or (Noun, noun) pairs) such as hand grenade,
value judgment in English.

The emerging question now is how we should interpret these contradictory
results? Perhaps the identification of verb-particle combinations is easier than
(Adj/Noun,noun) pairs. Particles and prepositions do not show any morphological
variation, they belong to a closed class thus, it is hard to miss them in the datasets
extraction.
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Further remarks Pearce (2001) and Pearce (2002) propose yet a different model
that rests on the assumption that a combination of words constitutes a collocation
if the collocate words cannot be replaced by a synonym. This model needs synonym
information extracted from WORDNET. To measure how strong a collocation we
have, the algorithm computes the difference between the joint probabilities of the
candidate word pair (wy,w;) and the probabilities of the related phrases, this being
the result of substituting w; and w;, for synonyms. Pearce (2002) report that his
model achieves better results than Blaheta and Johnson (2001).

e EVALUATION METHODOLOGY

There is not a well-established methodology for evaluating automatically ac-
quired collocations.

Precision and recall These two measures are typically used to account for the
coverage of statistical models. Precision measures the proportion of selected items
that are correct; whereas recall measures the proportion of correct items that were
selected.

true_positives

Precision = — —
true_positives + false_positives

true_positives
Recall = P

true_positives + true_negatives

In collocation extraction, precision and recall values are very rarely reported
because there is no gold standard list that includes all collocations. Attempts to
provide recall and precision values manually compile a list of collocations from
machine-readable dictionaries. For instance, Pearce (2002) extracts a list of 17,485
two-word collocations which is later reduced to 4,152 entries that occurred at least
once in the extraction corpus. This reduced list is used as gold standard.

Krenn (2000) and Evert and Krenn (2001) manually select the true collocational
PREP NOUN VERB triples included in the candidate datasets that will be input to
statistical models. Krenn (2000) and Evert and Krenn (2001) manually created a
gold standard list which contains all true positives. They evaluate the performance
of the models on the basis of (i) varying frequency thresholds applied on datasets
and (ii) varying N-best candidates lists. They also plot recall and precision curves
for the whole set of candidate data.

Another alternative is to manually examine the list of collocations identified
by the statistical model. Typically, a random sample of frequent words (nouns,
verbs) is selected. Then, all possible collocations with those words are (manually)
extracted either from a learner’s dictionary or an idiom’s dictionary. This list will
be the gold standard. Rather than comparing the gold standard list to all the
extracted collocations, Lin (1998) selects only those collocations that contain the
words randomly selected. Precision and recall can now be given with reference to a
random sample of the extracted collocations.
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Human evaluation The human judges are given guidelines that describe the
properties of the type of collocations to be evaluated. Given the difficulty to de-
fine collocation, human evaluation is tremendously hard for those who determine
the guidelines for the judgment process and for the judges themselves.

4.4 Case Study

We carried out a case study on automatic extraction of collocational prepositional
phrases in Dutch. This experiment was designed to assess the performance of
a hybrid model that uses standard association measures to identify expressions
which we thought of as purely fixed expressions. We aim to answer two questions:

e Can data-driven models be useful to infer the syntactic behavior and appro-
priate linguistic description of Dutch collocational PPs?

e Are standard association measures good enough to identify collocational PPs
in corpora?

The results confirm previous claims in literature. From a linguistic perspec-
tive, a uniform class of these expressions does not exist (Paardekooper, 1973). In
addition, collocational PPs should not be formalized as multi-word fixed units be-
cause they may allow adverbial or adjectival modification in between constituent
lexemes. From a different perspective, using linguistic information (pos-tags, sen-
tential and phrasal boundaries) to extract datasets diminishes noise in datasets;
secondly, log-likelihood and x? tests are less sensitive to sparse data than mutual
information. Results of log-likelihood and x? are qualitatively speaking, better than
raw frequency, although recall is higher if we just look at raw frequency. Evaluating
the extraction and identification model proved to be a hard task given the lack of a
gold standard list of collocational PPs.

4.4.1 Dutch CPPs

Collocational prepositional phrases (Cpps) exhibit the syntactic pattern [Prep NP
Prep]. Examples of these phrases are in tegenstelling tot, ten opzichte van, etc.,
phrases that, in principle, appear to be totally fixed.

cpPps share properties with collocations and fixed phrases. Among these proper-
ties the relevant ones are: (i) head noun in NP cannot be replaced by a synonym; (ii)
noun admits restricted modification and quantifiers; (iii) idiosyncratic morphology;
(iv) often non-compositional meaning; (v) limited functionality as complements and,
(vi) NP complement of second Prep may be an R-pronoun. Due to these characteris-
tics, these phrases are not syntactically regular, and for many NLP applications (e.g.
machine translation, generation) they would pose problems. Breidt, Segond, and
Valetto (1996) suggested that such irregular phrases are best included as multi-
word lexemes in the lexicon.

We used a data-driven model to determine whether collocational PPs can indeed
be treated as fixed units given the evidence of their behavior found in corpora.
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4.4.2 Extraction and Identification Model
Datasets extraction

The chosen methodology requires a little a priori grammatical knowledge encoded
in the extraction data and used by the extraction tools. A cD-ROM version of the
newspaper de Volkskrant 97 was used to extract the datasets. The corpus had
been previously tagged by a part-of-speech tagger with a rather large tagset and
this tagging was performed automatically, using a Brill-tagger for Dutch (Drenth,
1997). The accuracy of the tagger is around 95%.

Extraction of instances of the chosen pattern was done by using a corpus query
tool called Gsearch. Gsearch (Corley et al., 2001) allows the extraction of part
of speech tagged corpus strings matching a user’s query. The tool uses a small
context-free grammar defined by the user, a left-corner parser and the user’s query
to search through the tagged corpora. Preprocessing with a tool like Gsearch filters
out unwanted data to extract a more reliable dataset. Note that erroneous instances
may still surface in the datasets due to tagging mistakes.

The output of Gsearch are all found instances of the pattern [ prep NP prep]
in the corpus. Further filtering was done to remove all instances that contained a
proper name or a numeral as head of the NP. The remaining instances were sorted
and assigned frequencies. Once the frequency of the candidate collocates was com-
puted, we used Ted Pedersen’s Bigram Statistic Package in order to compute the
log-likelihood, mutual information and x? score of each candidate in the dataset.??
These scores measure the lexical association between the words in the candidate
strings.

cPP identification models

The length of the extracted strings varies from 2 to 4 or sometimes more words.
Standard statistical tests needed to be adjusted because they are usually applied
to bigrams. We experiment with two different setups: a bigram model and a trigram
model.

Bigrams We treated each string as a bigram (w;, w;). As an example, in tegen-
stelling tot allows two possible bigram combinations ((wq, w;) and (w}, wj})) where
either (wi=in, w,=tegenstelling tot) or (wi=in_tegenstelling, wj=tot). Each string is
represented by two possible bigrams: (w;,w;) and (w], wj). The statistical tests
used are: mutual information, log-likelihood and x?2.

e Mutual Information:

P(w1,w3)

MI(wi,ws) =log, —————
bvrw2) =108 5 3pT,)

22The Bigram Statistic Package provides Perl scripts to (i) extract n-grams and their frequencies
from raw corpora, (ii) compute the mutual information, log-likelihood, Pearson’s x?, Dice coefficient
and Fisher’s scores assigned to a given n-gram given their frequency in the corpus. This package is
available at http://www.d.umn.edu/ tpederse/code.html.
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e Log-likelihood:%3

- H; (independence) : P(wz/wq) = P(wa|—wy),
— H, (dependence): P(wzlwi) # P(wa|—wq).

L(Hy)
L(Hy)

logA = log

o x? for (i,j) € (wiwa, wi—w2, ~wiwz, —wi—wy}:

=y (OijE_Eij)z
iy

iJ
where E;; is based on the assumption of independence.

For each extracted string, we applied the statistical tests to both bigram com-
binations ((wy, w;) and (wj, wj)). The final rank assigned to a string (in tegen-
stelling tot) is the result of adding up the ranks assigned to each bigram combina-
tion ((wy, wz) and (w}, wj)).

Trigrams Collocational candidates are treated as 3 word units. Continuing with
the same example, the collocational candidate in tegenstelling tot is represented as
(wy = in, w; = tegenstelling,w3 = tot). In this model, the statistical tests applied to

the datasets are mutual information and Pearson’s x2.24

4.4.3 Results and evaluation
Evaluation methodology
Two parameters were taken into account for the evaluation of the models:

Frequency threshold: Collocation density is typically lower among low-frequency
data than among high-frequency data.We chose two different frequency cut-
offs: f > 10 and f > 40. Our assumption is that word combinations that occur
less than 10 times in the corpus are not likely to yield reliable data. How-
ever, we want to keep low-frequency data to make the task a bit harder for the
statistical model.

Varying n-best lists: Once we applied the frequency thresholds, we are left with
2084 collocation candidates showing a frequency bigger than 10 and 317 can-
didates with a frequency bigger than 40. N-best lists include the N highest
ranked candidates result of applying a statistical test. Three different n-best
lists are chosen so that we evaluate almost all the strings with a frequency
bigger than 10.

23This test compares the probability of two hypotheses: H; and H,. The first hypothesis assumes
that the constituent words in the bigram are independent. In contrast, H, assumes that the words
are dependent. The log-likelihood score computes the log value of the result of dividing the likelihood
that H, is correct given our background assumptions (H;).

24The log-likelihood test was not computed because of the difficulty to state the conditionalization
between the trigram constituents.
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Evaluation data To the best of our knowledge, the only existing list of voorzetzel
uitdrukkingen available is that proposed in Paardekooper (1973) and Haeseryn and
et al. (1997). We refer to this list as the ANS list. The ANS list contains 86 voorzetsel
uitdrukkingen; however, a few expressions are not used in current Dutch (e.g.
naarmate van, omwille van, ter fine van). Thus, we manually compiled another list
of CPP’s.

We created another list of cpps which were manually extracted from the mono-
lingual Van Dale dictionary (Geerts and Heestermans, 1992). 200 candidate expres-
sions proposed as true CPP’s by the log-likelihood test were looked up in (Geerts and
Heestermans, 1992). If under the lexical entry of the head noun inside a candidate
expression (e.g. tegenstelling) a special phrase is listed (e.g. in tegenstelling tot)
then, we take this ‘special phrase’ as a true cpp. Our validation list consisted of 88
CPP’s that are listed in Van Dale’s dictionary as ‘special’ phrases. The Van Dale’s
list is similar to the ANS list, only a few expressions vary.

Bigrams results

Table 4.1 gives the results of applying mutual information (mi), log-likelihood (1)
and x? to the extracted collocation candidates when treated as bigrams. It also
shows, in the final row, the results of comparing three n-best lists of collocational
candidates retrieved on the basis of their frequency to the validation data.

nbest

test n | 100 300 | all
mi Freq > 10 2084 | 23| 39 (44.31%) | 76

11 Freq > 10 2084 | 53| 67 (76.1%) | 77

X2 Freq > 10 2084 | 52| 69 (78.4%) | 77
mi Freq > 40 317 47 67 (76.1%) | 67

11 Freq > 40 317 | 53 | 65 (73.86%) | 66

X* Freq > 40 317 | 55| 65 (73.86%) | 66
raw freq 248,683 | 50 | 65 (73.86%) | 84

Table 4.1: Bigrams results of mutual information, log-likelihood, x? and raw fre-
quency

Discussion Mutual information, when used with a frequency threshold of 10,
leads to a disproportional number of low frequency patterns among the highest
scoring items, leading to poor results. It is well-known that the mutual information
test performs poorly with sparse data even if large corpora are available and a
frequency cut-off is used (Manning and Schiitze, 1999, p.182). To correct for this
effect, we used a higher frequency threshold of 40. This leads to the results in the
4th row in Table 4.1. More positive candidates are found among the smaller nbest
lists in comparison to the previous frequency threshold. Considering an nbest list
larger than 300 does not improve results because there are only 317 candidates
that occur more than 40 times in the dataset.
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The performance of the log-likelihood and Pearson’s x? tests is fairly similar in
the bigram model. Comparing the results of these two tests for the two different
thresholds becomes apparent how log-likelihood and Pearson’s x? are not so sensi-
tive to low-frequency data as mutual information.

Expressions included in the validation data and not found by any statistic either
have a frequency value that is lower than the frequency threshold or, the expres-
sions are not present in the extracted datasets (missing in the corpus) (refer to the
last line in Table 4.1).

Frequency counts leads to better results than MI and x?, and for higher n-best
lists its accuracy comes closer to the log-likelihood and x? accuracies. Similar
conclusions have been reported about the extraction of Adj-Noun combinations by
Evert and Krenn (2001).

Trigrams results

Results and discussion Refer to Table 4.2. For a low frequency threshold,
mutual information results improve with a trigram setup of the statistical model.
However, looking at larger nbest lists no difference exists between the bigram and
the trigram setups.

nbest
test Freq n | 100 300 | all
mi > 10 2,084 | 23| 45(51.1%) | 77
x? > 10 2,084 | 45| 61 (69.3%) | 77
mi > 40 317 | 46| 67 (76.1%) | 67
X2 > 40 317 | 51 66 (75%) | 67
raw freq 248,683 50 | 65 (73.86%) | 84

Table 4.2: Trigrams: Results of mutual information, x? and raw frequency

Comparing bigram and trigram models

From a quantitative perspective, the result of comparing the best statistic test
(Pearson’s x?) to raw frequency counts shows that x? does slightly better than raw
frequency in the bigram setup. In contrast, raw frequency proves to be a better test
than x? in the trigram setup.

From a qualitative perspective, we believe that either x? or log-likelihood prove to
be more appropriate for extraction of CpPpP’s than raw frequency given the significant
difference between the corresponding extracted lists. Among the CcPP’s extracted
by the two-best statistical tests, the expressions are more fixed or less composi-
tional than the expressions retrieved by raw frequency. Furthermore, given our
purpose, applying the statistical tests has the advantage of pruning many very fre-
quent non-collocational candidates out of the datasets. Raw frequency considers
such candidates as collocational, since only their frequency is taken into account.
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Human evaluation

We carried a small experiment to get insights about the difficulty of the task of
finding collocations in human beings. A list with the defining properties of cpp’s
was given to the judges who had to assign a 1 to those expressions that satisfied
all the properties. The list given to the judges included 180 candidate collocation
expressions randomly selected from the output result of applying the log-likelihood
test. Less than 10% of the expressions were classified as good CPP’s by at least two
judges.

4.4.4 Conclusions

The background study revealed that cPPs cannot be formalized as a multi-word-
lexeme inserted as a fixed string in a lexicon. Variation needs to be allowed and
therefore, internal structure is required.

Evaluation of the identification model proved to be a hard task because:

e gold standard list does not exist

e manually compiled Van Dale list of cPps is limited and only covers a rather
small number of these expressions

e human evaluation proved also complex due to the difficulty to state a uniform
description of the properties of CPPs.

Furthermore, our results are not directly comparable to state-of-the-art extrac-
tion models. We cannot easily estimate precision and recall values given the scarce
evaluation data.

To conclude, although the identification models used in the case study did not
work remarkably well, they helped us to extract a reasonable list of cpp’s. We hope
that in future experiments with different models, the list will be expanded.

4.5 Research plan

The Phd project being described here aims to contribute to the development of the
Alpino wide-coverage grammar. In particular, we will concentrate on computational
aspects of a syntactic property of (semi-)fixed phrases in Dutch: modification. This
should also prove beneficial for a future theory of modification within fixed idiomatic
expressions.

Questions we seek to answer are:

e What data-driven models are useful to automatically acquire fixed expres-
sions?

e Applying corpus-based techniques, can we identify what modification is al-
lowed within fixed phrases and infer their linguistic description?

e In order to handle modification within ‘fixed’ expressions what features and
linguistic constraints need to be specified in a computational grammar?
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The main objectives of the project are:

¢ the development of a model that performs automatic lexical acquisition of fixed
phrases. The resulting model will provide a lexicon of fixed phrases and will
help to infer their linguistic description.

e report on what salient features of modification within fixed expressions need to
be considered in the development of the lexical representation of fixed phrases
in a computational grammar.

4.5.1 Automatic acquisition of fixed phrases

A bottom-up approach will be pursued, such that we search for fixed expressions in
a corpus given specific syntactic constraints. In principle, we will focus on 4 types
of fixed expressions. These four types all involve (at least) a verbal lexeme and a
fixed phrasal constituent: (i) [PP copular verb], (ii) [NP copular verb], (iii) [ laten
infinitive VP | and (iv) support verb constructions (verbs: hebben, maken, houden
and doen).

Our goal is to find instances of fixed expressions that exhibit such patterns.
Bearing this in mind, automatic extraction of fixed expressions from corpora can
be decomposed into three tasks: (i) identification of fixed expressions given specific
syntactic constraints, (ii) finding subcategorization frame of fixed expression and
(iii) determining variation in fixed expressions.

Identification of fixed expressions given syntactic constraints

Rather homogenous (input) datasets to the identification models can be extracted
by taking into account syntactic constraints of fixed expressions (Krenn, 2000;
Pearce, 2002). We follow the assumption that the verbal lexeme and the ‘fixed’
constituent mutually select each other. Lexical selection between collocates within
the fixed expression should be mirrored by high likelihood of finding them together
within the same sentence.

Following Krenn (2000), we impose the following lexico-syntactic constraints:
(i) word category of potential constituent lexemes in fixed expression is specified
and, (ii) both constituents should occur within sentence boundaries. The extracted
datasets will consist of all instances found in the extraction corpus such that the
constituent lexemes exhibit a specific word category. For example, if we attempt to
extract fixed expressions that involve the support verb houden and a fixed PP, our
target expressions will include the verb houden and each PP instance that co-occurs
with houden within the same sentence. If the extractor comes across the sentence
Zij houden het belang van het land in de gaten two different candidates will be
included in the datasets because they satisfy the requirement that the potential
(fixed) complement is a PP: van het land houden and in de gaten houden.

Extraction from corpus Previous approaches report better performance of
models that make use of fully parsed input data (Lin, 1998; Blaheta and Johnson,
2001; Pearce, 2002). Large fully-parsed corpora are not available in Dutch. The
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input data will be pos-tagged data. To compensate for the lack of fully parsed data,
we will use Gsearch (Corley et al., 2001) to extract particular patterns out of the
extraction corpus. Given that Gsearch requires a context-free grammar to search
through instances of a syntactic pattern in the corpus, we will expand this context-
free grammar with non-recursive phrase structure rules that reflect structure of
PPs, AdjPs, NPs and all required terminals. The context-free grammar terminals
match pos-tags used to annotate the corpus. Two difficulties we need to tackle are:

e extraction of non-contiguous word combinations that are instances of the pre-
specified pattern.

e multiple occurrences of verbs and PPs/NPs within a sentence

In the beginning, we will focus on subordinate structures where it is most ex-
pected that the PP/NP (fixed chunk) is adjacent to the verbal head. This move
may temporarily solve the two previous difficulties, however it may not be a good
solution especially if the available corpus is not large enough.

Expanding the context-free grammar to deal with non-contiguous word combi-
nations may have as consequence that the data in datasets becomes less reliable.
An alternative experiment will try to use the Alpino parser on unseen data. Rather
than using fully parsed data, we will extract sentences with syntactic annotation at
the phrasal level, not at the sentence level. From that we will build the datasets.

Building datasets One of our goals is to determine the allowable modification
within fixed expressions. To construct the datasets we do not want to remove in-
formation about (adjectival/adverbial) modification and quantification within the
candidate fixed expressions. We will experiment with different datasets; candi-
date expressions may be represented by (i) all lexemes instantiating the extracted
pattern; (ii) only head lexemes n-tuples (Prep,Noun,Verb), (Verb;=laten,Verb,)
or (Prep,Noun,Verb;=support_verb) and therefore intervening modification is dis-
carded; (iii) intervening words between head lexemes replaced by their POs-tags
thus, still considering the flexibility of the fixed expression and (iv) verbal lexemes
within n-tuples reduced to their base form (lemmatized).

An example will illustrate the differences between datasets. Suppose we want
to extract all instances of the support verb construction [ PP houden |. Candi-
dates within a dataset type (i) (according to specification given above) include all
the word tokens within the PP, (e.g. in de gaten houden, van het land houden).
Candidates within a dataset type (ii) will be in gaten houden or van land houden;
type (iii) datasets list candidates such that quantifiers and modifiers within the
complement PP are replaced by their part-of-speech (e.g. in DET gaten houden, van
DET land houden); finally, datasets type (iv) replace the full form of verb lexemes
(houd, houdt,houden,gehouden,etc.) by the base form of the verb (i.e. its lemma
houden). The purpose of considering the 4 variants is to aleviate a potential sparse
data problem while still considering variation within candidate expressions.

Following Krenn (2000) and Blaheta and Johnson (2001) we want to experiment
how the different datasets influence the performance of the identification model.
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Identification models We will investigate how a model that uses standard as-
sociation measures such as the ones used in the case study (see Section 4.4) per-
forms on this new task for the four different datasets described above. Second, we
will apply Krenn'’s phrasal entropy and the log-linear models (Blaheta and Johnson,
2001) described in Section 4.3.2 to the same datasets. After the comparison and
evaluation of the performance of the three models we will assess ways to improve
the identification coverage.

After applying the standard association measures (trigrams model), if some tests
overestimate the significance of low-frequency data we will treat low-frequency data
(2 < f <5) separately by applying Fisher’s test (Weeber, Vos, and Baayen, 2000).

Evaluation data Automatic extraction of a collocations list from machine read-
able dictionaries is desired. We would like to explore the feasibility of compiling a
list of specific collocations (e.g. with support verbs) from the electronic version of
Van Dale Groot Woordenboek der Nederlandse Taal Geerts and Heestermans (1992)
for evaluation purposes.

For earlier experiments a random sample of collocations will be selected out of
varying N-best candidates list and manually evaluated by native speakers.

Finding variation and subcategorization frame of fixed expression

Provided we have a list of fixed expressions, we will semi-automatically explore all
instances of each fixed expression in corpora. By doing this, we aim at collecting
evidence from corpora to determine: (i) which lexemes allow modification in fixed
phrases, (ii) what type of variation is allowed (nouns, adjectives, suffixes, determin-
ers, adverbial intensifiers) and finally, (iii) under which conditions can variation be
overtly realized?. Secondly, we will determine the required subcategorization frame
of the verb lexeme. This should provide syntactic valency information of the verbal
head within the fixed expression that needs to be annotated in the lexicon.

4.5.2 Lexical representation of flexible ‘fixed’ expressions

The second concrete objective of the project is to report on salient features of fixed
expressions that ought to be considered during the development of the lexical rep-
resentation of modification within fixed expressions in a computational grammar.

The task involves first, understanding the grammar of modification phenomena
within fixed expressions and reporting how current formalizations of fixed expres-
sions under the HPSG framework handle modification and second, informing the
grammar developers about which features and linguistic constraints are needed to
handle modification within fixed expressions in a computational grammar.

Syntactico-semantic properties Our primary focus is the linguistic motivation of
an adequate lexical representation of fixed phrases, together with the identification
of constraints that determine the type as well as the location of modification.

Section 4.2.2 described the main syntactico-semantic properties of fixed expres-
sions.
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Given the unpredictability of syntactic and semantic behavior of fixed expres-
sions, the properties more difficult to formalize are:

e lexical selection of fixed lexemes that may allow restricted modification
e prevention of idiomatic words from occurring outside the fixed expression

e exceptional: agreement between determiners within fixed constituent and the
subject; subject idioms

Three questions need to be answered:

e Where should these properties be encoded in a constraint-based lexicalist
grammar?

- lexicon component

— grammar component
e How to set restrictions on fixed expressions that allow modification?

e What changes in the current Alpino grammar are required to handle the data?

To answer these questions we will investigate recent proposals to analyse id-
iomatic expressions in HPSG that combine two types of approaches: word-level and
phrasal-level approaches (Sailer, 2000; Riehemann, 2001). In the future we will re-
port the potential of Riechemann (2001) proposal in theoretical linguistics to account
for the Dutch data. We will pursue a comparative study between Riehemann’s and
Sailer’s proposals exploring which approach handles modification within fixed ex-
pressions in a more efficient way. In the end we aim at a characterization of modi-
fication within the 4 types of Dutch fixed phrases, by proposing the required lexical
representation and grammatical description in the lexicalist Alpino grammar.
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Annotation Efforts






Chapter 5

The Alpino Dependency Treebank

5.1 Introduction

In this section we present the Alpino Dependency Treebank and the tools that we
have developed to facilitate the annotation process. Annotation typically starts with
parsing a sentence with the Alpino parser. The number of parses that is generated
is reduced through interactive lexical analysis and constituent marking. A tool
for on line addition of lexical information facilitates the parsing of sentences with
unknown words. The selection of the best parse is done efficiently with the parse
selection tool. At this moment, the Alpino Dependency Treebank consists of about
6,000 sentences of newspaper text that are annotated with dependency trees. The
corpus can be used for linguistic exploration as well as for training and evaluation
purposes.

A syntactically annotated corpus is needed to train disambiguation models for
computational grammars, as well as to evaluate the performance of such models,
and the coverage of computational grammars. For this purpose we have started to
develop the Alpino Dependency Treebank.

The treebank consists of sentences from the newspaper (cdbl) part of the Eind-
hoven corpus (Uit den Boogaard 1975). The sentences are each assigned a depen-
dency structure, which is a relatively theory independent annotation format. The
format is taken from the corpus of spoken Dutch (caN)! (Oostdijk 2000), which
in turn based its format on the Tiger Treebank (Skut 1997). In section 5.2 we go
into the characteristics of dependency structures and motivate our choice for this
annotation format.

Section 5.3 is the central part of this paper. Here we explain the annotation
method as we use it, the tools that we have developed, the advantages and the
shortcomings of the system. It starts with a description of the parsing process that
is at the beginning of the annotation process. Although it is a good idea to start
annotation with parsing (building dependency trees manually is very time consum-
ing and error prone), it has one main disadvantage: ambiguity. For a sentence of
average length typically a set of hundreds or even thousands of parses is generated.
Selection of the best parse from this large set of possible parses is time intensive.

The tools that we present in this paper aim at facilitating the annotation process

'http://lands.let. kun.nl/cgn
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and making it less time consuming. We present two tools that reduce the number
of parses generated by the parser and a third tool that facilitates the addition of
lexical information during the annotation process. Finally a parse selection tool is
developed to facilitate the selection of the best parse from the reduced set of parses.

The Alpino Dependency Treebank is a searchable treebank in an XML format. In
section 5.4 we present examples illustrating how the standard XML query language
XPath can be used to search the treebank for linguistically relevant information. In
section 5.5 we explain how the corpus can be used to evaluate the Alpino parser
and to train the probabilistic disambiguation component of the grammar. We end
with conclusions and some pointers to future work in 5.7.

5.2 Dependency Trees

The meaning of a word or a sentence is represented in standard HPSG by semantic
representations that are added to lexical entries and phrases. Semantic princi-
ples define the construction of a semantic structure from these representations.
In Alpino we have added the DT features with which we build a dependency tree
instead.

Dependency structures represent the grammatical relations that hold in and
between constituents. On the one hand they are more abstract than syntactic trees
(word order for example is not expressed) and on the other hand they are more
explicit about the dependency relations. Indices denote that constituents may have
multiple (possibly different) dependency relations with different words. Fig. 5.1
shows the dependency tree for the sentence Kim wil weten of Anne komt. The
dependency relations are the top labels in the boxes. In addition, the syntactic
category, lexical entry and string position are added to each leaf. The index 1
indicates that Kim is the subject of both wil (wants) and weten (to know).

The main advantage of this format is that it is relatively theory independent,
which is important in a grammar engineering context. A second advantage is
that the format is similar to the format cGN uses (and that they in turn based on
the Tiger Treebank), which allowed us to base our annotation guidelines on theirs
(Moortgat, Schuurman and van der Wouden 2001). The third and last argument
for using dependency structures is that it is relatively straightforward to perform
evaluation of the parser on dependency structures: one can compare the automat-
ically generated dependency structure with the one in the treebank and calculate
statistical measures such as F-score based on the number of dependency relations
that are identical in both trees (Carroll, Briscoe, and Sanfilippo, 1998).

5.3 The annotation process

The annotation process is roughly divided into two parts: we first parse a sentence
with the Alpino parser and then select the best parse from the set of generated
parses. Several tools that we have developed and implemented in Hdrug, a graph-
ical environment for natural language processing (van Noord and Bouma 1997),
facilitate the two parts of the annotation process. In section 5.3.1 we present an
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Figure 5.1: Dependency tree voor de zin Kim wil weten of Anne komt

interactive lexical analyzer, a constituent marker and a tool for temporary addition
of lexical information. The parse selection tool is described in in section 5.3.5.

5.3.1 Parsing

The annotation process typically starts with parsing a sentence from the corpus
with the Alpino parser. This is a good method, since building up dependency trees
manually is extremely time consuming and error prone. Usually the parser pro-
duces a correct or almost correct parse. If the parser cannot build a structure for a
complete sentence, it tries to generate as large a structure as possible (e.g. a noun
phrase or a complementizer phrase). The main disadvantage of parsing is that the
parser produces a large set of possible parses (see fig.5.2). This is a well known
problem in grammar development: the more linguistic phenomena a grammar cov-
ers, the greater the ambiguity per sentence. Because selection of the best parse
from such a large set of possible parses is time consuming, we have tried to reduce
the set of generated parses. The interactive lexical analyzer and the constituent
marker restrict the parsing process which results in reduced sets of parses. A tool
for on line addition of lexical information makes parsing of sentences with unknown
words more accurate and efficient.

5.3.2 Interactive lexical analysis

The interactive lexical analyzer is a tool that facilitates the selection of lexical entries
for the words in a sentence. It presents all possible lexical entries for all words in
the sentence to the annotator. He or she may mark them as correct, good or bad.

e Correct Parse must include it
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Figure 5.2: Number of parses generated per sentence by the Alpino parser

e Good Parse may include it
e Bad Parse may not include it

One correct mark for a particular lexical entry automatically produces bad marks
for all other entries for the same word. The parser uses the reduced set of entries
to generate a significantly smaller set of parses in less processing time.

5.3.3 Constituent Marking

The annotator can mark a piece of the input string as a constituent by putting
square brackets around the words. The type of constituent can be specified after
the opening bracket. The parser will only produce parses that have a constituent
of the specified type at the string position defined in the input string. Even if the
parse cannot generate the correct parse, it will produce parses that are likely to be
close to the best possible parse, because they do oblige to the restrictions posed on
the parses by the constituent marker.

Constituent marking has some limitations. First, the specified constituent bor-
ders are defined on the syntactic tree, not the dependency tree (dependency struc-
tures are an extra layer of annotation that is added to the syntactic structure).
Using the tool therefore requires knowledge of the Alpino grammar and the syntac-
tic trees that it generates.

Second, specification of the constituent type is necessary in most cases, espe-
cially for disambiguating prepositional phrase attachments. As shown in fig. 5.3, a
noun phrase and a prepositional phrase can form a constituent on different levels.
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Figure 5.3: PP attachment ambiguity in Alpino

The two phrases can form either a noun phrase or a verbal projection with an empty
verb (which is used in the grammar to account for verb second). The first structure
corresponds to a dependency structure with a noun phrase internal prepositional
modifier, the second corresponds to a dependency tree in which the prepositional
phrase is a modifier on the sentence level. Marking the string het meisje in het
park as a constituent without further specification does not disambiguate between
the two readings: in both readings the string is a constituent. One has to specify
that the string should be a noun phrase, not a verbal projection. This specification
of the constituent type requires even more knowledge of the grammar. If one spec-
ifies a constituent type that cannot be formed at the denoted string position, the
parser treats the specification as an illegal character, skips it and generates partial
parses only.

5.3.4 Addition of lexical information

Alpino is set up as a broad coverage parser. The goal is to build an analyzer of un-
restricted text. Therefore a large lexicon has been created and extensive unknown
word heuristics have been added to the grammar. Still, it is inevitable that the
parser will come across unknown words that it cannot handle yet. Verbs are used
with extra or missing arguments, Dutch sentences are mingled with foreign words,
spelling mistakes make common words unrecognizable. In most cases, the parser
will either skip such a word or assign an inappropriate category to it. The only way
to make the system correctly use the word, is to add a lexical entry for it in the
lexicon.

Adding new words to the lexicon costs time: one has to write the entry, save the
new lexicon and reload it. It would be far more efficient to add all new words one
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top:hd = vuwil
top:su = n Kim
top:ve:hd = v weet
top:veisu = n Kim
top:ve:ve:emp = comp of
top:vc:ve:body:hd = v kom

top:vc:ve:body:su n Anne

Figure 5.4: Set of dependency paths for the sentence Kim wil weten of Anne komt

comes across during an annotation session at once, avoiding spurious reloadings.
Furthermore, not all unknown words the parser finds should be added to the lexi-
con. One would want to use misspelled words and verbs with an incorrect number
of arguments only once to build a parse with.

Alpino has temporary, on line addition of lexical information built in for this
purpose. Unknown words can temporarily be added to the lexicon with the com-
mand add_tag or add-lex. Like the words in the lexicon, this new entry should
be assigned a feature structure. add_tag allows the user to specify the lexical type
as the second argument. However types may change and especially for verbs it is
sometimes hard to decide which of the subcategorization frames should be used.
For that reason the command add_lex allows us to assign to unknown words the
feature structure of a similar word, that could have been used on that position. The
command add_-lex stoel tafel for instance assigns all feature structures asso-
ciated with tafel to the word stoel. The command add_-lex zoen slaap assigns
zoen all feature structures of slaap, including imperative and 1st person singu-
lar present for all sub-categorization frames of slapen. The lexical information is
automatically deleted when the annotation session is finished.

5.3.5 Selection

Although the number of parses that is generated is strongly reduced through the
use of different tools, the parser usually still produces a set of parses. Selection of
the best parse (i.e. the parse that needs the least editing) from this set of parses is
facilitated by the parse selection tool. This design of this tool is based on the SRI
Treebanker (Carter 1997).

The parse selection takes as input a set of dependency paths for each parse.
A dependency path specifies the grammatical relation of a word in a constituent
(e.g. head (hd) or determiner (det)) and the way the constituent is embedded in the
sentence. The representation of a parse as a set of dependency paths is a notational
variant of the dependency tree. The set of dependency triples that corresponds to
the dependency tree in fig. 5.1 is in fig. 5.4.

From these sets of dependency paths the selection tool computes a (usually
much smaller) set of maximal discriminants. This set of maximal discriminants
consists of the triples with the shortest dependency paths that encode a certain
difference between parses. In example 5.5 the triples s:su:det = det het and s:su =
np het meisje always co-occur, but the latter has a shorter dependency path and



Algorithms for Linguistic Processing 91

s:hd = Vv zag s:hd = Vv zag
*s:su = np jan *s:su = np het meisje
*s:0bjl = np het meisje s:su:det = det het
s:objl:det = det het s:su:thd = n meisje
s:objl:hd = n meisje *s:0bjl = np jan

Figure 5.5: Two readings of the sentence Jan zag het meisje represented as sets of
dependency paths. An * indicates a maximal discriminant

is therefore a maximal discriminant. Other types of discriminants are lexical and
constituent discriminants. Lexical discriminants represent ambiguities that result
form lexical analysis, e.g. a word with an uppercase first letter can be interpreted
as either a proper name or the same word without the upper case first letter. Con-
stituent discriminants define groups of words as constituents without specifying
the type of the constituent.

The maximal discriminants are presented to the annotator, who can mark them
as either good (parse must include it) or bad (parse may not include it). The parse
selection tool then automatically further narrows down the possibilities using four
simple rules of inference. This allows users to focus on discriminants about which
they have clear intuitions. Their decisions about these discriminants combined
with the rules of inference can then be used to make decisions about the less
obvious discriminants.

1. If a discriminant is bad, any parse which includes it is bad
2. If a discriminant is good, any parse which doesn’t include it is bad
3. If a discriminant is only included in bad parses, it must be bad

4. If a discriminant is included in all the undecided parses, it must be good

The discriminants are presented to the annotator in a specific order to make the
selection process more efficient. The highest ranked discriminants are always the
lexical discriminants. Decisions on lexical discriminants are very easy to make and
greatly reduce the set of possibilities.

After this the discriminants are ranked according to their power: the sum of the
number of parses that will be excluded after the discriminant has been marked bad
and the number of parses that will be excluded after it has been marked good. This
way the ambiguities with the greatest impact on the number of parses are resolved
first.

The parse that is selected is stored in the treebank. If the best parse is not fully
correct yet, it can be edited in the Thistle (Calder 2000) tree editor and then stored
again. A second annotator checks the structure, edits it again if necessary and
stores it afterwards.
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<node rel="top" cat="smain" start="0" end="6" hd="2">
<node rel="su" pos="noun" cat="np" index="1"
start="0" end="1" hd="1" root="Kim" word="Kim"/>
<node rel="hd" pos="verb"
start="1" end="2" hd="2" root="wil" word="wil"/>
<node rel="vc" cat="inf" start="2" end="6" hd="3">
</node>
</node>

Figure 5.6: XML encoding of dependency trees.

5.4 Querying the treebank

The results of the annotation process are stored in XML. XML is widely in use for
storing and distributing language resources, and a range of standards and soft-
ware tools are available which support creation, modification, and search of XML
documents. Both the Alpino parser and the Thistle editor output dependency trees
encoded in XML.

As the treebank grows in size, it becomes increasingly interesting to explore it
interactively. Queries to the treebank may be motivated by linguistic interest (i.e.
which verbs take inherently reflexive objects?) but can also be a tool for quality
control (i.e. find all pps where the head is not a preposition).

The XPath standard? implements a powerful query language for XML documents,
which can be used to formulate queries over the treebank. XPath supports conjunc-
tion, disjunction, negation, and comparison of numeric values, and seems to have
sufficient expressive power to support a range of linguistically relevant queries.
Various tools support XPath and can be used to implement a query-tool. Currently,
we are using a C-based tool implemented on top of the LibXML library.3

The xML encoding of dependency trees used by Thistle (and, for compatibility,
also by the parser) is not very compact, and contains various layers of structure
that are not linguistically relevant. Searching such documents for linguistically in-
teresting patterns is difficult, as queries tend to get verbose and require intimate
knowledge of the XML structure, which is mostly linguistically irrelevant. We there-
fore transform the original XML documents into a different XML format, which is
much more compact (the average file size reduces with 90%) and which provides
maximal support for linguistic queries.

As XML documents are basically trees, consisting of elements which contain
other elements, dependency trees can simply be represented as XML documents,
where every node in the tree is represented by an element node. Properties are
represented by attributes. Terminal nodes (leaves) are nodes which contain no
daughter elements. The XML representation of (the top of) the dependency tree
given in figure 5.1 is given in figure 5.6.

The transformation of dependency trees into the format given in figure 5.6 is not
only used to eliminate linguistically irrelevant structure, but also to make explicit

2www.w3.org/TR/xpath
Swww.xmlsoft.org/
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information which was only implicitly stored in the original XML encoding. The
indices on root forms that were used to indicate their string position are removed
and the corresponding information is added in the attributes start and end. Apart
from the root form, the inflected form of the word as it appears in the annotated
sentence is also added. Words are annotated with part of speech (pos) information,
whereas phrases are annotated with category (cat) information. A drawback of
this distinction is that it becomes impossible to find all Nps with a single (non-
disjunctive) query, as phrasal Nps are cat="np" and lexical NPs are pos="noun".
To overcome this problem, category information is added to non-projecting (i.e.
non-head) leaves in the tree as well. Finally, the attribute hd encodes the string
position of the lexical head of every phrase. The latter information is useful for
queries involving discontinuous constituents. In those cases, the start and end
positions may not be very informative, and it can be more interesting to be able to
locate the position of the lexical head.

We now present a number of examples which illustrate how XPath can be used
to formulate various types of linguistic queries. Examples involving the use of the
hd attribute can be found in Bouma and Kloosterman (2002).

Objects of prepositions are usually of category Np. However, other categories are
not completely excluded. The query in (1) finds the objects within pps.

(1) //node[QRcat="pp"]/node[@rel="objl"]

The double slash means we are looking for a matching element anywhere in the doc-
ument (i.e. it is an ancestor of the top element of the document), whereas the single
slash means that the element following it must be an immediate daughter of the
element preceding it. The @-sign selects attributes. Thus, we are looking for nodes
with dependency relation objl, immediately dominated by a node with category
pp. In the current state of the dependency treebank, 98% (5,892 of 6,062) of the
matching nodes are regular Nps. The remainder is formed by relative clauses (voor
wie het werk goed kende, for who knew the work well), PPs (tot aan de waterkant,
till on the waterfront), adverbial pronouns (see below), and phrasal complements
(zonder dat het een cent kost, without that it a penny costs).

The cGN annotation guidelines distinguish between three possible dependency
relations for pps: complement, modifier, or 'locative or directional complement’ (a
more or less obligatory dependent containing a semantically meaningful preposition
which is not fixed). Assigning the correct dependency relation is difficult, both for
the computational parser and for human annotators. The following query finds the
head of pps introducing locative dependents:

(2) //node[@rel="hd" and ../Q@cat="pp" and ../@rel="1d"]

Here, the double dots allow us to refer to attributes of the dominating XML element.
Thus, we are looking for a node with dependency relation hd, which is dominated
by a pp with a Id dependency relation. Here, we exploit the fact that the mother
node in the dependency tree corresponds with the immediately dominating element
in the XML encoding as well.

Comparing the list of matching prepositions with a general frequency list reveals
that about 6% of the pps are locative dependents. The preposition naar (to, towards)
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typically introduces locative dependents (50% (74 out of 151) of its usage), whereas
the most frequent preposition (i.e. van, of] does introduce a locative in only 1% (15
out of 1496) of the cases.

In PPs containing an impersonal pronoun like er (there), the pronoun always
precedes the preposition. The two are usually written as a single word (eraan, there-
on). A further peculiarity is that pronoun and preposition need not be adjacent (In
Delft wordt er nog over vergaderd (In Delft, one still talks about it)). The following
query finds such discontinuous phrases:

(3) //node [@Cat:"ppu and
./node [@rel="objl"]/@end < ./node[@rel="hd"]/@start ]

Here, the '<’-operator compares the value of the end position of the object of the
PP with the start position of the head of the pp. If the first is strictly smaller than
the second, the PP is discontinuous. The corpus contains 133 discontinuous PPs
containing an impersonal pronoun vs. almost 322 continuous pronoun-preposition
combinations, realized as a single word, and 17 cases where these are realized as
two words. This shows that in almost 25% of the cases, the preposition + imper-
sonal pronoun construction is discontinuous.

5.5 Evaluation Metrics

One of the applications of the Alpino treebank is the evaluation of the performance
of the parser. Evaluation is done by comparing the dependency structure that the
parser generates for a given corpus sentence, to the dependency structure that is
stored in the treebank. For the purpose of comparison, we do not use the repre-
sentation of dependency structures as trees, but the alternative notation as sets of
dependency paths that we already saw in the previous section. Comparing these
sets, we can count the number of relations that are identical in the parse that the
system generated and the stored structure. From these counts precision, recall
and F-score can be calculated. In our experience, the following metric, concept ac-
curacy (CA), is a somewhat more reliable indicator of the quality of the system.*
This metric is defined for a given sentence s:

D¢(s)

1 f
CAlS) =1 = XD y(s), Dy (s)

Here, D,(s) is the set of dependency relations of the parse for sentence s (generated
by the parser). Dgy(s) is the set of dependency relations of the gold parse that is
stored in the treebank for s. D¢(s) is the number of incorrect or missing relations
in Dy(s).

For a corpus of sentences S, we often report the per sentence mean CA score. In
addition, it is useful to consider the overall CA score:

ZSGSDf(S)
max(ZsesDg(s), ZsesDpl(s))

4This metric is a variant of the metric introduced in (Boros et al., 1996); we adapted the metric to
ensure that the score is between O and 100.

CA(S)=1-
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In chapter 11, a number of disambiguation models is described. Such disam-
biguation models aim to pick out the best parse from a set of possible parses. It is
therefore natural to think of the upper and lower bounds of parse selection, on the
basis of the potential scores of each of the parses in the set from which a choice
has to be made. The lower bound baseline CA is defined as the CA of a random
parse from the set of parses. The upper bound best CA is defined as the maximum
CA of any of the parses. best CA is 100 just in case the correct parse is among the
set of parses generated by the grammar. The best CA score reflects the accuracy of
the grammar. Based on these bounds, we define an adjusted concept accuracy:

CA — baseline CA

CAx =100 % best CA — baseline CA

The adjusted concept accuracy CAi allows the models to be more broadly com-
pared to others by incorporating not only the concept accuracy of the model but
also the lower and upper bound accuracy.

5.6 Annotator Agreement

This section describes a small experiment that we performed in order to investigate
the agreement among annotators that can be expected for treebanks of this sort.
The setup of the experiment was as follows. Two annotators were asked to annotate
the same set of sentences, independently from each other. These two annotators
were trained to annotate according to the CGN guidelines. The set consisted of the
last one hundred sentences of nineteen words of the cdbl corpus. Perhaps it would
have been better to perform the experiment on sentences of varying length, but all
shorter sentences of this corpus were already annotated. Note that the length of
nineteen words is a rather typical sentence length for this corpus (mean sentence
length is about twenty words).

For 42 sentences, the two annotators produced the same set of dependency re-
lations. In table 5.1 we list the annotator agreement, expressed in terms of the con-
cept accuracy metric defined in the previous section. In a few cases, the differences
in annotation were due to simple mistakes. In most cases, the differences were
due to a true difference in linguistic analysis. In the table we quantify what types
of disagreement occurred often. The most frequent cause of disagreement were
differences in attachment of modifiers. Another frequent cause of disagreement
is related to the choice of the dependency relation: typical disagreements involve
the labels MOD, LD, PC for modifiers, directional complements, and prepositional
complements, respectively. In some cases, the disagreement is about whether or
not a fixed phrase should be treated as a multi-word unit, or not. Disagreements
of this sort are counted rather heavily in the concept accuracy measure, because
each relation that involve the multi-word unit will be treated as incorrect. The
final somewhat larger class of mistakes were related to the identification of dis-
course units (for instance for the analysis of certain spoken language constructs
that sometimes occur in written texts too).
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agreement 93.1 %
mistakes 1.5 %
agreement after correction 94.6 %
attachment of modifiers 1.5 %
different dependency labels 1.3 %
multi word units 1.1 %
discourse units 0.7 %

misc 0.7 %

Table 5.1: Results of Annotator Agreement Experiment

5.7 Conclusions

A treebank is very important for both evaluation and training of a grammar. For
the Alpino parser, no suitable treebank existed. For that reason we have started
to develop the Alpino Dependency Treebank by annotating a part of the Eindhoven
corpus with dependency structures. As the treebank grows in size, it becomes
more and more attractive to use it for linguistic exploration as well, and we have
developed an XML format which supports a range of linguistic queries.

To facilitate the time consuming annotation process, we have developed several
tools: interactive lexical analysis and constituent marking reduce the set of parses
that is generated by the Alpino parser, the tool for addition of lexical information
makes parsing of unknown words more efficient and the parse selection tool facili-
tates the selection of the best parse from a set of parses. In the future, constituent
marking could be made more user friendly. We could also look into ways of further
reducing the set of maximal discriminants that is generated by the parse selection
tool.

The treebank currently contains over 6,000 sentences, and is available on
http://www.let.rug.nl/ vannoord/trees. Much effort will be put in extending the
treebank to at least the complete cdbl newspaper part of the Eindhoven corpus,
which contains more than 7,100 sentences.
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Chapter 6

Compact and Efficient Finite
Automata for NLP

6.1 Introduction

There are two main reasons for which finite state automata are used in natural
language processing: small size and great speed compared to other, alternative
representations. In the framework of the present project, memory-efficient repre-
sentations with finite state automata were investigated in the following aspects:

e impact of combinations of various compression techniques on the size of the
resulting automaton was examined (Section 6.2);

e compressed language models using finite state perfect hashing techniques and
finite state compression methods (Section 6.2) were developed (Section 6.3);

e an incremental minimization algorithm (Watson, 2001) was improved so that
it can run in polynomial instead of exponential time (Section 6.4).

Although a finite state automaton is small and fast, building one may require
considerable resources. Acyclic finite automata are frequently used as dictionaries.
A comparison of existing algorithms for constructing acyclic finite state automata
from sets of strings was conducted (Section 6.5). This research lead to a new
algorithm that proves to be the fastest for word lists when sufficient memory is
available.

In some applications cyclic automata are required. Although it is usually pos-
sible to separate the cyclic and acyclic parts, one automaton for all cases is faster
than two separate ones. In a recent paper (Carrasco and Forcada, 2002) proposed
a generalization of one of algorithms for constructing acyclic finite state automata
to the case when strings are added to a cyclic automaton. A related algorithm con-
structing automata from sorted lists of strings can also be generalized in a similar
way (Section 6.6).
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6.2 Compression of Automata

Finite-state automata are used in various applications. One of the reasons for this
is that they provide very compact representations of sets of strings. However, the
size of an automaton measured in bytes can vary considerably depending on the
storage method in use. Most of them are described in (Kowaltowski, Lucchesi,
and Stolfi, 1993), a primary reference for all interested in automata compression.
However, (Kowaltowski, Lucchesi, and Stolfi, 1993) does not provide sufficient data
on the influence of particular methods on the size of the resulting automaton. We
investigate that in this paper. We used only deterministic, acyclic automata in our
experiments. However, the methods we used do not depend on that feature. The
automata we used were minimal (otherwise the first step in compression should be
the minimization).

Our starting point is as follows. An automaton is stored as a sequence of transi-
tions (fig. 6.1). The states are represented only implicitly. A transition has a label,
a pointer to the target state, the number of transitions leaving the target state (tran-
sition counter), and a final marker. We use the transition counter to determine the
boundaries of states, instead of finding them by subtracting addresses of states in
a large vector of addresses of states as in (Kiraz, 1999), because we can get rid of
the vector.

|LIF[#]—>]
1] s 2| 2
2| t 1| 4
3| a 1| 5
4 || a 1] 5
5(y|le|0] O

Figure 6.1: Starting point storage method. L is a label, F marks final transitions, #
is the number of outgoing transitions in the target state, and — is a pointer to the
target state. The automaton recognizes words say and stay.

We store the final marker as the most significant bit of the transition counter. We
use non-standard automata, automata with final transitions (see (Daciuk, 1998)),
because they have less states and less transitions than the traditional ones. But
since the storage methods are the same, the results are also valid for traditional
automata.

6.2.1 Compression Techniques
Compression techniques fall into three main categories:
e coding of input data,

¢ making some parts of an automaton share the same space,

¢ reducing the size of some elements of an automaton.
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Some techniques may contribute to the compression in two ways, e.g. changing
the order of transitions in a state can both make sharing some transitions possible
and reduce the size of some pointers. The first category depends on the kind of data
that is stored in the automaton. The techniques we use apply to natural language
dictionaries.

We define a deterministic finite-state automaton as A = (X, Q,1,F,E), where Q is
a finite set of states, i € Q is the initial state, F C Q is a set of final states, and
E C Q x £ xQ is a set of transitions. We also define a function bytes that returns
the number of bytes needed to store its argument: bytes(x) = [log,s;x|. Total
savings (in percents) achieved by using a particular method M on the starting point
automaton are n™M(A) = 100% - T™(A) - T™(A)/sizeof(A), where T™(A) is the number
of transitions affected by the compression method, ©(A) is the saving in bytes per
affected transition, and sizeof{A) is the size of the automaton in bytes. The size of
an automaton in the starting point representation is [E|(2 - bytes|Z| + bytes(|E|)). In
all those calculations, we assume that additional one-bit flags they require fit into
the space taken by a pointer without the need to enlarge it.

Coding of Input Data

This subsubsection applies to natural language morphological dictionaries. Entries
in such dictionaries usually contain 3 pieces of information: the inflected form, the
base form, and the categories associated with the inflected form. It is common (e.g.
in INTEX (Silberztein, 1999), (Silberztein, 1997), and in systems developed at the
University of Campinas (Kowaltowski, Lucchesi, and Stolfi, 1998)) to represent that
information as one string, with the base form coded. The standard coding consists
of one character that says how many characters should be deleted from the end of
inflected form so that the rest could match the beginning of the base form, and the
string of characters that should be appended to the result of the previous operation
to form the base form.

Such solution works very well for languages that do not use prefixes or infixes
in their flectional morphology, e.g. French. However, in languages like German
and Dutch, prefixes and infixes are present in many flectional forms. So to ac-
commodate for this feature, we need 2 additional codes. The first one says what is
the position from the beginning of a prefix or infix, the second code - the length of
the prefix or infix. For languages that do not use infixes, but do use prefixes, it is
possible to omit the position code.

Eliminating Transition Counters

There are two basic ways to eliminate transition counters. One uses a very clever
sparse matrix representation (see (Tarjan and Yao, 1979), (Lucchiesi and Kowal-
towski, 1993), and (Revuz, 1991)). Apart from eliminating transition counters, it
also gives shorter recognition times, as transitions no longer have to be checked
one by one — they are accessed directly. However, that method excludes the use of
other compression methods, so we will not discuss it here.

The other method (giving the same compression) is to see a state not as a set of
transitions, but as a list of transitions ((Kowaltowski, Lucchesi, and Stolfi, 1993)).
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We no longer have to specify the transition count provided that each transition has
a 1-bit flag indicating that it is the last transition belonging to a particular state
(see fig. 6.2). That bit can be stored in the same space as the pointer to the target
state, along with the final marker. We can combine that method with others.

|LIF[S|—]
1]l s o | 2
2t 4
3] a 5
4 || a 5
5(y|e|e| O

Figure 6.2: States seen as lists of transitions. S is the marker for the last transition
in the state.

TP(A) = [E|, 7*°(A) = bytes(|Z|)

Transition Sharing

If we look at the figure 6.1, we can see that we have exactly the same transition twice
in the automaton. However, once it is part of a state with 2 different transitions,
and another time it is part of a state that has only 1 transition. As the information
about state boundaries is not stored in the transitions belonging to the given state,
we can share transitions between states (on the left on fig. 6.3). More precisely,
a smaller state (with a smaller number of outgoing transitions) can be stored in a
bigger one. It is also possible to place transitions of a state so that part of them
falls into one different state, and the rest into another one. This is possible only
when we keep the transition counters, so we will not discuss that further.

|LIF[#]>] |LIF[s|—]|
1| s 2| 2 1] s o« | 2
2t 1] 3 2|t 3
3| a 1] 4 3| a | 4
4|y|le 0] O 4|y|le| e O

Figure 6.3: Two transitions (number 3 and 4 from figures 6.1 and 6.2) occupy the
same space. Version with counters on the left, with lists — on the right.

In the version that uses lists of transitions, exactly one of the transitions be-
longing to a state holds information about one state boundary. The other boundary
is defined by the pointer in transitions that lead to the state. If all transitions of a
smaller state A are present as the last transitions of a bigger state B, then we can
still store A inside B (on the right on fig. 6.3).
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|L|F[N[#]—] |L|F|S|[N|—|
1] s o | 2 1] s o | o| 2
2t 1| 3 2 t 3
3| a o | 1 3| a o | o| 4
4|y |e 0| O 4y|e| e 0

Figure 6.4: The next flag with sharing of transitions. Version with counters on the
left, with lists — on the right. N represents the next flag.

Next Pointers

Tomasz Kowaltowski et al. ((Kowaltowski, Lucchesi, and Stolfi, 1993)) note that
most states have only one incoming and one outgoing transition, forming chains of
states. It is natural to place such states one after another in the data structure. We
call a state placed directly after the current one the next state. It has been observed
in (Kowaltowski, Lucchesi, and Stolfi, 1993) that if we add a flag that is on when
the target state is the next one, and off otherwise, then we do not need the pointer
for transitions pointing to the next states. In case of the target being the next state,
we still need a place for the flags and markers, but they take much less space (not
more than one byte) than a full pointer. In case of the target state not being the
next state, we use the full pointer. We need one additional bit in the pointer for the
flag. Usually, we can find that space. In our implementation, we used the next flag
only on the last transition of a state. Therefore, the representation of our example
automaton looks like that given on figure 6.4.

The maximum number of transitions that can use next pointers is equal to the
number of states in the automaton minus one, i.e. the initial state. The reason for
this is that only one transition leading to a given state may be placed immediately
in front of it in the automaton.

The transitions in states having more than one outgoing transition can be ar-
ranged in such a way that a transition leading to the next state in the automaton
may not be the last one. However, if for a given transition its source state has
exactly one outgoing transition, and its target state has exactly one incoming tran-
sition, the transition must use the next pointer.

Assuming p,q,r € Q, and a,b € X, we have:

{p,a,a) : (Viporeeb = a1 = @) A (Vi p,q)eeb = a,7 = s))}| < T"P(A)
TP(A) <|Ql, m"P(A) = bytes(|E|) —1

Tails of States

In subsubsection 6.2.1 we assumed that only entire states can share the same
space as some larger states. When using the list representation (subsubsec-
tion 6.2.1), we can share only parts of states. We can have two or more states
that share some but not all of their last transitions.

Let us consider a more complicated example (fig. 6.5). The transition number 4
holds in fact 3 identical transitions. The states reachable from the start state have
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both 2 transitions. One of those transitions is common to both states (the one with
label a). The second one is different (either labeled with [ or t). To avoid confusion,
we did not use the next flag.

|LIF[S| ]| <

|| - [T

°
OO |1 W

O Gl x| W N~

y L] L]

Figure 6.5: Automaton recognizing words pay, play, say, and stay, and sharing
last transitions of states. — is a pointer to the tail of the state.

To implement tail sharing we need two things: a new flag (we call it the tail
flag, not shown on the figure 6.5 as its value is implied), and an additional pointer
occurring only when the tail flag is set. When the flag is set, then only the first
transitions are kept, and the additional pointer points to the first transition of the
tail shared with some other state. We need 1 bit for the flag, and we allocate a place
for it in the bytes of transition pointers.

Changing the Order of Transitions

In the examples we showed so far, nothing was told about the order of transitions
in a state. Techniques of transition sharing depend on the order of transitions.
Automata construction algorithms (e.g. (Daciuk et al., 2000)) may impose initial or-
dering, but it may not be the best one. Kowaltowski et al. ((Kowaltowski, Lucchesi,
and Stolfi, 1993)) propose sorting the transitions on increasing frequency of their
labels. They also propose to change the order in each state individually. The order
of transitions also influences the number of states that are to be considered as next.
To increase the number of next pointers, we try to change the order of transitions in
states that do not already have that compression. To increase transition sharing,
we put every possible set of n transitions (starting from the biggest n) of every state
into a register, and then look for states and tails of states that match them.

Other Techniques

There are other techniques that we have not experimented with. They include local
pointers and indirect pointers. Local pointers are only mentioned in (Lucchiesi
and Kowaltowski, 1993). We can only stipulate that what they propose is 1-byte
pointers for states that are located close in the automaton, and full-length pointers
for other states. A flag is needed to differentiate among the two. Indirect pointers
are proposed in US patent 5,551,026 granted August 27, 1996 to Xerox. By putting
pointers to frequently referenced locations into a vector of full-length pointers, and
replacing those pointers in transitions with (short) indexes in the vector, one can
gain more space.
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6.2.2 Experiments
Data

Our experiments were carried out on morphological dictionaries for German and
Dutch. The German morphological dictionary by Sabine Lehmann contains
3,977,448 entries. The automaton for the version with coded suffixes had 307,799
states (of which 62,790 formed chains), and 436,650 transitions. The version with
coded suffixes, prefixes, and infixes had 107,572 states (of which 14,213 formed
chains), and 176,421 transitions.

Results
O N NM NO NMO
Sg 2,178,268 | 2,117,628 | 1,747,210 | 1,733,730 | 1,706,512 | 1,694,405
sgi 882,123 822,133 731,713 718,439 692,514 681,007
cd | 3,028,893 | 2,914,528 | 2,369,485 | 2,331,985 | 2,287,664 | 2,257,565
cdi || 2,873,143 | 2,758,473 | 2,255,753 | 2,221,047 | 2,183,489 | 2,147,982
S SO SMO SN SNM SNO
sg 1,742,616 | 1,720,460 | 1,703,376 | 1,311,558 | 1,298,078 | 1,300,592
sgi 705,700 682,932 668,084 555,290 542,016 544,696
cd 2,423,116 | 2,382,936 | 2,350,584 | 1,763,708 | 1,726,208 | 1,737,200
cdi || 2,298,516 | 2,257,728 | 2,225,540 | 1,681,126 | 1,646,420 | 1,663,904
SNMO STO STMO SNTO SNMT SNMTO
sg 1,282,648 | 1,703,292 | 1,690,229 | 1,507,949 | 1,511,461 | 1,495,909
sgi 528,814 666,202 654,613 531,578 542,016 523,299
cd 1,697,742 | 2,939,005 | 2,904,985 | 1,985,335 | 1,983,531 | 1,959,747
cdi || 1,619,334 | 2,779,723 | 2,745,299 | 1,902,887 | 1,894,999 | 1,876,403

Table 6.1: Size of automata built with various options, Sabine Lehmann’s German
morphology , and CELEX Dutch morphology, in bytes. In the table, sg means
Sabine Lehmann’s German morphology with coded suffixes, cd - CELEX Dutch, i -
coded prefixes and infixes, O — shared transitions, S - stop bit (lists of transitions),
N — next pointers, T - tails of states, and M — changing the order of transitions.

Table 6.1 gives the size of automata built with various options. The sg automata
with SNTO, SNMT, and SNMTO are bigger than expected because there was no space
for one more flag in the pointer.

Conclusions

In case of German morphology, we managed to compress the initial automaton
more than fourfold. With coded infixes and prefixes, we compressed the input data
more than 696 times. Gzip compressed the input data (with coded infixes and pre-
fixes) to 16,342,908 bytes. All automata for given input data could be made smaller
by using compression by over 40% (43.9% for Dutch). The smallest automaton we



106 NWO Pionier Progress Report

obtained could still be compressed with gzip by 27.77%. The best compression
method for German turned out to be a good preparation of the input data. It gave
savings from 57.66% to 65.02%. For Dutch, those savings were only 4.15-5.50%,
as words with prefixes and infixes constituted 3.68% of data, and not 22.93% as
in case of German. As predicted, elimination of transition counters gave 20% on
average. The figure was higher (up to 25.13% for German, 25.98% for Dutch) when
next pointers were also used, as counters took proportionally more space in tran-
sitions. The figure was lower (16.93%) when only transition sharing was in use,
because distributing a state over two other states was no longer possible. For Ger-
man, next pointers gave savings from 15.77% to 24.70%, i.e. within the predicted
range (3.22% -28.26%). For Dutch: 20.84% - 34.51%. The savings were bigger
when the stop bit option was used. Surprisingly, transition sharing is less effective
(0.84% - 3.01% on sg, and 1.91% — 7.24% on sgi, 0.98% - 4.45% on Dutch), and
works better on sgi because sg contains many chains of states. Compression of
tails of states adds only 0.71% to 2.45% for German, and does not work for Dutch.
Changing the order of transitions is a solution only for those desperately in need to
squeeze out a few bytes more — the method gives small results (up to 2.92%), but is
extremely time-consuming.

6.3 Compact Representation of Language Models in NLP

6.3.1 Introduction

An important practical problem in Natural Language Processing (NLP) is posed by
the size of the knowledge sources that are being employed. For NLP systems which
aim at full parsing of unrestricted texts, for example, realistic electronic dictionaries
must contain information for hundreds of thousands of words. In recent years, per-
fect hashing techniques have been developed based on finite state automata which
enable a very compact representation of such large dictionaries without sacrific-
ing the time required to access the dictionaries (Lucchiesi and Kowaltowski, 1993;
Roche, 1995; Revuz, 1991). A freely available implementation of such techniques
is provided by one of us (Daciuk, 2000b; Daciuk, 2000a)’.

A recent experience in the context of the Alpino wide-coverage grammar for
Dutch (Bouma, van Noord, and Malouf, 2001) has once again established the im-
portance of such techniques. The Alpino lexicon is derived from existing lexical
resources. It contains almost 50,000 stems which give rise to about 200,000 fully
inflected entries in the compiled dictionary which is used at runtime. Using a stan-
dard representation provided by the underlying programming language (in this case
Prolog), the lexicon took up about 27 Megabytes. A library has been constructed
(mostly implemented in C++) which interfaces Prolog and C with the tools provided
by the s_fsa (Daciuk, 2000b; Daciuk, 2000a) package. The dictionary now contains
only 1,3 Megabytes, without a noticeable delay in lexical lookup times.

However, dictionaries are not the only space consuming resources that are re-
quired by current state-of-the-art NLP systems. In particular, language models
containing statistical information about the Co-occurrence of words and/or word

1http://www.pg.gda.pl/ jandac/fsa.htmlhttp://www.pg.gda.pl/~jandac/fsa.html
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meanings typically require even more space. In order to illustrate this point, con-
sider the model described in chapter 6 of (Collins, 1999); a recent, influential, dis-
sertation in NLP. That chapter describes a statistical parser which bases its parsing
decisions on bigram lexical dependencies, trained from the Penn Treebank. Collins
reports:

All tests were made on a Sun SPARCServer 1000E, using 100% of a
60Mhz SuperSPARC processor. The parser uses around 180 megabytes
of memory, and training on 40,000 sentences (essentially extracting the
co-occurrence counts from the corpus) takes under 15 minutes. Load-
ing the hash table of bigram counts into memory takes approximately 8
minutes.

A similar example is described in (Foster, 2000). Foster compares a number
of linear models and maximum entropy models for parsing, considering up to
35,000,000 features, where each feature represents the occurrence of a particu-
lar pair of words.

The use of such data-intensive probabilistic models is not limited to parsing.
For instance, (Malouf, 2000) describes a method to learn the ordering of prenom-
inal adjectives in English (from the British National Corpus), for the purpose of
a natural language generation system. The resulting model contains counts for
127,016 different pairs of adjectives.

In practice, systems need to be capable to work not only with bigram models,
but trigram and fourgram models are being considered too. For instance, an un-
supervised method to solve pp-attachment ambiguities is described in (Pantel and
Lin, 2000). That method constructs a model, based on a 125-million word newspa-
per corpus, which contains counts of the relevant (V,P,N,) and (N, P, N;) trigrams,
where P is the preposition, V is the head of the verb phrase, N; is the head of the
noun phrase preceding the preposition, and N; is the head of the noun phrase fol-
lowing the preposition. In speech recognition, language models based on trigrams
are now very common (Jelinek, 1998).

For further illustration, a (Dutch) newspaper corpus of 40,000 sentences con-
tains about 60,000 word types; 325,000 bigram types and 530,000 trigram types.
In addition, in order to improve the accuracy of such models, much larger text
collections are needed for training. In one of our own experiments we employed a
Dutch newspaper corpus of about 350,000 sentences. This corpus contains more
than 215,000 unigram types, 1,785,000 bigram types and 3,810,000 trigram types.
A straightforward, textual, representation of the trigram counts for this corpus
takes more than 82 Megabytes of storage. Using a standard hash implementa-
tion (as provided by the gnu version of the C++ standard library), will take up 362
Megabytes of storage during run-time. Initializing the hash from the table takes
almost three minutes. Using the technique introduced below, the size is reduced
to 49 Megabytes; loading the (off-line constructed) compact language model takes
less than half a second.

All the examples illustrate that the size of the knowledge sources that are being
employed is an important practical problem in NLP. The runtime memory require-
ments become problematic, as well as the CPU-time required to load the required
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knowledge sources. In this paper we propose a method to represent huge language
models in a compact way, using finite-state techniques. Loading compact models
is much faster, and in practice no delay in using these compact models is observed.

6.3.2 Formal Preliminaries

In this paper we attempt to generalize over the details of specific statistical models
that are employed in NLP systems. Rather, we will assume that such models are
composed of various functions from tuples of strings to tuples of numbers. Each
such language model function TV is a finite function (Wq x ... x W;) — (Z1 x ... x Z;).
The word columns typically contain words, word meanings, the names of depen-
dency relations, part-of-speech tags and so on. The number columns typically
contain counts, the cologarithm of probabilities, or other numerical information
such as diversity.

For a given language model function TY, it is quite typical that some of the dic-
tionaries Wi ...W; may in fact be the same dictionary. For instance, in a table of
bigram counts, the set of first words is the same as the set of second words. The
technique introduced below will be able to take advantage of such shared dictionar-
ies, but does not require that the dictionaries for different columns are the same.
Naturally, more space savings can be expected in the first case.

6.3.3 Compact Representation of Language Models

A given language model function T : (Wq x ... x W;) — (Z1 x ... x Z;) is represented
by (at most) i perfect hash finite automata, as well as a table with i+ j rows. Thus,
for each Wy, we construct an acyclic finite automaton out of all words found in W;.
Such an automaton has additional information compiled in, so that it implements
perfect hashing ((Lucchiesi and Kowaltowski, 1993),(Roche, 1995),(Revuz, 1991)).
The perfect hash automaton (fig. 6.6) converts between a word w € W) and a unique
number 0 < [Wy| — 1. We write N(w) to refer to the hash key assigned to w by the
corresponding perfect hash automaton.

If there is enough overlap between words from different columns, then we might
prefer to use the same perfect hash automaton for those columns. This is a common
situation in n-grams used in statistical natural language processing.

We construct a table such that for each w;...w; in the domain of T, where
T(wy...wi) = (z1...z;), there is a row in the table consisting of N(wy),...,N(wj),
z1,...,z;. Note that all cells in the table contain numbers. We represent each such
number on as few bytes as are required for the largest number in its column.
The representation is not only compact (a number is typically represented on 2
instead of 8 bytes on a 64 bit architecture), but it is machine-independent (in our
implementation, the least significant byte always comes first). The table is sorted.
So a language model function is represented by a table of packed numbers, and at
most i perfect hash automata converting words into the corresponding hash keys.

The access to a value T(wy...w,) involves converting the words wj ... w, to their
hash keys N(wq)...N(wy) using perfect hashing automata; constructing a query
string from the hash keys by packing these hash keys; and using a binary search
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Figure 6.6: Example of a perfect hash automaton. The sum of numbers along
transitions recognizing a given word give the word number (hash key). For example,
doll has number 5+0+1+0=6.

for the query string in the table; T(w;...w;,) is then obtained by unpacking the
values found in the table.

There is a special case for language model functions T where i = 1. Because
the words are unique, their hash keys are unique numbers form 0...|W;| — 1, and
there is no need to store the hash key of the words in the table. The hash key just
serves as an index in the table. Also the access is different than in the general case.
After we obtain the hash key, we use it as the address of the numerical tuple.

6.3.4 Preliminary Results

We have performed a number of preliminary experiments. The results are summa-
rized in table 6.2. The text method indicates the size required by a straightforward
textual representation. The old methods indicate the size required for a straightfor-
ward Prolog implementation (as a long list of facts) and a standard implementation
of hashes in C++. It should be noted that a hash would always require at least as
much space as the text representation. We compared our method with the hash-
map datastructure provided by the gnu implementation of the C++ standard library
(this was the original implementation of the knowledge sources in the bigram POS-
tagger, referred to in the table).?

2The sizes reported in the table are obtained using the Unix command wc -c, except for the size
of the hash. Since we did not store these hashes on disk, the sizes were estimated from the increase
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test set text old concat dict new

Prolog C++ hash
Alpino tuple 9,475 44,872 NA 4,636 4,153
20,000 sents trigram 5,841 32,686 27,000 6,399 2,680
40,000 sents trigram 11,320 61,672 52,000 11,113 4,975
20,000 sents fourgram 8,485 45,185 33,000 13,659 3,693
40,000 sents fourgram 16,845 88,033 65,000 20,532 7,105
POS-tagger 15,722 NA 45,000 NA 4,409

Table 6.2: Comparison of various representations (in Kbytes)

The concat dict method indicates the size required if we treat the sequences
of strings as words from a single dictionary, which we then represent by means
of a finite automaton. No great space savings are achieved in this case (except
for the Alpino tuple) , because the finite automaton representation is able only to
compress prefixes and suffixes of words; if these ‘words’ get very long (as you get by
concatenating multiple words) then the automaton representation is not suitable.
The final new column indicates the space required by the new method introduced
in this paper.

We have compared the different methods on various inputs. The Alpino tuple
contains tuples of two words, two part-of-speech tags, and the name of a depen-
dency relation. It relates such a 5-tuple with a tuple consisting of three numbers.
The rows labeled n sents trigram refer to a test in which we calculated the trigram
counts for a Dutch newspaper corpus of n sentences. The n sents fourgram rows
are similar, but this case we computed the fourgram counts. Because all words
in n-gram tests came from the same dictionary, we needed only one automaton
instead of 3 for trigrams and 4 for fourgrams. The automaton sizes for trigrams ac-
counted for 11.84% (20 000 sentences) and 9.33% (40 000 sentences) of the whole
new representation, for fourgrams - 8.59% and 6.53% respectively. The automata
for the same input data size were almost identical. Finally, the POS-tagger row
presents the results for an HMM part-of-speech tagger for Dutch (using a tag set
containing 8,644 tags), trained on a corpus of 232,000 sentences. Its knowledge
sources are a table of bigrams of tags (containing 124,209 entries) and a table of
word/tag pairs (containing 209,047 entries).

As can be concluded from the results in table 6.2, the new representation is
in all cases the most compact one, and generally uses less than half of the space
required by the textual format. Hashes, which are mostly used in practice for this
purpose, consistently require about ten times as much space.

6.3.5 Variations and Future Work

We have investigated additional methods to compress and speed-up the represen-
tation and use of language model functions; some other variations are mentioned
here as pointers to future work.

In the table, the hash key in the first column can be the same for many rows. For

of the memory size reported by top. All results are obtained on a 64bit architecture.
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trigrams, for example, the first two hash keys may be identical for many rows of the
table. In the trigram data set for 20,000 sentences, 47 rows (out of 295,303) have
hash key 1024 in the first column, 10 have 0, 233 - 7680. The same situation can
arise for other columns. In the same data set, 5 rows have 1024 in the first column,
and 29052 in the second column, 16 — 7680 in the first column, and 17359 in the
second one. By representing them once, and providing a pointer to the remaining
part, and doing the same recursively for all columns, we arrive at a structure called
trie. In the trie, edges going out from root are labeled with all the hash keys from the
first column. They point to vertices with outgoing edges representing tuples that
have the same two words at the beginning, and so on. By keeping only one copy
of hash keys from the first few columns, we hope to economize the storage space.
However, we also need additional memory for pointers. A vertex is represented as
a vector of edges, and each edge consists of two items: the label (hash key), and a
pointer. The method works best when the table is dense, and when it has very few
columns. We construct the trie only for the columns representing words; we keep
the numerical columns intact (obviously, because it is “output”).

0O 2 4|1
0O 15 4|3
20 7 501
20 7 53| 2
20 15 4| 2

Figure 6.7: Trie (right) representing a table (left). Red labels represent numerical
tuples. Numbers O and 20 from the first column, and 7 from the second column,
are represented only once.

For dense tables, we may perceive the trie as a finite automaton. The vertices
are states, and the edges — transitions. We can reduce the number of states and
transition in the automaton by minimizing it. In that process, isomorphic sub-
trees of the automaton for the word columns are replaced with single copies. This
means that additional sharing of space takes place. However, we need to determine
which paths in the automaton lead to which sequences of numbers in the numer-
ical columns. This is done, again, by means of perfect hashing. This implies that
each transition in the automaton not only contains a label (hash key) and a pointer
to the next state, but also a number which is required to construct the hash key.
Although we share more transitions, we need space for storing those additional
numbers.

We use a sparse matrix representation to store the resulting minimal automa-
ton. The look-up time in the table for the basic model described in the previous
subsubsection is determined by binary search. Therefore, the time to look-up a
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0O 2 4|1
0O 15 4|3
20 7 501
20 7 53| 2
20 15 4|2

Figure 6.8: Perfect hash automaton (right) representing a table (left). Only word
columns are represented in the automaton. Numerical columns from the table
are left intact. They are indexed by hash keys (sums of numbers after “::” on
transitions). The first row has index O.

tuple is proportional to the binary logarithm of the number of tuples. It may be
possible to improve on the access times by using interpolated search instead of bi-
nary search. In an automaton, it is possible to make the look-up time independent
from the number of tuples. This is done by using the sparse matrix representation
((Tarjan and Yao, 1979)) applied to finite-state automata ((Revuz, 1991)). A state
is represented as a set of transitions in a big vector of transitions for the whole
automaton. We have a separate vector for every column. This allows us to adjust
the space taken by pointers and numbering information. The transitions do not
have to occupy adjacent space; they are indexed with their labels, i.e. the label is
the transition number. As there are gaps between labels, there are also gaps in
the representation of a single state. They can be filled with transitions belonging
to other states, provided that those states do not begin at the same point in the
transition vector. However, it is not always possible to fill all the gaps, so some
space is wasted.

O|aD aD
1| aB abB

2| cE cE
3

41 dC dC

5

Figure 6.9: Sparse table representation (right) of a part of an automaton (left). Node
A has number 1, B - 0, C — 3. The first column is the final representation, column
2 — state A, column 3 - state B, column 4 - state C.

Results on the representation of language model functions using minimal au-
tomata for word tuples and sparse matrix representation are discouraging. If we
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take the word tuples, and create an automaton with each row converted to a string
of transitions labeled with hash keys from successive columns, and then minimize
that automaton, and compare the number of transitions, we get from 27% to 44%
reduction. However, the transition holds two additional items, usually of the same
size as the label, which means that it is 3 times as big as a simple label. In the trie
representation, we don’t need numbering information, so the transition is twice as
big as the label, but the automaton has even more transitions. Also, the sparse
matrix representation introduces additional loss of space. In the our experiments,
32% to 59% of space in the transition vector is not filled. This loss is due to the
fact that the labels on outgoing transitions of a state can be any subset of numbers
from O to over 50,000. This is in sharp contrast with natural language dictionaries,
for instance, where the size of the alphabet is much smaller. We also tried to divide
longer (i.e. more than 1 byte long) labels into a sequence of 1 byte long labels. While
that led to better use of space and more transition sharing, it also introduced new
transitions, and the change in size was not significant. The sparse matrix repre-
sentation was in any case up to 3.6 times bigger than the basic one (table of hash
keys), with only minor improvement in speed (up to 5%).

We thought of another solution, which we did not implement. We could repre-
sent a language model function T as an i-dimensional array A[l,...,i]. As before,
there are perfect hashing automata for each of the dictionaries W;...W,,. For a
given query wj...wy,, the value [N(wy),...,N(w,)] is then used as an index into
the array A. Because the array is typically very sparse, it should be stored using a
sparse matrix representation. It should be noted that this approach would give very
fast access, but the space required to represent A is at least as big (depending on
the success of the sparse matrix representation) as the size of the table constructed
in the previous method.

6.3.6 Conclusions

We have presented a new technique for compact representation of language mod-
els in natural language processing. Although it is a direct application of existing
technology, it has great practical importance (numerous examples are quoted in
the introduction), and we have demonstrated that our solution is the answer to the
problem. We also show that a number of more sophisticated and scientifically ap-
pealing techniques are actually inferior to the basic method presented in the paper.

6.4 Incremental Minimization

6.4.1 Introduction

An algorithm ((Watson, 2001)) presented by Bruce Watson at FSMNLP 2001 work-
shop in Helsinki minimizes an automaton in such a way that the intermediate
results are usable. This is in contrast to other known minimization algorithms.
Although it has worse computational complexity than the best known methods, in-
troduction of full memoization and a few other techniques make it not as bad as
reported in (Watson, 2001).
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We will start with the sketch of the original algorithm, then we will introduce
our improvements. We will end the paper with a discussion of the results.

6.4.2 The Original Algorithm

A deterministic finite automaton (DFA) is defined as a quintuple (Q,T; 9, qo, F), where
Q is a set of states, I' is the alphabet (we use non-standard TI' instead of £ for
compatibility with (Watson, 2001)), 6 € Q x ' — Q U{ L} is the transition function
(L designates the invalid state), qp € Q is the start state, and F C Q is the set of
final states. I'qy = {ala € T Ad(q,a) # L} is the set of labels on out-transitions from
q. £(M) is the language of the automaton. The size |[M| of an automaton M is the
number of states in it M| = |Q|. &*, defined as 6*(q,€) = q, 0*(q, aw) = 6*(8(q, a), w)
is the extended transitions function.
For every DFA there is a minimal DFA M such that

Am LIM) = LMY AIM'| < [M]

Provided the automaton does not contain useless states, the minimality can also
be stated in terms of the right languages of states:

.

_)
Vpgeq LP)=L(d)=>Pp=q

where the right language is defined as:

£ (q) ={w e L*6%(q,w) € F}

The right language can also be defined recursively:

la= U aze@an|uf § ]

acly

The recursive definition can be modified to compare the identity of states in
out-transitions rather than their right languages, provided that we can make sure
that they are the only states in the automaton that have the same right language.
This can easily be done in algorithms dealing with acyclic automata, which leads
to efficient algorithms ((Daciuk et al., 2000)). In cyclic automata, we cannot satisfy
that condition. However, we can detect cycles, and if the structure of a pair of cycles
is the same, they are equivalent. This leads to the algorithm in (Watson, 2001).

Initially, pairs F x (Q —F) and (Q —F) x Q are recognized as different (a final state
cannot be equivalent to a non-final one), and only pairs F x Fand (Q —F) x (Q —F)
are checked. Variable k is initially set to |Q| — 2. Variable S keeps track of pairs
compared in the current call.

6.4.3 Improvements

We describe three improvements to the original algorithm:

1. we pre-sort the states on their finality, the number of out-transitions, and
labels on those transitions;
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(1) func equiv(p, q,k) —

(2) if k=0— eq:= true

(3) |l kK#0A{p,q} €S — eq:= true
(4) | k#AO0A{p,al ¢S —

(5) eq:=(peF=qeF)A(T,=Ty);
(6) S:=Su{{p,alh

(7) fora:aclpynNly—

(8) eq := eq/\ equiv(d(p,a),d(q,a),k —1)
(9) rof;

(10) S=S5\{{p,qal}

(11) fi;

(12) return eq

(13) cnuf

Figure 6.10: Comparison of a pair of states in the incremental minimization algo-
rithm in Watson 2001

2. we put into S only pairs of states that can potentially start a cycle;

3. we introduce full memoization and demonstrate that the complexity of the
algorithm is O(|Q|3).

Pre-sorting

The original algorithm divides states into 2 classes: final and non-final states. Only
pairs of states each belonging to the same class are tested for equivalence.

We propose to divide the set of states into more (numbered) classes. The criterion
includes not only the finality of states, but also the number of out-transitions, and
their labels. This can be done in O(|Q|) time using bucket sort3.

It brings several advantages:

e as we compare the states pairwise only in their classes (states from two differ-
ent classes are not equivalent), there are fewer comparisons, e.g. if we divide
the set into n roughly equally numerous classes, we perform n times fewer
comparisons;

¢ instead of comparing the number of out-transitions and their labels in line 5
of the algorithm, we compare only classes of states (i.e. two integer numbers)?;

¢ we need less memory to represent non-equivalent states, as there is no need
to remember that states belonging to different classes are not equivalent.

3Thanks to Bruce Watson for pointing this out to me in personal correspondence. He also reminded
me that Lauri Karttunen mentioned some kind of pre-sorting during discussion after Bruce’s talk
at FSMNLP 2001. Bruce also says he uses pre-sorting on the number of out-transitions in his
implementation.

“This is impossible if we sort only on finality and number of out-transitions.
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If all states in the automaton have the same number of transitions, and the
transitions have the same labels (for example in a complete automaton), there is
nothing to gain with pre-sorting.

Remembering Only Reentrant States on Stack

In line 6 of the original algorithm, the currently examined pair of states is added
to variable S (the stack of pairs of states — predecessors of the currently examined
pair), and in line 10, the pair is removed from S.

The purpose of variable S is to detect cycles. There are two ways in which those
cycles can be started:

¢ a single chain of transitions may lead from the initial pair back to it — the cycle
is started at the initial pair;

¢ the cycle starts later on, but it can only start from a state that has more than
one in-transition; one in-transition leads from a path from a state in the initial
pair (outside the cycle), so there must be at least another in-transition from
within the cycle.

There is no need to add to the stack pairs of states that cannot start a cycle.
It is guaranteed that we cannot revisit such a pair during the same call to equiv —
we would have to revisit a pair that starts a cycle first (and then there would be no
need to follow out-transitions, as the result would already be known).

The profit from the improvement is twofold:

e we use less memory to represent S in memory efficient implementations,

¢ in some memory-efficient implementations, searching S takes O(log|S|) time,
contributing that factor to the overall complexity, so shortening S means also
shortening the time.

If (almost) all states of the automaton have more than one in-transition, this
modification does not reduce the running time, nor memory requirements.

Full Memoization

In the original paper ((Watson, 2001)), Bruce Watson determines worst-case compu-
tational complexity as O(T'(IQ—2)max0) eyen when partial memoization is used. When
full memoization is used, the complexity is actually O(|Q*G(/Q[?), where G(n) is
the inverse of Ackermann’s function — far better than exponential. G(n) <5 for all
“practical” values of n, i.e. for all n < 265536 (see (Aho, Hopcroft, and Ullman, 1974b)
for details).

A call to function equiv can return only two results: true or false. However, we
can immediately memoize® only the non-equivalence. Storing and retrieving that

5We memoize the result only with respect to the pair of states; we ignore the depth of recursion.
However, we call it full memoization here, as the depth of recursion is irrelevant for evaluating equiv-
alence of a pair of states
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information can be done in constant time in two-dimensional arrays indexed with
states numbers.

If function equiv returns true, the result can either be conclusive, or inconclu-
sive. If the result depends on equivalence of a certain pair of states that is still
under evaluation, i.e. it is still in variable S, the result is inconclusive.

Figure 6.11: Inconclusive comparison of states 4 and 8, resulting from evaluation
of the pair 2 and 6.

Consider the automaton on fig. 6.11. Function equiv has been called to deter-
mine the equivalence of states 2 and 6. It depends on the equivalence of the pair of
states {3,7}, so that pair is visited as well. Assuming that we traverse the transitions
in lexicographical order, the algorithm goes on to examine the pair {4, 8}. From {4, 8},
it moves to {2, 6} to see that that pair is already in S, so the call to equiv(2, 6, 3) with
S ={{2,6},{3,7},{4, 8}} returns true. However, neither in {2, 6}, nor in {4,8} can we say
that those pairs are equivalent. They are only potentially equivalent. The pair {2, 6}
is still under investigation — we have not checked whether {3,7} is equivalent (the
call to equiv(3, 7, 6) has not returned any value yet), and the pair {4, 8} depends on
that evaluation. In case of {2, 6} we could simply wait until the nested calls return
—we will know the result when it has been computed. However, in case of {4, 8} we
have no other call to equiv higher up.

We remember that a pair of states {p, q} depends on another pair {r, s} higher up
in the hierarchy of recursive calls to function equiv. When the control returns to
the first call with the {r,s} as the argument, there are two possibilities. Either the
pair does not depend on any other pair higher up in the hierarchy (it can depend on
itself), or such dependence exists. In the first case, all pairs that depend on {r, s} are
either merged (if pair {r,s} is equivalent), or remembered as non-equivalent (if pair
{r, s} is not equivalent). If the pair {r,s} depends on another pair, a new dependency
is stored. To prevent formation of chains of dependencies, we use the UNION-FIND
algorithm ((Aho, Hopcroft, and Ullman, 1974b)).
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A call to function equiv with {p, q} as an argument may create various situations:
e {p,q}is in fact {p,p} — equiv returns conclusive true;
¢ {p, q} are already remembered as non-equivalent — equiv returns false;

e {p,q} is already under evaluation higher up in the call hierarchy (it is in vari-
able S) — equiv returns inconclusive true, making all pairs up to and including
initial {p, q} dependent at least on {p, q};

e {p,q}is notin S, but it is on a list of dependent states for a pair of states {r, s} in
S — equiv returns inconclusive true, making all pairs up to and including {r, s}
depend on at least {r, s}. Dependencies for pairs are stored in two-dimensional
arrays as pointers to structures containing the representative (the pair highest
in the hierarchy), and a list of dependant pairs.

The UNION-FIND algorithm is also used to solve the problem of chains of equiv-
alent pairs of states. To efficiently implement full memoization, we also need to
represent non-equivalence relation, and the variable S — pairs under investigation.
The non-equivalence relation can simply be stored in a two dimensional array. To
save space, the array can be divided in sub-arrays for each class, or vectors for
each state created on demand. We need variable S to know the level of recursion
of function equiv for a pair of states. Therefore, the variable can be implemented
as a two dimensional array, with values being the depth of recursion for respective
pairs.

6.4.4 Final algorithm

Figure 6.12 shows the final version of the algorithm. Due to inadequacy of Dijk-
stra’s notation to express larger chunks of code, we decided to use normal pseu-
docode. Depending on memory limitations and speed requirements, certain oper-
ations can be implemented in different ways. We have provided two implementa-
tions: one making use of two-dimensional arrays (achieving desired complexity),
and another using tree structures (with log|Q| overhead). It is possible to use hash
tables in an implementation. This would combine the speed of the first solution
with memory efficiency of the other one.

When memoization is used, function equiv can still be called more than once
with the same pair of states. If it has already been called with the same pair, lines
2-7 check that and the control never reaches line 8. In line 2, states are compared
for identity. Although at the top level, equiv is never called with a pair of identical
states, the states might be identical on other levels. The check is done in constant
time.

Line 3 tests whether the states are either both final, or both non-final, and
whether they have the same number of transitions, and the same labels on those
transitions. It is equivalent to line 5 of the original algorithm. However, because
of pre-sorting, there is no need to compare so many features each time; only class
numbers need to be compared. The check is done in constant time.

Line 4 is the same as in the original algorithm, except for variable rl that is set
to 0. The variable indicates the level of recursion at which a pair of states can be
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found that the current pair depends upon. If S is seen as stack, then variable rl is
an index in that stack, indicating a position of the pair the current pair depends on.
If the current pair depends on nothing, variable 1l is set to |Q|. If the comparison
has done a full cycle, it means that the current pair of states depends on the initial
pair of states (the one from the top level call). This check is done in constant time.
Line 5 belongs to the same category — it also tests for cycles. If a cycle has been
detected, the level of the pair on which the current pair depends is stored in global
variable rl. That variable propagates the dependency upwards. This check can be
done in constant time .

In line 6, it is checked whether the pair is already known not to be equivalent.
Variable G is adopted for that purpose from the original paper. The check can be
done in constant time.

In line 7, it is checked whether the pair has already been found to depend on an-
other pair higher up in the hierarchy. While searching for the pair, the dependency
chains are updated (see subsubsection 6.4.3). This can be done in O(G(|Q|)) time
(IQ| is the maximal depth of recursion, so also the maximal height of dependency
tree). This concludes memoization checking.

Lines 9-11 update the value of global variable S. Only the pair of states from the
top level calls, and pairs where at least one state has more than one in-transition,
need to be put into S. The update can be done in constant time. The pair is removed
in lines 18-20, which can also be done in constant time.

In lines 12-17, it is checked whether the states are equivalent by checking the
equivalence of the targets of their out-transitions. This is the central part of the
original algorithm. As variable rl is global, so it is used to convey any dependency
upwards in the call hierarchy. Variable rl’ is local, so it can store the local value
between the nested calls.

If the current pair of states has been found to be equivalent, then the result can
be conclusive or not. If the result is positive and conclusive, i.e. the equivalence
of {p, q} does not depend on equivalence of any other pair of states, then the states
are merged (line 23). It is done using the UNION-FIND algorithm with complexity
O(G(IQ[)). If the result is positive, but not conclusive, then the result must be
stored along with the pair it depends on (line 25). It is appended to the list for
appropriate level, and a mapping from {p, q} to that other pair is stored. If the pair
is not equivalent, it is added to the set of non-equivalent pairs G in line 28. If G is
a two-dimensional array, this can be done in constant time.

There can be pairs of states that depend on the current pair of states {p,q}.
They are stored in P[level], where level is the recursion level (or the number of
items in S) for the current pair. If {p, q} are found to be equivalent, then if the result
is conclusive, the pairs are merged. There can be more than one pair of states
in P[level], but the operation cannot be invoked more than \Q\z times across all
calls. The operation can be performed in time proportional to the number of items
in P[level]. If the result is not conclusive, the pairs are merged with the pairs at
P[rll. Appending a list to another list (moving it to the end of another list — without
copying) can be done in constant time. If {p, q} are found not to be equivalent, the
contents of Pllevel] is stored in G — again it is possible to do that in constant time
for each pair. There can be at most |Q|- (|Q| — 1)/2 pairs across all calls, so the cost
per pair, or per average call, is constant.
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Function equiv is called at most IQ\Zmaxququ\ times. One call (without nested
calls) can be completed in constant time, except for certain operations on lists
stored in P. However, all of these operations take at most O(|Q|?) time across
all calls, except for the UNION-FIND algorithm that applied to both dependencies
and equivalent states takes |Q|*G(/QJ?) across all calls, so the final complexity is

O(IQIFG(IQ%).

6.4.5 Results

The performance was checked for various implementations of the algorithm. Not
only the speed of execution was measured, but also some additional characteristics,
like the maximal depth of recursion of function equiv, the maximal number of items
in variable S, and the number of calls to function equiv excluding memoization.
They were measured for several versions of the algorithm: the standard (final) one,
one where two-dimensional arrays were replaced with tree structures, one without
pre-sorting, and one without full memoization (i.e. the original version).

Input Data

Experiments were performed on four different data sets. The first one contained
determinized versions of automata used in (van Noord, 2000b). They originally
come from experiments on finite-state approximation of context-free grammars -
a real life task. The automata have varied characteristics. However, they are of
moderate size, so only the biggest ones are suitable for measuring the effects of
various improvements on the speed of the algorithm. Examining the table 6.4, we
can see that a version of the algorithm that uses tree structures is usually faster
than the one using two-dimensional arrays. A quick look at table 6.3 solves the
mystery. The automata have relatively many classes, so the number of items in
variable S is low, and initialization for two-dimensional arrays takes more time
than the use of tree structures.

The other three sets were generated automatically. The first generated set con-
sisted of large automata with a large number of classes (in the sense defined in the
subsubsection 6.4.3). This means that most of the job of minimization was done
in the sorting phase. Also for these automata, tree structures were faster than
two-dimensional arrays.

The second generated data set consisted of large automata with a fixed low
number of classes. However, the automata were already minimal. For this kind of
job, most of the work was done by the function equiv.

The third generated data set consisted of automata from the second generated
set inflated to a larger size. A program was used to create additional states in an
automaton without changing its language. The automata still had the same, low
number of classes, but they were not minimal. The ratio of the number of states in
the non-minimized automaton to the number of states in the minimized automaton
was fixed.
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Ignoring states that cannot start cycles

This improvement relies on density of automata to be minimized, and more pre-
cisely on the proportion of states with less than two in-transitions. In all sets of
data, such states were not abundant. We have also measured only the longest
sequence put into the stack S; perhaps measuring the average length could give
different results.

Results for our data show some improvement, but it is not much. Only in
one case, our method produced a stack 41.7% of its original size (10 instead of
24). However, even small improvement is worth considering, and there may exist
applications where states with fewer than 2 in-transitions are more common.

Pre-sorting

Introduction of pre-sorting decreased the number of calls to function equiv() in
a noticeable way. The average improvement was 16.95% for the first data set.
As expected, the biggest improvements were for automata with a large number of
classes. For those automata (see figure 6.13), the incremental algorithm was faster
than Aho-Sethi-Ullman algorithm, and even faster than Hopcroft algorithm! Only
in case of automata with only a few classes, pre-sorting increased the execution
time. In all other cases, pre-sorting was beneficial.

Full Memoization

The original algorithm used only partial memoization. When comparison of a pair of
states was inconclusive, the result was lost, and the same pair could be evaluated
many times. This lead directly to exponential times for some automata. Note that
the exponential growth is the worst case; it is not obligatory. However, when it does
occur, it makes the original version of the algorithm useless.

Because of the exponential complexity of the original algorithm, its performance
was measured only for moderate-size real-life automata.

Execution times for the biggest among the small real-life automata are shown
in table 6.4. Results for large minimal automata with a limited number of classes
(figure 6.14, and results for non-minimal large automata with limited number of
classes (figure 6.15) show that the execution time grows more slowly than the worst
case computational complexity.

6.5 Constructing Acyclic Finite Automata from Sets of
Strings

6.5.1 Motivation

During last 12 years, one could see emergence of construction methods special-
ized for minimal, acyclic, deterministic, finite-state automata. However, there are
various opinions about their performance, and how they compare to more general
methods. Only partial comparisons are available. What has been compared so far
was complete programs, which performed not only construction, but computation
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of a certain representation (e.g. space matrix representation, or various forms of
compression).
The aim of this paper is to give answers to the following questions:

e What is the fastest construction method?

e What is the most memory-efficient method?

e What is the fastest method for practical applications?

¢ Do incremental methods introduce performance overhead?

The third question is not the same as the first one, because one has to take into
account the size of data and available main memory. Even the fastest algorithm
may become painfully slow during swapping.

6.5.2 Construction Methods

Due to lack of space, the construction methods under investigation have only been
sketched here. The reader is referred to the bibliography for proper descriptions.

Some of the methods use a structure called the register of states. In those algo-
rithms, states in an automaton are divided into those that have been minimized, i.e.
they are unique in that part, and other states, i.e. those that are to be minimized.
The register is a hash table, and two states are considered equivalent if they are
either both final or both non-final, and they have the same transitions (the same
number, labels, and targets).

The following methods have been investigated:

1. Incremental construction for sorted data ((Daciuk et al., 2000)). Input strings
are lexicographically sorted. For each string, the longest common prefix with
the last string added to the automaton is found. If the last state in the path
recognizing the common prefix has outgoing transitions, a path consisting in
last transitions of subsequent states is followed, and then, starting from the
end of that path up to, but excluding, the last state in the common prefix path,
if an equivalent state is found in the register, it replaces the current state, and
the current state is deleted. Afterwards, the remaining part of the string is
added, creating a chain of states attached to the last state of the path of the
common prefix. After the last string has been added, the path of that string is
also compared against states in the register and replaced if necessary.

2. Incremental construction for unsorted data ((Daciuk et al., 2000)). Input
strings come in arbitrary order. For each string, the longest common pre-
fix with any string in the automaton is found. If any state in the common
prefix path is reentrant, that state and all states following it in the path are
cloned, the first state before any cloned state, or the last state in the common
prefix path, is removed from the register. The remaining part of the string is
added, creating a chain of states attached to the last state of the path of the
common prefix. Afterwards, starting from the end of the chain, if an equiva-
lent state is found, it replaces the current state. The process continues past
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the appended chain towards the initial state removing states from the register
and adding new states to it, until no replacement is made.

3. Semi-incremental construction by Bruce Watson ((Watson, 1998)). Input
strings are sorted on decreasing length. For each string, the longest com-
mon prefix with any string in the automaton is found. If the string is a prefix
of any string already in the automaton, all states reachable from the end of
the prefix path (including the last state in that path) and not in the register
are put onto stack so that states with smallest height are on top. Then for
successive states popped from the stack, if the register contains en equivalent
state, it replaces the current state. After the last word has been added, the
remaining states are put onto stack and then replaced if needed.

4. Semi-incremental construction by Dominique Revuz ((Revuz, 1991)). Input
strings are lexicographically sorted on their reversal. A trie-like structure is
built, but the longest common suffix between the current string, and the last
string added to the automaton is computed. Whenever possible (states have
only one outgoing transition, they are not final), the path (or its part) recog-
nizing the common sulffix is shared. That phase does not lead to the minimal
automaton, so it is followed by true minimization. States are sorted on their
height, and then states of the same height are sorted using bucket sort, and
redundant states are removed.

5. Building a trie and minimizing it using the Hopcroft algorithm ((Hopcroft,
1971), (Aho, Hopcroft, and Ullman, 1974a)).

6. Building a trie and minimizing it using the minimization phase from the in-
cremental construction algorithms (postorder minimization).

7. Building a trie and minimizing it using the minimization phase from the semi-
incremental algorithm by Dominique Revuz (lexicographical sort).

6.5.3 Data for Evaluation

Data sets for evaluation were taken from the domain of Natural language Processing
(NLP). Acyclic automata are widely used as dictionaries. Both word lists, and mor-
phological dictionaries, for German, French, and Polish, as well as a word list for
English were used. Word lists and morphological dictionaries have different char-
acteristics. Strings in word lists are usually short, sharing short suffixes. Strings
in morphological dictionaries are much longer, with long suffixes shared between
entries. The data is summarized in Table 6.5.

Because of huge amounts of memory needed to represent a trie, only sufficiently
small parts of data were used for non-incremental methods.

6.5.4 Experiments

In the experiments, the hash function had 10001 possible values. The register was
implemented with an overflow area for each hash value being a set class from the
C++ standard template library - a tree-like structure.
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Several characteristics were measured. They included: execution time, number
of states during construction: (maximal number of states, number of states as a
function of the number of words during construction), use of the register: (number
of calls to find an equivalent state in the register, number of calls to remove a
state from the register (only for the incremental construction from unsorted data),
number of states with the same hash value per call, register fill ratio).

6.5.5 Results
Memory Requirements

As it is difficult to trace the exact memory requirements of programs under Unix,
the number of states of an automaton during construction was measured. The
states were represented by the same structure for all algorithms, although cer-
tain fields were specific to some algorithms, like i.e. height was specific to Revuz’s
algorithm. Memory was also used to store transitions. Programs that used regis-
ter required a constant amount of memory for an empty register, and an amount
proportional to the number of states. In addition, Watson’s algorithm required
memory for a stack of states. Revuz’'s algorithm did not use the register, but it
needed memory for sorting (at least proportional to the number of states). Using
Hopcroft’s algorithm for minimization of a trie also required memory proportional
to the number of states, but much more than a register of states.

Figure 6.16 is representative for memory requirements for various methods. The
points labeled “trie” represent non-incremental methods. Memory requirements
for the incremental method for unsorted data are identical to those for the sorted
method on the same data, and only slightly higher for data sorted for other meth-
ods. Initial memory requirements for Watson’s algorithm are higher than for a trie
made from data sorted lexicographically, as longer words come first. They become
lower towards the end of word data, as shorter words trigger minimization. That
effect is hard to be noticed for morphological dictionaries.

Execution time

Due to memory memory limitations, and sometimes extremely long execution time,
it was impossible to measure the speed of some algorithms on all data. To test the
relation between the speed, and the size of the data, each algorithm was tested on
0.1, 0.2, ... 0.9, and on the whole data. In case of Revuz’s algorithm, and Watson’s
algorithm, those parts were sorted accordingly, instead of taking the same number
of words from the beginning of the whole file sorted according to the requirements.
This is different than measurements of memory requirements, because they were
all taken during a single run on the whole appropriate file. Also, due to multiuser,
multi-task Unix environment, only processor times were measured, not the elapsed
“real” time. It means that the effects of swapping do not show up on diagrams. Only
initial values for trie + Hopcroft minimization algorithm are shown to underline
differences between other algorithms.

For most data, the trie + postorder minimization method was the fastest. It was
slightly faster than the algorithm for sorted data, and in some cases their values are
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not distinguishable on diagrams. For morphological dictionaries, Revuz’s algorithm
was faster. This happens because in that data very long common suffixes were
present. The INTEX program (Silberztein, 1999) uses Revuz’s algorithm without
pseudo-minimization phase to save both time and disk space, but annotations are
kept short, and their expansions are kept elsewhere.

6.5.6 The Fastest Algorithm

Surprisingly, the fastest construction algorithm is not yet described in literature.
This is probably due to its simplicity. We define a deterministic finite state au-
tomaton as M = (Q,ZL,5,qo,F), where Q is the set of states, £ is the alphabet,
0 € Q x XL — QU{l}is the transition function, (¢ is the initial state, and F C Q
is the set of final states. A somewhat formally awkward notation of assignment to
the delta function in the algorithm below means creating or modifying a transition.
This algorithm has exactly the same complexity as both incremental algorithms
from (Daciuk et al., 2000).

func trie_plus_postorder minimization;
start_state := construct_trie;
Register := (); postorder_minimize(start_state);
return start state;

cnuf

func construct_trie();
start := new state;
while file not empty
word := next word form file;
i :=0; s := start;
while i < length(word)
if 5(s,word;) # L
d(s,word;) := new state;

fi
s :=08(s,wordy);i:=1+1;
elihw
F:=FuU{s}
elihw
cnuf

proc postorder minimize(s);
foreach a € £ :5(s,a) # L
postorder_minimize(5(s, a));
if quRegister 6(5) (1) =q
5(s,a) = q;
else
Register := Register U{s};
fi
hcaerof
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corp

6.5.7 Conclusions

e The incremental algorithm for sorted data, and the trie + postorder minimiza-
tion algorithm are the fastest. The incremental algorithm should always be
used for sorted data. For unsorted data, the trie + postorder minimization al-
gorithm is the fastest provided enough memory is available. Revuz’s algorithm
is the fastest for morphologies.

e Both fully incremental algorithms are the most economical in their use
of memory. They are orders of magnitude better than other, even semi-
incremental methods.

e Both incremental algorithms are the fastest in practical applications, i.e. for
large data sets. The algorithm for sorted data is the fastest, but if data is not
sorted, sorting it (and storing it in memory) may be more costly than using the
algorithm for unsorted data.

e It seems that incremental algorithms do not introduce overhead when com-
pared to non-incremental methods. The differences between the incremental
sorted data algorithm and its non-incremental counterpart are minimal. The
non-incremental version of the semi-incremental Revuz’s algorithm (trie + lex-
ical sort) is faster than the original version for words, and slower for morpholo-
gies.

e Trie + Hopcroft minimization is the slowest algorithm. While all other algo-
rithms are linear, this one has an additional O(log(n)) overhead, and it is
quite complicated compared to register-based algorithms.

e There is no real reason to use Revuz’s algorithm, Watson’s algorithm, trie
+ lexicographical sort (Revuz’'s algorithm without suffix compression), or trie
+ Hopcroft minimization algorithm. They are slower, and they have higher
memory requirements, than incremental algorithms.

6.6 Incremental Addition of Strings to Cyclic Finite Au-
tomata

6.6.1 Introduction

(Carrasco and Forcada, 2002) present an algorithm for incremental addition of
strings into a minimal, cyclic, deterministic, finite-state automaton. The algorithm
can be seen as an extension of the algorithm for sorted data, the second algorithm
in (Daciuk et al., 2000), for cyclic automata. It turns out that not only the second
algorithm in (Daciuk et al., 2000), but also the first one can be extended in the
same way. That extension is presented in Subsubsection 6.6.3.
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The title of Carrasco and Forcada’s paper refers to incremental construction and
maintenance of cyclic automata. The algorithms they provide do not construct cyclic
automata; they only add words to them. They do not provide a method to incremen-
tally construct a cyclic automaton from scratch.

6.6.2 Mathematical Preliminaries

We define a deterministic finite-state automaton as M = (Q, L, §, qo, F), where Q is
a finite set of states, L is a finite set of symbols called the alphabet, qo € Q is the
start (or initial) state, and F C Q is a set of final (accepting) states. As in (Carrasco
and Forcada, 2002), we define 6 : Q x £ — Q a total mapping. In other words, if the
automaton is not complete, i.e. if 4g € Q Ada € £ :8(q,a) € Q, then an absorption
state L ¢ F such that Va € £ : §(L,a) = L must be added to Q. A complete acyclic
automaton always has an absorption state. The extended mapping is defined as:

6*(q,e) = ¢
6*((],(1)(.) = 6*(6(q,a),x)
(6.1)

The right language of a state q is defined as:
—
L(q)={xer :8"q,x) €F}

The language of the automaton £(M) :Z (qo). The right language can be defined
recursively:
- - e} ifqeF
£a)= U a- £ (8(q,a)) U { {(/)} otl('llerwise
acX:d(q,a)#L
The length of a string w € X* is denoted [w|, and the i-th symbol in the string w
as wj.

6.6.3 Incremental Addition of Sorted Strings
Clarification of the Role of the Register

(Carrasco and Forcada, 2002) derive their algorithm from the union of an automa-
ton M = (q, L, , qo, F) with a single string automaton M,,, = (Qw,, X, dw, dow, Fw). In a
single string automaton, Q,, = Pr(w) U{L,,}, where Pr(w) is the set of all prefixes of
w, which also serve as names of states, |,, is the absorption state, F,, = {w}, and
Jow = €.

States in the automaton M’ = M U M,, that is the result of the union can be
divided into 4 groups:

e Intact states of the form (q, 1,,) with q € Q —{ L} — states that are not affected
by the union.

¢ Cloned states of the form (q,x) with q € Q — {L} and x € Pr(w) such that
5*(qo,x) = q. All other states in (Q — {L} x Pr(x) can be safely discarded. The
new initial state (qo, €) is a cloned state.
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e Queue states of the form (L, x), with x € Pr(w).

e The new absorption state |’ = (L, 1,,) ¢ F. It is present only if M has an
absorption state.

In (Carrasco and Forcada, 2002), the algorithm proceeds by minimizing the
queue states and cloned states, arriving at the minimal automaton. All states of
M are put into a set called a register of states, which holds all unique states in
the automaton. States unreachable from the new initial state are removed from
the automaton and from the register. Then, starting from the states that are the
most distant from the initial state, queue states and cloned states are compared
against those in the register. If an equivalent state is found in the register, it re-
places the state under investigation. If not, the state under investigation is added
to the register.

Before we go further, we have to clarify the role of the register of states. It is
explained in (Daciuk et al., 2000), but taken for granted in (Carrasco and Forcada,
2002). Incremental construction consists in two synchronized processes: one that
adds new states, the other one that minimizes the automaton. In minimization, it is
important to check whether two states are equivalent. The Myhill-Nerode theorem
tells us that two states are equivalent when they have the same right languages.
Computing right languages can take much time. However, what we need to check
is whether two states have the same right language, and not what that language
actually is. We can use the recursive definition of the right language. If the target
states of all outgoing transitions are unique in the automaton, i.e. they are already
in the register, then instead of comparing their right languages, we can compare
their identity (i.e. e.g. their addresses). The assumption in the previous statement
can be made true by enforcing a particular order in which states are compared
against those in the register. When states are on a path representing a finite string,
they should be processed from the end of the string towards the beginning.

The queue states should be processed in that order. If an equivalent state is
found in the register, it replaces the current state. Otherwise, the current state is
added to the register.

The register can be organized as a hash table. Finality of the state, the number of
transitions, labels on transitions, and targets of transitions are treated together as
a key — an argument to a hash function. The register does not store right languages.
It stores pointers to states. If the right language of a state changes, the key of that
state does not have to.

Necessary modifications

We divide the set of cloned states into two groups: prefix states — up to, but exclud-
ing the first state with more than one incoming transition, and the proper cloned
states, which will simply be called the cloned states. Cloned states are modified
copies of other states. They are new states; they were created by adding a new
string. In (Carrasco and Forcada, 2002), the prefix states are also cloned. However,
it is usually not necessary to clone them. They all change their right languages as
the result of adding a new string, but only the last prefix state (the most distant



Algorithms for Linguistic Processing 129

from the initial state) is sure to change its transitions. Therefore, it should be re-
moved from the register before adding a new string. Other prefix states should be
removed from the register only if they change their key features. This can only hap-
pen if the next prefix state in the path is replaced by another state. In that case, the
current prefix state is removed from the register, and reevaluated. If an equivalent
state is found in the register, it replaces the current state, and the previous prefix
state should be considered. Otherwise the state is put back into the register, and
no further reevaluation is necessary.

If strings are added in an ordered way, the minimization process can be opti-
mized in the same way as in the “sorted data algorithm”, the first algorithm de-
scribed in (Daciuk et al., 2000). We introduce two changes to the string addition
algorithm in (Carrasco and Forcada, 2002):

e prefix states are not cloned when not necessary,

e states are never minimized (i.e. compared against the register, and either put
there or replaced by other states) more than once.

The first modification is described above. The second one requires more explana-
tion. Let us consider an automaton where no minimization takes place after a new
string has been added. That automaton has form of a trie. If a set of strings is lexi-
cographically sorted, then the paths in the automaton recognizing two consecutive
strings w and w’ share some prefix states (at least the initial state, or the root of
the trie). We call the longest initial part of two strings w and w’ that is identical for
both of them the longest common prefix of w and w’ — lecp(w, w’). If w is a prefix of
w’, then all states in the path recognizing w are also in the path of w’. Otherwise,
there will be states in the path recognizing w that are not shared with the path rec-
ognizing w’. Note that no subsequent words will have them in the common prefix
path either, as the shared initial part of paths of w and subsequent words can only
become shorter. Therefore, those states will never change their right language, so
they can be minimized without any further need of reevaluation. As soon as we
add w’, we know which states in the path of w can be minimized. Instead of a try,
we keep a minimal automaton except for the path of the last string added to the
automaton.

If we start from scratch, and add strings in the manner just described, cloned
states will never be created. Cloned states are created only when the common prefix
of two words contains states with more than one incoming transitions. Additional
transitions coming to states are created when the states are in the register, and
they are found to be equivalent to some other states. But the states can be put into
the register only when they are no longer in the common prefix path.

In case of a cyclic automaton, we do not start from scratch. There must be
an initial (minimal) automaton that contains cycles. No new cycles are created
by adding simple strings. As the automaton already contains some strings, and
it can contain states with more than one incoming transition, cloned states can
be created. However, no cloned states will be created in the common prefix path,
because the path recognizing the previous string does not contain any states with
more than one incoming transition.
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The algorithm that makes special use of the fact that strings come in lexico-
graphical order is different from the general algorithm in yet one aspect. After a
string has been added, the automaton is not completely minimized. It is “almost”
minimized. It is minimal except for the path representing the last string added.

The Algorithm

{1} ReQ;

{2} if (fanin(qp) > 0) then

{8} o« clone(qo);

{4} f£i;

{5} W' ¢

{6} while ((w « nextword) # €) do
{7} plepw,w');

{8} M « minim_path(M,w’,p);
{9} M « add_suffix(M,w, p);
{10} W'« w;

{11} end;

{12} minim_path(M,w’,p);

{13} if Jr € R: equiv(r, q¢) —

{14} delete qo; qo « 1;

{15} i

{16} func Icp(M,w,w’);

{17} ] (—maX(ilkajWk:Wk/);
{18} return (8*(qo, w1 ...wj),j);
{19} cnuf

{20} func minim_path(M,w,p);
{21} q < 5*(qo,p)s

{22} i plj e

{23} whilei < |w|do

{24} path[i—j] « q;

{25} q«d(q,wi);

{26} Te—i+1;

{27} end;

{28} path[i—j] + q;

{29} whilei>jdo

{30} if Ir € R: equiv(r, q) then

{31} d(path[i—j— 1],wi_1) «1;
{32} delete q;

{33} else

{34} R RU{ak;

{35} fi;

{36} ie—1-1;

{37} end;

{38} return M;
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{39} cnuf;

{40} func add_suffix(M, w,p);

{41} q« 5*(qo,p);

{42} i |wi;

{43} whilei < |w|and 5(q,w;) # L and fanin(d(q,w;)) <1 do
{44}  q«3(q,wi); Re—R—{q};

{45} Te—i41;

{46} end;

{47} whilei < |w|and 6(q,w;) # L do
{48} g« clone(5(q,wy));

{49} q 8(q,wi);

{50} ie—1i+1;

{51} end;

{52} whilei< |w|do

{53} d(q,wy) < newstate;

{54} g« 8(q,wi);

{55} Te—i+1;

{56} end;

{67} F« Fu{qh

{58} return M;

{59} cnuf

Function funin(q) returns the number of incoming transitions for a state q. If
the initial state has more than one incoming transitions, it must be cloned (lines
2-4) to prevent prepending of unwanted prefixes to words to be added. Function
nextword simply returns the next word in lexicographical order from the input.
Function Ilcp (lines 16-19) returns the longest common prefix of two words. It is
called with the last string added to the automaton, and the string to be added
to the automaton as the arguments. For the first string, the previous string is
empty. Function minim_path minimizes that part of the path recognizing the string
previously added to the automaton that is not in the longest common prefix. This
is done by going to the back of the path representing the string (lines 21-28) and
checking the states one by one starting from the last state in the path (lines 29-37).
The register is represented as variable R.

While function minim_path is not much different from an analogical function
for the acyclic case, function add_suffix (lines 40-59) does introduce some new ele-
ments. It resembles more closely a similar function from the algorithm for unsorted
data ((Daciuk et al., 2000)). The longest common prefix of the string to be added
and the last string to be added to the automaton is not necessarily the same as the
longest common prefix of the string to be added to the automaton and all strings
already in the automaton. The latter can be longer, and the path recognizing it may
contain states with more than one incoming transition. Those states have to be
cloned (lines 47-51).
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6.6.4 Analysis

The algorithm correctly adds new strings to the automaton, while maintaining its
minimality. We assume that all states in the initial automaton are in the register,
there are no pairs of states with the same right language, all states are reachable
from the initial state, and there is a path from every state to one of the final states.
The absorption state and transitions that lead to it are not explicitly represented.

If the initial state has any incoming transitions, it is cloned, and the clone be-
comes the new initial state. That operation does not change the language of the
automaton - the right language of the new initial state is exactly the same as of the
old one. The old initial state is still reachable, because it has incoming transitions
from either the new initial state (the old initial state had a loop) or other states that
reachable. The cloning creates a new state that is not in the register and that is
equivalent to another state in the automaton. Lines 13-15 of the algorithm check
whether after addition of new strings the new initial state is equivalent to some
other state in the automaton. If it is the case, the new initial state is replaced with
the equivalent state.

When strings are ordered in lexicographical order, the longest common prefix of
two subsequent strings is never shorter than the longest common prefix of the first
string of those two and any string after then second one. The right language of a
state can be changed either by making the state final (in line 57), or by adding a
transition to it (line 54), or by changing any state reachable from it. The path of
the last string added to the automaton does not contain any states that have more
than one incoming transition, and the initial state has no incoming transitions. If
the initial state has any incoming transitions, it is cloned in lines 2-4, and if states
with more than one transition are encountered during addition of a new string, they
are cloned in lines 47-51. Strings added after a certain string cannot reach states
not in their common prefix by following the path of that string. They cannot make
the states final, and they cannot add new transitions to them. This means that
their right language is not going to change. The only other way to reach them is via
transitions created in line 31 of function minim path. Those transitions are created
only after a new string has been added - they are not followed by new strings.

States in the path of the last string added to the automaton are not in the
register. They were not registered when they were created, or they were removed
from the register in line 44. They are the only states in the automaton that are
not in the register and that can have equivalent states elsewhere in the automaton.
States in the path of the last string added to the automaton but not in the longest
common prefix path (queue states), are minimized. The minimization is performed
starting from the end of the string, so that all states reachable from a state under
minimization are already in the register. Therefore, it is sufficient to compare only
transitions and finality of two states to check if they are equivalent. When queue
states of the last string have been minimized, queue states for the new string are
created. After the new string has been added, its path contains states that are
not in the register — the only such states in the automaton. We return to the start
situation.

The algorithm hash the same asymptotic complexity as algorithms in (Carrasco
and Forcada, 2002) and (Daciuk et al., 2000). However, it is faster than algorithms
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for unsorted data because it does not have to reprocess the states over and over
again.

6.7 Incremental Construction with Continuation Classes

6.7.1 Introduction

Acyclic deterministic finite-state automata (ADFA) provide compact and fast rep-
resentation for morphological dictionaries. Traditional methods for constructing
ADFA require considerable amounts of memory. They are also slower then new,
incremental algorithms. However, the incremental methods currently in use con-
struct minimal ADFA from sets of strings. They do not use additional information
contained in morphological descriptions. A recent study ((Daciuk, 2002)) showed
that the semi-incremental construction algorithm by Dominique Revuz ((Revuz,
1991)) was the fastest for morphological dictionaries with long morphological an-
notations. The advantage of the algorithm in that case was a search for common
suffixes. Information about common suffixes is already encoded in morphological
descriptions. Therefore, we present an algorithm that constructs minimal ADFA
using that information.

6.7.2 Formal Preliminaries

We define a deterministic finite-state automaton as M = (Q, %, 9, qo, F), where Q is a
finite set of states, X is a finite set of symbols called the alphabet, q¢ € Q is the start
(or initial) state, and F C Q is a set of final (accepting) states. ¢ is a partial mapping
QxX— Q. Ifforacertainq e Qand a € X, 5(q,a) € Q, we write 5(q,a) = L. The
extended mapping is defined as:

6"(q, €)
6*((],(1)(.) = 6*(6(q,a),x)

The right language of a state q is defined as:
- * *
L(q)={xeX":8%q,x) eF}

The language of the automaton £(M) :Z (qo). The right language can be defined
recursively:
{e} ifqeF

- -
£la)= U a- £ (8(q,a)) U () otherwise
acX:d(q,a)#L

Equality of right languages is an equivalence relation over states, and it divides
them into classes of abstractions. An automaton is minimal iff all its states are
useful (they are reachable from the initial state, and there is a path from each state
to any of the final states), and every abstraction class has only one representative.

An acyclic deterministic finite-state automaton (ADFA) is a deterministic finite-
state automaton that does not contain loops. In other words, in an ADFA,

VqeQVwesz+ 8(q, W) # q.
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Equality of all outgoing transitions (equal number of transitions with the same
labels and the same targets) and the same finality of states (i.e. the states are
either both final or both non-final) is also an equivalence relation. That equivalence
implies equality of right languages, but not vice versa. It means that two states may
have the same right languages, but not the same set of transitions (they must be
both final or both non-final). However, in an ADFA, if no pair of states has the same
finality and set of transitions, no pair of states has the same right language. If we
check equivalence of states in order of increasing length of the longest string in their
right languages, then checking equality of transitions and of finality is sufficient. It
can be proven by induction.

6.7.3 Continuation Classes

In morphological descriptions, the lexicon of morphemes can be divided into sub-
lexica called continuation classes (See (Beesley and Karttunen, 2002), (Schulze et
al., 1994)). An entry in a continuation class specifies a list of morphemes and the
next continuation class. Morphemes from the current and the next continuation
class are then concatenated (and are subject to further alternations using spelling
rules).

We can see continuation classes as fixed points in a finite-state automaton.
Morphemes are added between those points, forming chains of states and transi-
tions labeled with subsequent letters from the morphemes. Unfortunately, due to
phenomena like null morphemes and prefixes, continuation classes cannot be rep-
resented by single states, but such simplified view is still useful in explaining the
concept. Common sets of suffixes are now represented by the same next continua-
tion classes. There is no need to check for those suffixes in each string. To facilitate
compilation, the traditional format of continuation classes has been slightly altered.
We put the next continuation class in front of a list of morphemes, so that we know
both the start and the end point of a chain of transitions to be added. An example
is shown on Figure 6.30.

A predefined class NULL has no morphemes and no further continuation
classes. All other classes should be defined before they are specified as the next
continuation classes for some other classes. By defining a continuation class, we
define a part of an ADFA.

6.7.4 Addition of New Morphemes

The algorithm for adding new morphemes is similar to the incremental construction
algorithm for unsorted data presented in (Daciuk et al., 2000) and generalized in
(Carrasco and Forcada, 2002). However, instead of adding strings between the
initial state and a final state, we add it between two given states. Therefore, the
last step in the algorithm — adding the last transition - is different. Also, we may
encounter null morphemes.

Function add_-morpheme (Figure 6.31) accepts three parameters: start — the
initial state of the class, target — the state representing the next continuation class,
and m - the morpheme. The function modifies the right language of start, and
possibly some other states reachable from start. Conceptually, we can divide the
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morpheme into three parts: a prefix — a part (not containing the last symbol in the
morpheme) such that there is a path in the automaton from the initial state with
transitions labeled with subsequent symbols of the prefix, a suffix — the remaining
part excluding the last symbol, and the last symbol. Any of those parts may be
empty. The last symbol is empty only if the morpheme is empty. If the morpheme
is an empty string, then the right language of the start must also contain the right
language of target. This is done by creating a state with the right language being
the union of the right languages of start and target.

If the morpheme is not empty, the longest common prefix of the morpheme
with any string already in the automaton is followed (lines 5-15). That part of
the morpheme is already in the automaton; we only need to add the second part
(the suffix). However, if the path of the prefix contains a state with more than
one incoming transition (a reentrant state), then by adding the suffix, we would
also add the suffix to some other word. Therefore, all prefix states from the first
reentrant state must be cloned (lines 12-15). Cloning means creating a copy of a
state with exactly the same transitions (the same labels, the same targets) and the
same finality.

The suffix is added in lines 16-19 by creating a chain of states linked with
transitions with labels spelling out the suffix. A set of states with unique right
languages in maintained in variable R. That set is called the register ((Daciuk et
al., 2000)). Because adding the suffix changes the right language of the last non-
reentrant state, we remove it from the register, unless it is the initial state of the
continuation class (start). All prefix states up to the first reentrant state change
their right language, but it is not necessary to remove them from the register. We
will return to that issue later.

If the suffix is empty, then there may be a transition from the last prefix state la-
beled with the same symbol as the last symbol of the morpheme. In that case (lines
22-26), a new state is created with the right language being the union of the right
language of the target of the transition and the right language of target. Function
Janin returns the number of incoming transitions for a state. If by redirecting some
transitions, a state has no more incoming transitions, it is deleted automatically.
Variable off is set to zero to indicate that the newly created state is not yet regis-
tered. If the suffix is not empty, or if there is no transition from the last prefix state
labeled with the same symbol as the last symbol of the morpheme, a transition is
created from that state to target. Variable off is set to 1 to indicate, that target is
already in the register.

In lines 3042 add states to the register. This is done from the end of the
morpheme towards the beginning. The last state in the path is either target — a state
already in the register, or a state being a union of two other states. In the latter case,
all transitions leaving that state go to states already in the register. It means that we
can use equality of sets of transitions and of finality as the equivalence relation. All
states added by add_-morpheme are either put to the register (line 39), or replaced
by some other states already in the register (line 37). Also, the last state in the
prefix preceeding of any reentrant state is either put into the register or replaced
with an equivalent state. If that state is replaced, then the state preceeding it is
removed from the register (before the replacement), and then minimized again, and
the process is repeated until no further changes are made or until the initial state is
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reached. The initial state is never put into the register in function add_-morpheme.
At the end of the function, all states except for the initial state of the class are in
the register, and the initial state is returned.

Function merge_states (Figure 6.32) creates a state with the right language begin
a union of the right languages of the two states — arguments of the function. A copy
of the first state is created, and then transitions of the second state are added to it.
If both states have transitions labeled with the same symbol, but leading to different
targets, function merge_states is called recursively to create states accepting unions
of the right languages of both targets (line 7). If a state created in such a way has a
unique right language, it is put into the register (line 15). Otherwise, it is replaced
with an equivalent state (lines 13 and 17) and deleted (line 12).

6.7.5 Problems and Solutions to Them.

Suppose we have a class C1 with morphemes “a” and “b” and the next continuation
class NULL, and we are in the process of creating another class C2 with morphemes
“a”, “b”, and “c”, and the next continuation class NULL. If we registered the initial
state of class C2 after the addition of “a” and “b”, then we would have to replace
it with the initial state of class C1l. By adding morpheme “c” to it, we would also
modify the language of C1. The problem is solved by putting the initial state of a
class into the register only after the whole class has been defined (after the right
brace ending the class definition has been parsed).

There is a related problem. Suppose we have the class C1 with the right lan-
guage “a” and “b”, and we define a new class with the language “aa”, “ab”, and “ac”.
After having added “aa” and “ab” to the class, we notice that we have created a state
that is equivalent to the initial state of class C1, so we replace the newly created
state with the old one. When we add “ac”, we add “c” to class Cl. This problem
is avoided by adding an additional incoming transition for the initial state of ev-
ery finished class. The newly created state is still replaced with the initial state of
class C1, but when we add “ac”, we have to clone it, because it has more than one
incoming transitions (one from the initial state of the class we define, another one
artificial). Actually, we do not need to create artificial transitions, we only increase
the counter of incoming transitions.

At the end of processing, only one continuation class and its initial state is im-
portant. Some continuation classes may have initial states with only one, artificial
incoming transition. They should be deleted to make the automaton minimal. A
directive (“Forget:”) is provided to decrease incoming transition counters of known
classes and deleting the corresponding states if they have no incoming transitions.

6.8 Future Work

The incremental construction algorithm from continuation classes (Section 6.7) can
be extended to cyclic automata. The method is currently under development. An-
other possible extension is the inclusion of spelling rules into the construction pro-
cess. In the current solution, the spelling rules have to be composed with lexicon
at run time.
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(1) func equiv(p, q, k)

(2) if p = q then eq := true

(3) elsif class[p] # class[q] then eq :=false
(4) elsif k = 0 then eq := true; r1:=0

(5) elsif {p,q} € S then eq := true; vl := index({p, q},S); skip
(6) elsif {p, q} € G then eq := false

(7) elsif {p, q} € P then eq := true; rl:= index({p, q}, P)
(8) else

9) if level = 0V in(p) > 1V in(q) > 1 then
(10) S:=SU{{p, q}}; level := level +1; pushed := true;
(11) fi

(12) rl’ :=1|Ql; eq :=true;

(13) fora:acl ;NI do

(14) eq := eq/\ equiv(d(p,a),d(q,a),k —1);
(15) rl’ == min(rl/,rl);

(16) rof;

(17) Tl :=1l’;

(18) if pushed then

(19) S =S\ {{p, ql}; level := level —1
(20) fi

(21) if eq then

(22) if 1 > level then

(23) merge((p, q})

(24) else

(25) Plrl] :=PlrU U{{p,q}}

(26) fi

27) else

(28) G:=GU{p,ql}

(29) fi

(30) if rl = level then 1 :=|Q[; i

(31) if eq then

(32) if 1 = |Q| then

(33) v{r,s}e P[level] merge({T) s})

(34) else

(35) P[rl] := P[rl] U P[level]

(36) fi

(37) else

(38) v{r,s}eP[level] G :=GU{{r,slk

(40) fi

41 Pllevel] := {;

(42) fi;

(43) return eq

(44) cnuf

Figure 6.12: Comparison of a pair of states in the incremental minimization algo-
rithm - final version
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Q| 6 el min S, Sy €ns es €nm
church 14 21 5 6 2 4 30 17 35
gl 9 21 2 2 3 3 20 20 22
gl0 13 18 2 2 3 5 17 17 20
gll 17 34 3 3 6 8 36 33 72
g13 337 673 4 5 32 32 726 692 63-10°
gl4d 137 273 4 5 16 16 297 283 9852
gl5 35 69 4 5 9 9 77 71 283
g4 103 206 2 34 17 20 867 867 3911
35} 22 42 6 8 3 3 94 46 95
g5p 20 30 10 19 4 4 170 47 172
g6 49 98 2 45 4 4 1297 1297 1318
g7 39 78 2 7 2 2 129 129 132
g8 288 1624 9 16 4 4 2444 1636 3247
g9 232 463 4 5 14 14 482 478 3407
g9a 16 32 3 3 5 7 33 30 55
griml 17 48 2 2 2 2 55 55 53
java 112 424 19 26 11 18 950 402 9825
javalé | 3186 12077 19 46 94 94 13507 12267 too big
javal9 | 1971 24633 24 26 129 129 26295 24630 too big
ovis4n 133 613 6 12 14 14 673 637 23768
ovisbn 44 169 6 12 8 8 194 171 725
ovisén 17 81 4 5 3 3 77 71 171
ovis7n 13 49 4 4 3 3 44 40 84
ovis9p | 2478 7434 2 7 27 27 8239 8239 27455
rene2 844 1380 47 193 10 24 40969 16434 31726
ygrim 9 28 4 4 1 2 28 22 24

Table 6.3: Results of experiments on real examples. |Q| — number of states, |3 —
number of transitions, cl — number of classes, min — number of states in minimal
automaton, S, — max depth of recursion of equiv(), S, — S, excluding the pairs that
cannot start cycles, e,s — calls to equiv() without pre-sorting with memoization, e;
— calls to equiv() with pre-sorting and memoization, e, — call to equiv() without
pre-sorting and without full memoization.

2D tree no sort no mem 2D tree no sort no mem
g13 4 4 3 27298 | ovis4n 2 1 1 12
javalé | 166 73 262  too big | ovis9p | 89 109 81 78
javal9 | 166 73 262  too big | rene2 | 22 36 28 28

Table 6.4: Execution times for real-life automata.



Algorithms for Linguistic Processing

139

Figure 6.

Figure 6.14: Execution times for large minimal automata with limited

classes.

execution time (in units)

execution time (in units)

2000 T T T T T T, T
incremental  + E
Aho-Sethi-Ullman  x
1800 Hopcroft  * 4
*
1600 E
1400 ]
*
1200 -
*
1000 E
*
800 E
* *
600 E
*
400 -
200 * « X X y
X x * +
0 X i T i T T T 1
1 2 3 4 5 6 7 8 9

number of states (in thousands)

10

13: Execution times for large automata with a large number of classes.

90000

80000

70000

60000

50000

40000

30000

20000

10000

=S

T T
4 classes

O * X +

W K +

6 classes
8 classes
10 classes
+
"
+ X
X
+ *
X
* B
"
X * o
+ X * H
[m]
x o
)
1 1 1 1 1 1
4 5 6 7 8 9

number of states (in thousands)

10

number of



140

NWO Pionier Progress Report

2200 T

2000

1800 -

1600 -

1400 -

1200

1000 -

800 -

execution time (in units)

600

400 r

[BESS

200 1

*

T
4 classes
6 classes
8 classes
10 classes

+

O * X +

Figure 6.15: Execution times for inflated automata of 1000 states with various

number of classes.

5

6

7

number of states (in thousands)

strings automaton

words characters av. len. states trans.

German words 716273 10221410 14.27 45959 97 239
morph. | 3977448 364681813 91.69 | 107198 435650

French  words 210284 2254 846 10.72 16665 43507
morph. 235566 17111863 72.64 | 32078 66986

Polish words 74434 856176 11.50 5289 12963
morph. 92 568 5174631 55,90 | 84382 106850
/usr/dict/words 45407 409093 9.01 23109 47346

Table 6.5: Characteristics of data used in experiments
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{1} func add_morpheme(start, target, m)

{2} ifm="—

{3} return merge_states(start, target);
{4} else

{5} p « start; i+ 1;

{6} while i < |m| and 6(p, m;) # L and fanin(d(p,my)) < 1) —
{7} p  d(p,wy); pathli] « p:

{8} ie—i+1;

{9} elihw

{10} if p # start - R+~ R—{p}: fi

{11} uf «1i;

{12} while i < |m| and 6(p, my) # L —
{13} 5(p, my) « clone(8(p, mi8); p « &(p, my); pathli] « p;
{14} it 1;

{15} elihw

{16} while i < |m| —

{17} d(p, my) « new; p « 6(p, my); pathl[i] «+ p;
{18} i it 1;

{19} elihw

{20} off + 1;

{21} if6(p,my) # L —

{22} q = merge_states(5(p, my), target);
{23} if fanin(d(p,my)) <1) —

{24} R R —{8(p, mi)};

{25} fi

{26} 8(p, M) « q; off « 0;

{27} else

{28} d(p, my) « target;

{29} fi

{30} p « 8(p, my); pathli] « p;

{31} ie—ml—off +1;

{32} while i + off > 1 —

{33} if d.cr T = pathli] —

{34} ifi< ufandi+off >2—
{35} R « R —{pathlil};

{36} fi

{37} d(path[i— 1], my 1) « 1;

{38} else

{39} R « R U {pathlil};

{40} if i <= uf — return start;
{41} fi

{42} elihw

{43} £

{44} return start;

{45} cnuf

Figure 6.31: Adding a string to a continuation class.
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{1} func merge_states(s,s>)

{2} s ¢ clone(sy);

{3} foreach a € X : 6(sy,a) # L —
{4} if 5(sj,a) =L —

{5} d(s,a) « 6(sp,a);

{6} elsif 6(s7,a) # d(s2,a) —
{7} q < merge_states(6(s,a),d(s2, al;
{8} if fanin(d(sy,a)) <1 —
{9} R — R—{5(s2,a)};
{10} fi

{11} if Jcrr=q—

{12} delete q;

{13} qeT;

{14} else

{15} R« RU{qk

{16} fi

{17} d(s,a) « q;

{18} fi

{19} hcaerof
{20} return s;
{21} cnuf

Figure 6.32: Function merge_states creates a new state with the right language
being the union of the right languages of its arguments



Chapter 7

Empirical Aspects of Finite-State
Language Processing

7.1 Introduction

7.1.1 The larger project

This research is part of the PIONIER project “Algorithms for Linguistic Processing”,
which focuses on problems of ambiguity and processing efficiency by investigating
grammar approximation and grammar specialization techniques. As computational
grammars grow larger and larger, taking more of linguistic theory into account and
thus getting better at recognizing an increasing number of syntactical construc-
tions, they tend to become slower as well. At the same time, and of course related
to this, ambiguity increases: as the system is able to recognize more, it will assign
more analyses to one and the same utterance, making it harder to find the ’correct’
one.

Ambiguity can be reduced by means of grammar specialization techniques. This
amounts to the use of a large corpus of linguistic data in narrowing down the gram-
mar to represent more closely the language as it is actually used. To put it another
way, the grammar (or some other part of the analyzing system) is changed so that
its output is closer to language performance of real speakers than to an exhaus-
tive display of language competence. In addition to fighting ambiguity directly by
making use of grammar specialization, the inefficiency caused by ambiguity as well
as by the increasing size of the grammar in general can be addressed by means
of grammar approximation techniques. The research “Empirical Aspects of Finite-
State Language Processing” is about using finite-state techniques to this end. Be-
fore more is explained about this research, a short description is given of what
grammar approximation is.

7.1.2 Grammar approximation

In grammar approximation a complex grammar is reduced to a much more simple
grammar that is an approximation of the original grammar. Note that this is not
the same as grammatical inference, which constitutes deducing a grammar from a
sample (Dupont, 1997).
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As an example, in (Nederhof, 2000) we find a discussion on different approaches
to the case of regular approximation, where finite-state automata (which define reg-
ular languages) are constructed that approximate context-free languages. In fig-
ure 7.1 the general idea of approximation is shown. As we will see later, grammati-
cal inference can be part of the process of grammar approximation.

grammar | — calculations — | simpler grammar

Figure 7.1: grammar approximation

7.1.3 Finite-state language processing

Why do we propose to use finite-state techniques? As described in (van Noord,
2000a), there are three arguments that support this decision:

1. Humans have a small (finite) amount of memory available for linguistic pro-
cessing

2. Humans have trouble dealing with certain constructions, such as center-
embedding, that are impossible to describe using finite-state techniques

3. Humans process language very efficiently, namely in linear time

This suggests that the human language processing machinery could be essen-
tially regarded as a finite-state device: they share the finiteness of the available
resources, the restrictions in dealing with certain linguistic phenomena, and the
linear processing time. In the rest of this subsection I summarize the research
questions and discussion as found in (van Noord, 2000a).

Methods of finite-state approximation

Many methods of finite-state approximation of grammars are based on the use
of a parsing algorithm that is in some way restricted, so that it recognizes finite-
state languages only. For instance, in (Johnson, 1998) a finite-state approximation
technique is proposed based on a left-corner parser; the parser is compiled into
a finite-state automaton as the size of the stack is restricted to a finite maximum
depth. Approaches such as this one have not yet been applied in practice.

In contrast, another method know as chunking has been successfully used. This
method divides the grammar up into separate levels of rules. Each level performs
an analysis of its input, the result of which is then used as input to the next level,
resulting at a certain moment in phrases, which are again used in later levels
in more extensive analyses. Since rules do not apply recursively at a level, and
the number of levels is finite, this can be viewed as a finite-state approximation.
However, the rules are constructed by hand: we would prefer an approach in which
the approximation is derived from the grammar in a more automatic way.
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Evaluation of finite-state approximation

Once a method for approximation has been selected the resulting approximation
can be evaluated, both qualitative and experimental. On a qualitative side, it can
be seen that some methods always produce a superset of the language of the input
grammar, others always produce a subset, and for some methods such a clear
distinction can not be made.

Besides this, methods could be compared to each other by looking at specific
characteristics when approximating certain sub-classes of grammars, such as reg-
ular, left-linear or right-linear grammars.

Another interesting area for questions is the relation to human language per-
formance. How does the approximation handle constructions that are difficult for
humans to deal with? For instance, what kind of center embedding is allowed in the
approximation? And, at the same time, does the approximation properly recognize
those cases that human beings don’t have problems with?

Experimental evaluation can be performed to see if there is any such loss of
accuracy, as well as to find out how the different methods compare with respect to
the size of the resulting automaton and other computationally interesting aspects.

Approximation of constraint-based grammars

Most approximation techniques assume the original grammar is a context-free
grammar. Certain techniques can be generalized to be used with feature-based
grammars, and sometimes the idea is that the feature-based grammar is first trans-
formed into a context-free grammar, which can then be approximated. In all of
these cases, the approximation results in a grammar representing a superset of the
original grammar: during approximation, distinct complex categories in the input
grammar are mapped to the same category, making it possible to recognize sen-
tences which were not recognized before. An important question in this research
would be if it is possible to create an approximation that captures a subset of the
language recognized by the original constraint-based grammar.

Approximation and interpretation

The finite-state automaton which is the result of approximating a more complex
grammar usually does not share with this grammar the ability to assign structural
descriptions to the utterances in the languages it recognizes. There have been
work-arounds to this problem, but in all cases the resulting system has to return
to the original grammar at a certain point in the process, in order to make language
understanding possible. We would prefer a solution in which the approximation is
implemented as a finite-state transducer that produces, upon recognizing a certain
input sequence, a corresponding structural description. In this setup there would
be no need to refer back to the original grammar in the semantic interpretation
component.
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7.2 Grammar Approximation through Inference

In section 7.1.2 it was described, though only in a few words, how approximation is
done in general. In contrast to this approach, we have used a method of grammar
approximation in which the procedure denoted as ’calculations’ in figure 7.1 is re-
placed by a procedure of grammatical inference. A large corpus is first annotated by
the grammar we want to approximate, and afterwards we use grammatical infer-
ence to derive a simpler grammar from the annotated corpus. This simple grammar
is then an approximation of the grammar used to annotate the corpus, derived in
an indirect way, as is also depicted in figure 7.2.

grammar | — annotating — |corpus | — inference — | simpler grammar

Figure 7.2: grammar approximation using inference

7.2.1 Learning a language from a sample

In the approach to approximation described here, we need a sample of the language
that is defined by the grammar we want to approximate, for use in the process
of inference. When the learning of a language from a sample of that language
is concerned, many papers note the theorem by Gold (Gold, 1996) which states
that regular languages (as well as context-free and context-sensitive languages)
are impossible to learn from a sample containing only positive examples, that is
examples of utterances that are part of the language. Instead, a complete sample
would be needed, namely a sample containing both positive and negative examples
with respect to the target language. In this case, the language can be identified in
the limit. After a finite number of changes in the hypothesis regarding the language,
the target language will have been identified.

However it seems that children have little or no access to negative examples of
the language they are acquiring (Firoiu, Oates, and Cohen, 1998b; Marcus, 1993),
and yet are successful in doing this. Chomsky (in 1975) suggested an explanation
in which language is innate, instead of something that has to be learned. Another
explanation would be the idea that it is somehow possible to learn a language from
a positive sample, if this sample is based on a probability distribution. This is
shown to be true: the stochastic information enclosed in such a sample makes up
for the lack of negative data (Angluin, 1988).

7.2.2 Methods of inference

As described in (Dupont, 1997), the grammar that is the product of inference can be
of different forms, such as regular, context-free or context-sensitive. In the case of a
regular grammar, this can also be interpreted as creating a finite-state automaton;
in the light of our project this would be what we are interested in for reasons
mentioned in the introduction. There are a number of approaches possible when
it comes to learning a finite-state automaton from a stochastic sample, including
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a few different algorithms. The following paragraphs present a number of these
possibilities.

Learning a Hidden Markov Model

We can construct a probabilistic model of the language by counting. The model has
to be restricted in some way to allow us to do this, since otherwise the number of
different things to be counted would be very large, or infinite. Thus we restrict the
model to work with a limited history: for every element in a sample sequence in the
language we are considering, the model takes as the context of this element not the
entire sequence, but only a number of preceding elements. When we consider n
preceding elements, we can construct what is called an n-th order Hidden Markov
Model. In this model the actual states are hidden, but we can observe certain
corresponding output elements which are therefore called observations. In the case
of a language model the observations are normally the words in a sentence, while
the hidden states represent the corresponding syntactical categories or parts of
speech. The idea is that the system traverses through the different states, where
probabilities can be assigned to the event of the system changing from one state
into another state, and in each state the system produces an observation, again
with a certain probability.

The model is trained by counting the occurrences of sequences of states of length
n + 1, as well as the number of times a certain observation is associated with a
certain state, and using these counts to compute probabilities for these different
events. The result can be seen as a (simple form of) probabilistic finite-state au-
tomaton. The model can be used to compute the likeliness of a certain sequence
of observations, or to find the sequence of hidden states that best explains a given
observed sequence.

Instead we could also use the simpler Markov Model in which the states are not
hidden; in that case we only compute probabilities for traversing from a certain
state to the next state. However in many situations the states are not directly
accessible, as is also the case for applications related to language. These systems
are better modeled using the Hidden Markov Model.

Using the ALERGIA algorithm

The previous paragraph described the HMM approach to inference, which delivers
a restricted model of the language. Another method, while still resulting in a finite-
state automaton, gives a better model by lifting the restriction on the size of the
history used. The ALERGIA algorithm (Carrasco and Oncina, 1999) first constructs
the prefix tree automaton (PTA) based on a sample of the target language. This is
a stochastic automaton representing all prefixes found in the sample, where each
transition is given a probability according to the number of times it is traversed
during construction of the PTA. Through merging of states in the PTA, the algorithm
generates an automaton that captures not only all the strings found in the sample,
but hopefully also strings from the language that were not part of the sample: the
algorithm finds the canonical generator. This is done in linear time with respect to
the size of the sample set. States in the PTA are merged if they are equivalent: they
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are prefixes that lead to the same suffixes (or subtrees in the PTA). Since the PTA is
a stochastic automaton, a number of statistical tests can be used in deciding if two
states are indeed equivalent, which makes ALERGIA a class of algorithms.

Using the MDI algorithm

The Minimal Divergence Inference (MDI) algorithm (Thollard, Dupont, and de la
Higuera, 2000) is in many ways similar to the ALERGIA class of algorithms. It uses
a different learning criterion (or merging criterion) in which the Kullback-Leibler
measure of divergence is used. It is noted in (Thollard, Dupont, and de la Higuera,
2000) that the ALERGIA algorithm does not provide the means to bound the diver-
gence between the distribution as defined by the DFA produced by the algorithm
and the training set distribution, as the merging operation operates locally on pairs
of states. The learning criterion of the MDI algorithm does not have this problem.
During construction of the PDFA, the algorithm constantly trades off between the
divergence from the training sample (which should be as small as possible) and the
difference in size between the current and the new automaton (which should be as
large as possible, resulting in a smaller automaton). Empirical results show the
MDI approach performs far better than the ALERGIA method.

Other methods

Using Bayesian analysis. The technique of first constructing a model that fits
the sample data and afterwards merging parts of the model, resulting in a more
general model, is also applied in (Stolcke and Omohundro, 1993) to Hidden Markov
Models, which, as is stated in (Stolcke and Omohundro, 1993), ”...can be viewed
as a stochastic generalization of finite-state automata, where both the transitions
between states and the generation of output symbols are governed by probability
distributions”. The initial HMM differs from the initial DFA used by (Carrasco and
Oncina, 1999) in that it is not a prefix tree automaton, but an automaton in which
every string from the sample set is stored: the start state has a many outgoing
transitions as there are strings in the sample.

The process of state merging is in this case guided by Bayesian analysis. Ac-
cording to Bayes’ rule the posterior model probability P(M|x) is the product of the
prior probability of the model, P(M), and the likelihood of the data, P(x|M). When
states in the model are merged, the likelihood of the data is bound to decrease since
the model moves away from the perfect representation of the sample data. How-
ever, the prior probability of the model increases, since one of the implications of
the way in which P(M) is computed is that there is a bias towards smaller models.
As long as the loss in likelihood is outweighed by the prior probability of the model,
merging continues. It is reported that the method is good at finding the generating
model, using only a small number of examples.

Using a neural network. In (Firoiu, Oates, and Cohen, 1998a) we see how neu-
ral networks are used to learn finite automata. So called Elman recurrent neural
networks are trained on positive examples created by an artificial, small grammar.
Next, the DFA is extracted from the network to see what kind of automaton the
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network has learned. The network, when trained on the prediction task (predict-
ing the word following the current input) tends to encode an approximation of the
minimum automaton that accepts only the sentences in the training set. When
trained on a small language, the training set DFA is indeed recovered. When the
network is trained on a larger language, both correct and incorrect generalizations
are introduced. In (Carrasco, Forcada, and Santamaria, 1996) a similar method
is described. They show that the difference between the probability distribution
as predicted by the extracted automaton and the true distribution is smaller than
the difference between the true distribution and the distribution as predicted by
the neural network itself. They also show that both these differences are smaller
than the difference between the sample’s distribution and the true distribution,
which indicates that the inference method using neural networks has the ability to
generalize.

7.3 Application of Grammar Approximation

While there were references in earlier sections to methods of grammar approxima-
tion that approximate and replace a grammar as a whole, we have implemented the
technique in such a way that the resulting model forms an addition to the existing
grammar: the original grammar is approximated and the result of this can be used
to deal with a certain part of the total process of analyzing a sentence, hopefully in
an efficient way, since that is the main reason for using an approximation.

In this fashion we have implemented a HMM part-of-speech tag filter for use in
the Alpino system, using the approach to approximation as described in section 7.2.
The approximation of the grammar is used to ascribe probabilities to sequences of
POS tags, filtering out certain tags if they are considered unlikely. This reduces
lexical ambiguity, which results in shorter parsing times and a slight increase in
parsing accuracy. In the rest of this section the POS filter will be described, starting
with a description of the Alpino system and the way this system works.

7.3.1 Lexical ambiguity

Full parsing of unrestricted texts on the basis of a wide-coverage computational
HPSG grammar remains a challenge. In our recent experience in the development
of the Alpino system, discussed in section 2, we found that even in the presence of
various clever chart parsing and ambiguity packing techniques, lexical ambiguity
in particular has an important effect on parsing efficiency.

In some cases, a category assigned to a word is obviously wrong for the sentence
the word occurs in. For instance, in a lexicalist grammar the two occurrences of
called in (1) will be associated with two distinct lexical categories. The entry as-
sociated with (1-a) will reflect the requirement that the verb combines syntactically
with the particle ‘up’. Clearly, this lexical category is irrelevant for the analysis of
sentence (1-b), since no such particle occurs in the sentence.

(1) a.I called the man up
b. I called the man
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An effective technique to reduce the number of lexical categories for a given in-
put consists of the application of hand-written rules which check such simple co-
occurrence requirements. Such techniques have been used in similar systems, e.g.
in the English Lingo HPSG system (Kiefer et al., 1999).

We extend this filtering component using a part-of-speech (POS) filter. We con-
sider the lexical categories assigned by the lexical analysis component as POS-tags,
and use standard POS-tagging techniques in order to remove very unlikely tags.

In earlier studies, somewhat disappointing results were reported for using tag-
gers in parsing (Wauschkuhn, 1995; Charniak et al., 1996; Voutilainen, 1998).
Our approach is different from most previous attempts in a number of ways. These
differences are summarized as follows.

Firstly, the training corpus used by the tagger is not created by a human an-
notator, but rather, the training corpus is labeled by the parser itself. Annotated
data for languages other than English is difficult to obtain. Therefore, this is an
important advantage of the approach. Typically, machine learning techniques em-
ployed in POS-tagging will perform better if more annotated data is available. In
our approach, more training data can be constructed by simply running the parser
on more (raw) text. In this sense, the technique is unsupervised.

Secondly, the HPSG for Dutch that is implemented in Alpino is heavily lexicalist.
This implies that (especially) verbs are associated with many alternative lexical
categories. Therefore, reducing the number of categories has an important effect
on parsing efficiency.

Thirdly, the tagger is not forced to disambiguate all words in the input (of course,
this has been proposed earlier, e.g. in (Carroll and Briscoe, 1996)). In typical cases
the tagger only removes about half of the tags assigned by the dictionary. As we
show below, the resulting system can be up to about twenty times as fast, while
parsing accuracy does not drop. For somewhat less drastic efficiency gains, we
observed an increase in parsing accuracy. Parsing accuracy drops considerably,
however, if we only use the best tag for each word (this differs from the conclusion
in (Charniak et al., 1996)).

Fourthly, whereas in earlier work evaluation was described e.g. in terms of the
number of sentences which received a parse, and/or the number of parse-trees
for a given sentence, we have evaluated the system in terms of lexical dependency
relations, similar to the proposal in (Carroll, Briscoe, and Sanfilippo, 1998). This
evaluation measure presupposes the availability of a treebank, but is expected to
reflect much better the accuracy of the system.

We implemented a standard bigram HMM tagger in which the emission probabil-
ities are directly estimated from a labeled training corpus. A standard POS-tagger
attempts to find the best sequence of tags for the given input sentence, or perhaps
the n-best sequences of tags for small n. As we discuss later, this is not appropri-
ate for our purposes. Rather, we use an idea from chapter 5.7 of (Jelinek, 1998)
by computing the a posteriori probability for each tag. We use a threshold in order
to cut away for every position in the input string the most unlikely tags. The same
idea is described in (Charniak et al., 1996).
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7.3.2 Using a POS-tagger as a filter
Training and test data for the POS-tagger

Recall that the tagged training corpus is not annotated by humans, but rather by
the parser. Thus, we have run the parser on a large training set, and collected the
sequences of lexical categories that were used by the best parse (according to the
parser).

Of course, the training set thus produced contains errors, but since the POS-
tagger is used to select the best tags out of the tags suggested by the parser, it
makes sense to train it on the parser’s output as well.

In our experiments discussed below, we used as our corpus the first six months
of 1997 of the Dutch newspaper ‘de Volkskrant’, except that we kept apart some
5783 sentences (91857 words) which are used for the stand-alone tests described
below. The remaining 517492 sentences were fed to the parser, with a time-out
of 60 CPU-seconds per sentence, and with the robustness component disabled (in
such a way that only those sentences were used for which the parser found a
complete parse). 324575 sentences (4879085 words) were parsed successfully; the
corresponding tag sequences are used to train our bigram model.

We implemented a standard bigram HMM tagger, described e.g. in chapter 10.2
of (Manning and Schtitze, 1999): an HMM in which each state corresponds to a tag,
and in which emission probabilities are directly estimated from a labeled training
corpus. For each sentence, the filter is given as input the set of tags found by the
lexical analysis component of Alpino. The task of the filter consists of the removal of
all unlikely tags. We have experimented with a few techniques to determine which
tags are unlikely.

Using the most likely sequence
The optimal sequence of tags for a given sentence is defined as:

ﬁ[\1, = arg max P tl n‘w1 n H P Wl‘t t1|tif1)
t ,m

The Viterbi algorithm is used to compute this most probable tag sequence. In
a first experiment, we simply assumed that a tag is removed if it is not part of
the most probable tag sequence. This results in most of the tags being discarded,
leading to a tagging accuracy of 84.3% (as can be seen on the first line of Table 7.1).

One might wonder why the results of this tagger are so poor, whereas in the
literature tagging is supposed to obtain at least an accuracy level of 95%. This is
caused by the size of the tag set (more than 25K different tags). If the tagger would
simply use the most frequent tag for each given word (in isolation of its context),
then we would obtain a tagger accuracy of about 50%. This should be contrasted
with typical taggers in which this base-line is reported to be around 90%.

Using the n-best sequences

Since using only one sequence leads to low accuracy results, the set of accepted
tags is extended to include the tags that make up the n-best sequences. For dif-
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n tags/word accuracy (%)

1 1.00 84.3

5 1.15 88.9
15 1.36 91.3
25 1.50 92.2
50 1.69 93.3
100 1.90 94.2
200 2.11 94.9
300 2.23 95.3
00 3.32 100

Table 7.1: Filter results using the n-best paths approach

T tags/word accuracy (%)
0 1.00 86.5
1 1.10 89.8
2 1.23 92.6
3 1.37 94.6
4 1.51 96.1
5 1.66 97.0
6 1.81 97.7
7 1.97 98.3
8 2.11 98.7
00 3.32 100

Table 7.2: Filter results using forward-backward method

ferent values of n Table 7.1 shows the results. A word is assumed to be tagged
correctly if the correct tag is not filtered by the tagger. Increasing accuracy by con-
sidering more sequences leads to more ambiguity at the same time, and makes the
Viterbi algorithm increasingly slower. Since the number of possible tag sequences
increases exponentially with sentence length, we have also experimented with dy-
namically chosen values of n; these experiments were not very successful, and for
longer sentences (i.e. larger values of n) the Viterbi algorithm itself becomes too
slow.

Using forward and backward probabilities

In attempting to increase accuracy and decrease ambiguity, the idea of selecting
tags based on the most likely sequences must be reconsidered. In an alternative
approach, probabilities are computed for individual tags, allowing us to directly
compare tags that are assigned to the same word. Thus, for each word in the
sentence, we are interested in the probabilities assigned to each tag by the HMM.
This is similar to the idea described in chapter 5.7 of (Jelinek, 1998) in the context
of speech recognition. The same technique is described in (Charniak et al., 1996).
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Figure 7.3: Stand-alone results for N-best and forward/backward techniques

The probability that t is the correct tag at position i is given by:

where « and 3 are the forward and backward probabilities as defined in the forward-
backward algorithm for HMM-training; «;(t) is the total (summed) probability of all
paths through the model that end at tag t at position i; i(t) is the total probability
of all paths starting at tag t in position 1, to the end.

Once we have calculated P(t; = t) for all potential tags, we compare these values
and remove tags which are very unlikely. Let s(t,i) = —log(P(t; = t)). A tag t
on position 1 is removed, if there exists another tag t’, such that s(t,i) > s(t’,1) + .
Here, T is a constant threshold value. We report on experiments with various values
of 1.

The results using forward and backward probabilities to compute the likeliness
of individual tags are given as Table 7.2, showing the average number of remaining
tags per word and tagger accuracy percentages for various threshold levels t. The
method is a significant improvement over the n-best sequences approach, as can
be seen in the comparison in Figure 7.3.

7.3.3 Incorporating the POS-tagger in Alpino
Evaluation procedure

The treebank used in the experiments with the Alpino parser is the CDBL (newspa-
per) part of the Eindhoven corpus (Uit den Boogaart, 1975), which we are currently
annotating with dependency structures, according to the guidelines specified in
(Moortgat, Schuurman, and van der Wouden, 2002). These dependency structures
are similar to those used in the German Negra corpus (Skut, Krenn, and Uszkoreit,
1997). cpBL220 refers to the first 220 sentences of the cDBL part, which are all
annotated. The average sentence length is 20 words.
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T tags/word CPU (msec) Accuracy (%)

NONE 3.53 76620 74.79
0 1.05 1421 68.05
1 1.16 2341 71.88
2 1.32 4077 74.89
3 1.46 6620 75.63
4 1.62 10894 75.15
5 1.77 15702 74.94

Table 7.3: Incorporating the POS-filter in Alpino: results on cdbl220 corpus. (CPU
times are averages per sentence)

Evaluation of coverage and accuracy of a computational grammar usually
compares tree structures (such as recall and precision of (labeled) brackets
or bracketing inconsistencies (crossing brackets) between test item and parser
output). As is well-known, such metrics have a number of drawbacks. Therefore,
(Carroll, Briscoe, and Sanfilippo, 1998) propose to annotate sentences with triples
of the form (head-word, dependency relation, dependent head-word). For instance,
for the example in (1) we obtain:

(zou su mercedes) (zou vc hebben)

(hebben su mercedes) (hebben vc aangekondigd)
(aangekondigd su mercedes) (aangekondigd objl model)
(aangekondigd mod gisteren)

(model mod nieuwe) (model det haar)

Dependency relations between head-words can be extracted easily from the de-
pendency structures in our treebank, as well as from the dependency structures
constructed by the parser. It is thus straightforward to compute precision, recall,
and f-score on the set of dependency triples. In the experiments described below,
the accuracy of the Alpino parser is expressed in terms of this f-score.

Experiment with POS-filter in Alpino

In Table 7.3 we summarize the experiments in which the POS-filter is applied as a
preprocessing component in Alpino. The POS-filter used the forward and backward
probabilities to filter out unlikely tags, as described in the previous section. We
experimented with various values of 1. In the table, the first row describes the
reference system in which no POS-filter is applied. In that case, all tags are used by
the parser, and parsing is very slow. The accuracy is 74.79%. As can be concluded
from the table, a threshold value of T = 2 already performs (slightly) better than the
reference system, with a sharp decrease in parsing times.

Ignoring subcategorization information

Inspection of the errors made by the filter indicated problems with subcategoriza-
tion information. Since the bigram model uses only a limited history, this informa-
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tion is not always used properly. By removing the extra information from the tags,
the algorithm can make a better decision in these cases. So, both in training and
during the application of the filter, we map each verbal tag to its class, by removing
the subcategorization specification. For instance, the verb hebben in (1) is assigned
the following tags:

verb (inf, aux_psp_hebben) verb (inf,pred_transitive)
verb (inf, transitive) verb (pl, aux_psp_hebben)
verb (pl, pred_transitive) verb (pl,transitive)

This set is mapped to two classes, verb (inf) and verb (pl). If the tagger
finds that a class is too unlikely, then all tags that were mapped to that class are
removed. Similarly, if a class survives the filter, then all tags which were mapped
to that class will be available during parsing. The transformation clearly makes
tagging much easier by making the number of different tags much smaller (about
1400 tags remain). This class-based approach typically removes less tags than the
previous approach. In Table 7.4 we show the results. In figure 7.4 we compare
the system without a POS-filter with two systems including the POS-filter, either
with or without subcategorization information. As can be seen from these figures,
the accuracy of Alpino is improved if subcategorization from verbs is ignored. If
T = 2 then Alpino is almost ten times faster than the reference system (without
POS-tagger), and the corresponding accuracy is higher too: 76.40% vs. 74.79%.

7.4 Building a less restricted DFA

7.4.1 Another method for inference

The previous section showed how we implemented an approach to approximation
using inference. The method of inference used was that of a Hidden Markov Model.
It appeared to be the case that the HMM method had trouble dealing with subcat-
egorization information when the model was applied in the part-of-speech filtering
task. Since this model only uses bigram information, resulting in a simple form
of finite-state automaton, this is not surprising; such long distance dependencies
are out of the model’s reach. A solution would be to build a less restricted form of

T tags/word CPU (msec) Accuracy (%)

NONE 3.53 76620 74.79
0 1.46 3125 73.33
1 1.58 5221 75.30
2 1.70 7846 76.40
3 1.81 11054 76.29
4 1.94 26415 76.09
5 2.09 34611 75.68

Table 7.4: POS-filter in Alpino, if subcategorization information is ignored; cdbl220
corpus. (CPU times are averages per sentence)
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Figure 7.4: POS-filtering for Alpino

finite-state automaton, and this is possible using algorithms such as the ALERGIA
and MDI algorithms which were already mentioned in section 7.2.2.

The idea behind both of these algorithms is to construct an automaton that
models exactly a given positive sample of the language (this automaton is the prob-
abilistic prefix tree automaton), and then to generalize this automaton in order to
model a larger part of the language. Generalizing finite-state machines can be done
by merging states. ALERGIA constructs the probabilistic prefix tree automaton
from the sample. Then it compares pairs of nodes; the nodes are visited in the
order as dictated by the automaton: the lexicographic order. Two nodes are merged
(combined into one node) if they generate the same stochastic language.

7.4.2 MDI

The comparison of nodes in ALERGIA is a local event, meaning that the divergence
of the more general automaton from the original automaton is not globally con-
trolled. In the MDI algorithm the general idea is the same; states in the prefix tree
are considered for merging in the same order. However, MDI uses a global criterion
for equivalence of two states: the automaton resulting from a merge operation is
compared to the automaton before merging, in terms of Kullback-Leibler divergence
and reduction in size. Merging makes the model more general, and decreases its
size. On the other hand, merging can lead to overgeneralization and a large di-
vergence between the two successive models. MDI compromises between size and
divergence; merging of two states takes place only if the divergence does not get
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the upper hand over the reduction in size. This is done by means of the following
equation, in which the Alpha parameter regulates the amount of generalization that
is allowed:

Divergence(Al,A2)
IA1] — |A2]

< Alpha

Larger values for Alpha means allowing for more generalization (larger divergence).
Smaller values mean divergence has to be smaller (in relation to the reduction in the
number of states) in order for the new automaton (A2) to be accepted as a correct
generalization from the previous automaton (A1).

7.4.3 Classification of subcategorization frames

We want to build a model that does not share the HMM’s difficulties in work-
ing with long distance dependencies, or more specifically, with subcategorization
frames. The question to be answered is whether a DFA constructed on the basis of
a stochastic sample of a language using the MDI algorithm can be used to differen-
tiate between subcategorization frames. (We choose to focus on the use of the MDI
algorithm as this is based on the ALERGIA algorithm, and experimental results
show that MDI outperforms ALERGIA.)

The sentences in our stochastic sample will consist of simplified POS-tags. This
means that, for example, all information that is supplied with a verb on top of the
fact that it is a verb, is removed. However, in each sentence the subcategoriza-
tion information of one verb tag is not removed; the sentence acts as a training
example for that particular subcategorization frame. (Note that the subcategoriza-
tion information itself is simplified in the first round of the experiment; later on
the experiment is repeated with somewhat more elaborate information in terms of
expected prepositions and particles.)

A DFA is constructed using a fragment of the training data. Training sets of
different sizes can be used, as well as different settings for the Alpha parameter
regulating the amount of generalization.

Next, we take a single test sentence out of a set of unseen sentences. Just
as with the training sentences, this sentence contains only one subcategorization
frame; it may contain additional verbs, but these are reduced to a simple 'verb’
tag, as mentioned above. We want to check if the DFA has properly learned the
difference between subcategorization frames, given their respective environments.
Thus the DFA should be able to recognize the single subcategorization frame that
is in our test sentence as a probable frame in the context of the other tags in the
sentence. In order to test this we construct copies of the test sentence in which the
subcategorization frame is replaced by another frame. For this, all available sub-
categorization frames are used (resulting in 95 sentences, including the original).
These sentences are used as input for the DFA, one at a time, and the probabilities
assigned to each of the sentences in turn are compared. If the sentence containing
the original frame receives the highest probability, the classification is correct, oth-
erwise it is false (or undecided in the case of a draw). The classification accuracy
is the percentage of correct classifications on 1000 test sentences. The results that
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training size vocabulary size accuracy%

20,000 146.3 29.0
40,000 150.3 30.1
100,000 152 30.4
200,000 152.3 30.8

Table 7.5: Classification accuracies for bigram model

will be shown below are the mean accuracies of three runs of the above experi-
ment, in which the training data was randomly selected each time the experiment
was repeated.

Data

The data set consists of 324,574 sentences (with an average length of 15 words)
from the Volkskrant newspaper corpus. Not all of these are used; for training we
used 20,000 and 40,000 sentences (to see if the amount of training data has an
effect on performance; in further experiments using less data gave poorer results
while using more than 40,000 sentences did not improve upon the results). For
testing we use 1000 sentences. Both training and testing data are randomly se-
lected from the larger data set. The original data contained multi-word unit tags of
the form 1-tag, 2-tag and so on; these were reduced to just the first tag in such a
sequence, and with the leading number removed.

Baseline

An alternative to constructing a DFA based on a stochastic sample is to use an n-
gram model of the same data. Both unigram and bigram models were applied to the
experiment described above, both without smoothing. Table 7.5 gives the results
for the bigram model. Using a unigram model leads to an average classification
accuracy of 19.9%. A baseline accuracy could be assigned to an approach in which
we always select the most frequent frame as being the correct one, and this would
be equivalent to the use of a unigram model.

Results

Table 7.6 shows the results in terms of classification accuracy when using the
MDI algorithm. Different amounts of training data were used, as well as different
values for the Alpha parameter that controls the amount of generalization. The
other values are all averages over three runs of the experiment. An exception to
this is the number of transitions in the PPTA, which was determined by looking at
the PPTAs of only one run.

The final column shows the classification accuracy, and it can be seen that using
MDI results in lower accuracies than those attained by using the unigram model
(except for one case, but the positive difference is insignificant). Using larger values
for Alpha means allowing for more generalization, thus leading to the construction
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training vocab. Alpha PPTA DFA DFA  acc.%
size size transitions transitions states
20,000 146.3 0.0002 222K 2298 152 15.5
20,000 146.3 0.0003 222K 776 45 20.0
20,000 146.3 0.0004 222K 305 14 19.4
20,000 146.3 0.0005 222K 265 8 19.4
40,000 150.3 0.0002 433K 353 17 19.4
40,000 150.3 0.0003 433K 207 6 19.9
40,000 150.3 0.0004 433K 196 5 19.9
40,000 150.3 0.0005 433K 156 4 19.9
Baseline: unigram model 19.9

Table 7.6: Classification accuracy for MDI-constructed DFA using different
amounts of training data and different values for Alpha

of smaller automata. As the DFA gets smaller it resembles more and more the
unigram model, leading to the same accuracy in classification (19.9%).

Using more information

Often part of the information in a subcategorization frame tag is about prepositions
and particles being expected. One would think that keeping this kind of information
available helps in classification, making the task easier when a certain subcatego-
rization frame requires the presence of a certain preposition, and this preposition
is (or is not) present in the sentence. However the resulting automaton is even
smaller than the previously discussed result, leading to the same unigram-like be-
havior. Probably the positive effect of the availability of this extra information is
overshadowed by the fact that the tag set has now increased in size from 152 to
1790 tags, of which 1529 are verb tags (compared to 95 when the extra information
is hidden).

Conclusion

The MDI algorithm was used to create a DFA from a stochastic sample of the lan-
guage. The ability of the DFA to recognize the correct subcategorization frame from
amongst a number of alternatives, given the tags in the rest of the sentence, was
tested. The baseline result would be the use of a unigram model of the same train-
ing data, corresponding to always selecting the most frequent frame as the best
one, and this results in an accuracy close to 20%.

Using the MDI algorithm to construct a DFA using the same training data and
using this DFA in the experiment also resulted in an accuracy close to 20%, mean-
ing this approach did only just as well as the baseline.

Since the unigram model does not use any information besides the prior prob-
ability of the candidate frames in selecting the most appropriate frame in a given
context, the above results seem to suggest that the DFA constructed by the MDI al-
gorithm is equally unable to use the contextual information provided by the rest of
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the sentence. This could mean that the algorithm overgeneralizes the automaton,
of which the small sizes of the resulting automata are also an indication.

7.5 Future work

As described in section 1, the method known as chunking has already been suc-
cessfully used in finite-state approximation. Returning to the idea of using Hidden
Markov Models to approximate a grammar, we could expand on this by having the
model work with phrases instead of the smaller POS tags. The HMMs could be
used in a chunker implemented as a tagger. (This could in turn be used as a filter;
knowing which combinations of phrases are plausible can lead to decisions about
which part-of-speech tags are likely or unlikely to be correct.)



Chapter 8

Finite State Transducers with
Predicates and Identities

The research reported in this chapter is conducted in close cooperation with Dale
Gerdemann (University of Tiibingen).

8.1 Introduction

Finite automata are widely used in natural language processing. We present an
extension to finite automata, in which atomic symbols are replaced by arbitrary
predicates over symbols. Although the extension is fairly trivial for finite state
acceptors, the introduction of predicates is more interesting for transducers. Below,
we show how various operations on such extended acceptors and transducers can
be defined and implemented. But first the extension is motivated as follows.

8.1.1 Predicates

In natural language processing, it is often more natural to think of symbols in terms
of predicates or classes. The linguistic principle of Community dictates that similar
segments behave similarly. Predicates are a means to express this similarity. In
computational phonology it is thus more natural to talk about vowels and conso-
nants rather than enumerate each of the phonemes in these classes. Phonological
generalizations typically refer to predicates such as fricative, nasal, voiced and very
seldomly to individual phonemes directly. Therefore, in finite state computational
phonology, some have proposed finite state automata in which transitions are as-
sociated with sets of symbols (Walther, 1999; Bird and Ellison, 1994; Eisner, 1997;
Walther, 2000).

As a further piece of motivation for the introduction of predicates, consider the
unknown symbol regular expression operator, typically written ?, as it is available in
some regular expression compilers (Karttunen et al., 1996; van Noord and Gerde-
mann, 2000). An obvious implementation will expand the ? operator into a set of
transitions for each of the symbols in the alphabet X. In our proposal, the 2 oper-
ator will be expanded into a single transition with an associated predicate which is
true for all symbols; this has the advantage that £ need not be explicitly defined.
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As a consequence, there is no need to assume that the alphabet is finite. Such
considerations become important for applications with large alphabets, such as the
Unicode alphabet. Even larger alphabets may surface in natural language process-
ing applications in which the symbols are words. Typical electronic dictionaries
have at least 200K words and even this large size alphabet is not enough to han-
dle unrestricted texts. Realistically, robust syntactic parsing requires an infinite
alphabet.!

Below, we define predicate augmented finite state automata more precisely; for
now it suffices to assume that such automata are similar to classical finite state
automata, except that we have predicates instead of symbols.

8.1.2 Notation

The predicates used in this paper are predicates on X. So, each predicate 7 is a total
function such that for each o € L, t(X) is either true or false. If 7t is the characteristic
Junction of the set S C £, i.e., S = {0 € Z|n(0)}, then in transition diagrams we often
write S instead of . As usual, if S is a set, then the complement of S is written
S. Moreover, if S is of the form {c}, i.e., a singleton set, then we abbreviate this
predicate simply as c. As a special case, L is written as ?. In transducers, a
transition is associated both with an input predicate 4 as well as with an output
predicate 7t,; such a pair of predicates is written as 74 : 7,.

Below, we will often refer to states in automata using p, q, and r. For examples
of symbols we use characters from the beginning of the alphabet in typewriter font
such as a, b, c; for sequences of symbols we use characters w,x,y,z. Typically,
we use o as a variable that takes a symbol as its value. Examples of predicates
are written in small caps, using characters from the beginning of the alphabet, like
A, B, C. A variable that takes a predicate as its value is written n. A sequence
of predicates is often written using Greek symbols ¢,{. Finally, note that the
empty sequence is written e, for either the empty sequence of symbols or the empty
sequence of predicates.

8.1.3 Identities

Consider the following phonological rule (from (Karttunen, 1991)) in which an un-
derlying nasal segment N is mapped either to an m (if followed by a p) or an n:

N—m/_ p; elsewhere n

A transducer implementing this phonological rule can be illustrated as follows:

*

If infinite alphabets are allowed, then certain non-regular languages such as {0,1,...}* can be

recognized. A similar generalization of regular languages is used by (Perrin, 1990).
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N

This transducer contains a single start state 0, and two final states, O and 1.
First consider the cyclic transition on state O, labeled by the predicate N, i.e., the
predicate which is true of all symbols except the symbol N. As long as the transducer
does not read this special nasal segment N, it remains in state O and simply copies
its input. Upon reading an N, the transducer non-deterministically moves to state
1 or state 2, writing out an n or m respectively. In the first case, the next input
symbol cannot be a p; in the second case the next input symbol must be a p.

Note that the transition from state 2 to state O simply contains a p. The idea here
is that if the input and output symbol must be identical, only a single predicate is
written for that transition. The same abbreviation is used for the transition from
1 to O, as well as over the looping transition from O to O with predicate N. The
intention here of course is that every incoming segment which is not equal to N
should be mapped to itself in the output. However, note that this is quite different
from the pair of predicates N : N. The latter would map an incoming symbol to an
arbitrary output symbol, as long as both symbols are unequal to N.

The example illustrates an important point: if predicates are introduced in
transducers, then for typical examples we must also be able to express the identity
of input and output of a transition. In this example, if there were no way to express
the identity between input and output, then we would be forced to have multiple
transitions such as a:a, b:b, c:c, d:d for all of the relevant symbols; the intro-
duction of predicates can be exploited in transducers only if identity between input
and output can be expressed as well.

Expressing identity between input and output is crucial. This notion of identity
can be seen as a consequence of the linguistic principle of Faithfulness: corre-
sponding input and output segments tend to be identical. A similar argument is
expressed in (Gildea and Jurafsky, 1996). Indeed, many interesting transducers are
of the type ‘change all occurrences of « in some specific context into (3, and pass
on the rest of the input unaltered’. The various replacement and ‘local extension’
operators all produce transducers of this kind (Karttunen, 1995; Roche and Sch-
abes, 1995; Karttunen, 1996; Kempe and Karttunen, 1996; Gerdemann and van
Noord, 1999). Identities can be seen as a limited case of backreferencing. Back-
referencing is an extension of regular expressions widely used in editors, scripting
languages and other tools. A limited version of finite-state calculus backreferences
is discussed in (Gerdemann and van Noord, 1999).
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8.1.4 Smaller Automata

Another motivation for the introduction of predicates is the observation that the
resulting automata are smaller. The size of automata is an important problem
in practice (Daciuk, 1998; Kiraz, 1999). With predicates, potentially large sets of
transitions are replaced by a single transition. For example, if an automaton has
transitions from state p to state q over all ASCII symbols except for a symbol a,
for which there is a transition from p to r, then there are 128 transitions leaving p.
Using predicates, there are only two transitions leaving p (one labeled by a predicate
{a}, and one labeled by {a}). But note that similar space reductions can be achieved
using failure transitions and related techniques (Kowaltowski, Lucchesi, and Stolfi,
1993; Kiraz, 1999; Daciuk, 2000a; Klarlund, 1998).

More interesting space reductions can be achieved in the case of transducers.
The introduction of predicates with identity not only leads to transducers with fewer
transitions, but also to transducers that have fewer states. This observation will be
discussed in section 8.3.7. In section 8.4.2 we show that this space reduction is
achieved for linguistically relevant examples too.

The implementation of various operations is faster for smaller automata. Al-
though the implementation of some of the relevant operations becomes somewhat
more complex, it is our experience that in almost all cases overall performance
improves considerably.

8.1.5 Determinization of non-functional transducers

We show below that the introduction of predicates has the interesting effect that
certain non-functional transducers can be treated by the transducer determiniza-
tion algorithm (Oncina, Garcia, and Vidal, 1993; Reutenauer, 1993; Mohri, 1996;
Roche and Schabes, 1995; Roche and Schabes, 1997b). Therefore a larger class of
transductions can be implemented efficiently.

8.1.6 Previous Work

A possible implementation of the question mark operator is the introduction of a
special symbol ? in finite state automata.? This special symbol is understood as
‘any alphabet symbol not mentioned in the automaton’, in order to translate ex-
amples such as ?-a. This technique requires that each question mark operator is
expanded into the set of symbols occurring in the regular expression as a whole.
This solution (implemented in a previous version of the FSA Utilities (van Noord
and Gerdemann, 2000) and in xfst, the Xerox regular expression compiler (Kart-
tunen et al., 1996)) therefore leads to a proliferation of transitions. For example,
the expression (a..z - ?— d) would result in an automaton with 52 transitions: 26
transitions from the initial state to an intermediate state for each of the letters of
the alphabet and 26 transitions from this intermediate state to a final state for each

2Note that in such an implementation, the regular expression operator ? (any symbol) is not to be
confused with the special symbol in automata ? (any symbol not occurring in the automaton).
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of the letters except ‘d’, as well as for 2.3

The idea to allow predicates on transitions instead of symbols is also mentioned
in (Watson, 1999a) and (Watson, 1999b). The details of this proposal, however, are
not given. Apparently, in Watson’s proposal predicates potentially inspect arbitrary
parts of the input, and consume arbitrary prefixes of the input; the resulting for-
malism is therefore much more powerful, and hence various closure and efficiency
properties are not applicable. In contrast, for the type of predicates proposed here,
these attractive properties in fact are applicable, as is shown in the remainder of
the article.

8.1.7 Overview

In the next section, predicate-augmented finite state recognizers are introduced,
and it is shown how various operators and algorithms can be generalized. In sec-
tion 8.3 predicate-augmented finite state transducers are introduced. We show
that operations such as composition can be implemented straightforwardly; in ad-
dition we show how the transducer determinization algorithm can be generalized.
The generalization leads to the definition of predicate-augmented finite state trans-
ducers with a bounded queue; the queue is required to be able to treat identities
correctly. It is shown that this device allows a more compact representation of some
finite-state transductions than the classical model. In section 8.5 we discuss some
open problems and directions for future research.

8.2 Finite State Recognizers with Predicates

8.2.1 Definition

A predicate-augmented finite state recognizer (pfsr) M is specified by (Q, X, IT,E, S, F)
where Q is a finite set of states, X a set of symbols, IT a set of predicates over L, E a
finite set of transitions Q x (TTU{e}) x Q. Furthermore, S C Q is a set of start states
and F C Q is a set of final states.

The relation E C Q x Z* x Q is defined inductively:

1. forall q € Q, (q,€,q) € L,

2. for all (p,€,q) € E, (p,€,q) € E,

3. for all (qo,7, q) € E and for all ¢ € X, if (o) then (qo, 0,q) € E
4. if (qo,x1,q1) and (qq,x2, q) are both in E then (o, x1%2,q) € E

The language L(M) accepted by M is defined to be {w € Z*[qs € S,q¢ € F, (ds, W, d¢) €
E}.

A pfsr is called e-free if there are no (p,€,q) € E. For any given pfsr there is an
equivalent e-free pfsr. It is straightforward to extend the corresponding algorithm
for classical automata. Without loss of generality we assume below that pfsr are
e-free.

SHere we assume that we are not explicitly representing states which are not co-accessible, i.e. for
which there is no path to a final state.
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8.2.2 Properties

It is clear that in the case of recognizers, the addition of predicates is of limited
theoretical interest. Let M€ be a classical finite automaton (Q,X,E,S,F) with Q a
finite set of states, L a set of symbols, S C Q the set of start states, F C Q the set of
final states and E a finite set of transitions Q x £ x Q. Furthermore, let s(p, q) be the
set of symbols on transitions from p to q, i.e., s(p,q) = {ol(p, 0,q) € E}. If M€ is such
a (minimal) finite automaton then clearly the equivalent (minimal) pfsr is given by
(Q,%,2%, E/,S,F) where E/ = {(p,s(p,q),q)|(p,s,q) € E}. The construction in the other
direction is similar.

The pfsr device typically is more compact in the number of transitions than an
equivalent finite automaton. In the worst case, however, the number of transitions
is the same (if it is the case for all states that its outgoing transitions have different
target states for each symbol). In the best case, the number of transitions is reduced
by a factor of |Z|.

8.2.3 Operations on recognizers

Since predicate-augmented finite state recognizers are equivalent to ordinary finite-
state automata, the class of languages defined by psfir is closed under the the usual
regular operations such as union, concatenation, Kleene-closure and reversal. From
a practical point of view, however, it is interesting to note that it is trivial to gen-
eralize the corresponding constructions for classical finite state automata (cf. for
instance (Hopcroft and Ullman, 1979)). This means that the various constructions
can be implemented directly, without the need to expand into ordinary finite au-
tomata first, which is impractical for large alphabets.

Intersection

An important and powerful operation is intersection. In the classical case, an au-
tomaton for the intersection of the languages defined by two given automata M;
and M, is constructed by considering the cross product of states of M; and M,. A
transition ((p1,p2),0,(q1,q2)) exists iff the corresponding transition (p1, 0, q) exists
in My and (p2,0,q2) exists in M;. In the case of pfsr a similar construction can
be used, but instead of requiring that the symbol o occurs in the corresponding
transitions of M| and M,, we require that the resulting predicate is the conjunction
of the corresponding predicates in M; and M;,. The same technique is described in
(Walther, 1999).

Given e-free pfsr M; = (Qq,L,IT,E4,S¢,F1) and M, = (Qa, X, 1T, E», S», F2), the inter-
section L(M)NL(M;) is the language accepted by M = (Q1x Q2, L, TT,E,S1 xS, F1 xF2)
and E ={((p1,d1), ™11 A7z, (p,d))l(p1,m,P) € Eq,(d1,72,49) € E2}.

Determinization

An e-free pfsr is deterministic if there is a single start state, and if for all states
g € Q and symbols o € X there is at most one transition (q,m, q’) such that n(o). If
a pfsr M is deterministic then checking whether a given string w is accepted by M
can be implemented efficiently: linear in w, and independent on the size of M.
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A determinization algorithm (Aho, Sethi, and Ullman, 1986; Hopcroft and Ull-
man, 1979; Johnson and Wood, 1997) maintains subsets of states. Each subset
is a state in the deterministic machine. To compute the transitions leaving a given
subset D, a determinization algorithm computes for each symbol ¢ € X the set of
states Q such thatp € D,q € Q and (p,o0,q) € E.

In the case of predicates, however, transitions might overlap. For example, one
transition may be applicable for high vowels, whereas another transition may be ap-
plicable for round vowels. In the determinized pfsr, such overlaps are not allowed.
Therefore, we create a separate transition for high and round vowels, another tran-
sition for vowels which are high but not round, and a third transition for vowels
which are round but not high.

In general, in order to compute the transitions leaving a given subset D we do as
follows. Firstly we compute the function TransP: 1T — 29, defined as: Trans®(n) =
{qg € Qlp € D, (p,m,q) € E}. For example, suppose D = {p}, and suppose we have
transitions

E={ (p,m,4d1),(p,m,4d2), (p,7m2,42), (p, 72, 43),
(p,72,4d4), (p,73,4d3), (P, 73,d5)}
In that case:

Trans®(m;) = {q1, 92}, Trans®(n2) = {q2, 43, 44}, Trans®(n3) = {q3, q5}

Let T’ be the predicates in the domain of TransP. For each split of I’ into two
subsets 717 ...m; and 7y ... 7T, We have a transition:

(D,m A ... AT A—mq A... =, Trans®(m) U... U Trans®(m))

for the example we obtain the transitions:*

( D, mAmAn3,  {d1,492,43,94,d5}

)
( D, mAmA-m3, {91,92,93,94} )
( D, mA-mAms, {d1,d2,d3,a5} )
( D, mA-mA-n;s, {d1, 492} )
( D, —mAmAng, {d2,4d3,q4,95} )
( D, —mAmA—-n;3, {d2,4q3,d4} )
( D, —mA-mAmn3, {q3,as} )
( D, -7 /\ﬁT[z/\ﬁT[g, @ )

Complementation

If the determinizer also maintains the empty subset of states (cf. the last line in the
previous example), then the resulting determinized automaton is complete: for each
state a transition is applicable for each symbol of the alphabet. This property is
important in order to define complementation. If an automaton M; with final states
F C Q is deterministic and complete, then an automaton accepting the language
L(M;) is obtained from M simply by replacing F with Q —F.

As usual, the difference operation is defined straightforwardly in terms of com-
plementation and intersection: if A and B are regular languages, then A — B is
defined as A A B.

4An implementation might choose to ignore transitions for which the corresponding predicate is
not satisfiable.
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Minimization

In Hopcroft’s minimization algorithm (Hopcroft, 1971; Aho, Hopcroft, and Ullman,
1974b) a situation arises very similar to the determinization case. In this minimiza-
tion algorithm, a partition of states is repeatedly refined by considering a pair of
state and symbol which might reveal that an existing subset must be split. Rather
than considering a pair of state and symbol, we consider in the generalization a pair
of state and ‘exclusive’ predicate. As in the determinization algorithm we therefore
need to consider all boolean combinations over the predicates present on a given
state. In the actual implementation, we re-use the additional code required for the
determinization algorithm in the implementation of the minimization algorithm.

The generalized minimization algorithm produces a pfsr that is minimal in the
number of states. However, the pfsr is not necessarily unique, and could also be
non-minimal in the number of transitions. This is caused by the fact that the
predicates used in the pfsr might not be sufficiently general. For example, the
language {a, b, c} can be presented with a 2-state automaton with a single transition
labeled € {a, b, c}, but e.g. also with a 2-state automaton with two transitions labeled
respectively by € {a,b} and € {c}. Therefore, the minimization of a pfsr includes a
final cleanup step in which for each pair of states p and q all transitions from p to q
with labels 77 ... are combined into a single transition from p to q with associated
label 71y V...V m. It turns out that in the case of transducers, the corresponding
cleanup operator is more difficult, as we discuss in section 8.5.1.

8.3 Transducers with Predicates and Identities

8.3.1 Definitions

A predicate-augmented finite state transducer (pfst) M is a tuple (Q,X,IT,E,S,F)

with Q a finite set of states, X a set of symbols, IT a set of predicates over L. As

before, S and F are sets of start states and final states respectively. E is a finite set

Q x (TTU{e}) x (TMMu{e}) x Q x {0,1}. The final component of a transition is used to

indicate identities. For all transitions (p, d,r, q,1) it must be the case that d = # .5
We define the function str from TTU {e} to 2*".

str(e) = {e}
str(m) ={o € X|n(0)}

If m € TT and str(n) is a singleton set, then the transitions (p,mn,m, q,i) where
ie{0,1} are equivalent.
The relation E C Q x £* x £* x Q is defined inductively.

1. for all p: (p,€,€,p) € E.

~

2. for all (p,$,,q,0) € E,x € str(d),y € str(): (p,x,y,q) € E.

3. for all (p,m,mq,1) € E, x € str(m): (p,x,x,q) € E.

®Note that without loss of generality we assume that there is no separate input and output alpha-
bet, nor separate sets of predicates for input and output.
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~

4. if (qo,x1,Y1,d1) and (q1,x2,Y2, q) are both in E then (qo, x1x2,Y1Y2,q) € E

The relation R(ML accepted by a pfst M is defined to be {(wg,wy)lqs € S,qf €
Fa (qsawdaw‘r‘a qf) S E}

8.3.2 Operations on transducers

It is immediately clear that if X is finite, a pfst defines a regular relation. Therefore,
the relations defined by a pfst are closed under various operations such as union,
concatenation, Kleene closure and composition. From a practical point of view, it is
important to note that it is possible to adapt the constructions for classical trans-
ducers for pfst.

The introduction of predicates over symbols is straightforward for operations
such as union, concatenation, Kleene closure and cross-product. The identity and
composition operations are described now as follows.

Identity

The identity relation for a given language L is id(L) = {(w,w)lw € L}. For a given pfsr
M = (Q,L,TI,E, S F), the identity relation is given by the pfst M’ = (Q, X, TT,E’, S, F).
Note that it would be wrong to define £/ = {(p,n, 7, q,0)|(p,77,q) € E}. Suppose
nt is true only of o7,0,. The pair 7 : m then would be true of the pairs of sym-
bols {(o1,01), (01,02),(02,01),(02,02)}, whereas identity requires that we only allow
the pairs {(07,01),(02,02)}. Another example to stress the point: the expression
identity (?) (‘copy’) is quite different from ?:? (‘garbage-in garbage-out’). It is
therefore necessary to introduce an identity marker for each of the transitions. The
identity of a pfsr M = (Q,%,TI,E,S,F) is given by id(M) = (Q,L,TT,E’,S,F) where
' ={(p,m, 7 q,1)l(p,m,q) € EL

The operations domain, range and inverse are straightforward. For a given pfst
M =(Q,x,TT,E S, F), we have:

e domain(R(M)) is given by the pfsr M’ = (Q,L,TI,E’,S,F) where E' =
{(p,d,d)l(p,d,¥,q,1) € EL

e range(R(M)) is given by the pfsr M’ = (Q,% I,E/,S,F) where E/ =
{(p, ¥, a)llp,$,¥,q,1) € EL

e inverse(R(M)) is given by the pfst M’ = (Q,%L,T,E',S;F) where E/ =

{(p)ll))d)) q’i)|(p)¢ylb)qai) E E}'

Composition

The composition of two binary relations is Ry oRy = {(x1,x3)|(x1,%2) € Ry, (x2,x3) € Ra}.
The composition operation is perhaps the most important operation on transduc-
ers. Its implementation is similar to the intersection operation for recognizers. In
the classical case, a transducer for the composition of two given transducers M;
and M, is constructed by considering the cross product of states of M; and M,.
A transition ((p1,p2),04,0r (q1,q2)) exists iff there is some o such that the corre-
sponding transition (pi, 04,0, q) exists in M; and (p3, 0, 0y, q2) exists in M. In the
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case of pfst a similar construction can be used, but instead of requiring that the
output part of a transition in M; is identical to the input part of a transition in M,,
we now merely require that the conjunction of both predicates is satisfiable. In the
case of identities, some further complications arise. The effect of combining two
transitions is defined by means of the function ct that takes two transitions and
returns a new transition:

(p1,p2), M1 Az, Az, (di1,4q2),1)
(p];pZ))d))Tﬁ /\7T2,(Q1,C|2],0)
(p]apZ))T[1 Aﬂz,ﬂ),(QI,QZ),O)

(p] 1p2)) d))Ll)) (q] ) qZ))O)
if satisfiable(rt; A m3)

1,7, 7,41, 1), (2,2, 72,42, 1)) =
1, $,m,41,0), (p2,72,m2,d2,1)) =
P1, 71,1, d1, 1), (P2, 72,%,42,0)) =
P1, b, 71, 41,0), (p2, 72, ¥, q2,0))

—_—~ —~

ct((
ct((
ct((
ct((

Note that this function is not defined in case either the input part of the second
transition or the output part of the first transition is e. These cases are treated
separately in the definition below. Given two pfst M| = (Qq, X, TT, E,S1,F1) and M, =
(Q2, X,TT E2, S2, F2), the relation R(M 1) o R(M;) is defined by M = (Q x Q2, X, TT, E, S1 x
S,, F1 x F,) where

E= {ct(er,ez)ler € Eq,ep € Ep}
U {((p1,p2),6,¥,(P1,492),0)lp1 € Q1, (P2,€,¥,q2,0) € E2}
U {((p])pZJad)aea (q]’pZ))0)|p2 S QZ’ (’Pbd)»e» QI,O) S E1}

8.3.3 Determinization of Transducers

We will call a pfst M deterministic if M has a single start state, if there are no
states p,q € Q such that (p,e,,q,1) € E, and if for all states p and symbols o
there is at most one transition (p,mg,V,q,1) such that m4(o). The transduction of
an input string by means of a deterministic pfst is simple: in going through the
input from left to right, you know exactly in which state you are (so there is no
backtracking; alternatively if a parallel implementation is considered, there is no
need to maintain a number of states linear in the size of the transducer). If a pfst M
is deterministic then computing the transductions of a given string w as defined by
M can be implemented efficiently. This computation is linear in w, and independent
on the size of M. Since w can have several transductions (unless M is functional),
we assume that this computation constructs a pfsr accepting {w’|(w,w’) € R(M)}.6
In order to extend the determinization algorithm for transducers (Oncina,
Garcia, and Vidal, 1993; Reutenauer, 1993; Mohri, 1996; Roche and Schabes,
1995; Roche and Schabes, 1997b), we must extend pfst in such a way that the
output part of a transition is a sequence of predicates. This extension is described
later, but first we illustrate some of the complications that arise. For the moment
we will simply assume that the output part of a transition contains a sequence
of predicates. We first create an equivalent pfst which has no € on the domain
part of transitions, using the same technique as described in (Roche and Schabes,

5As is well-known, not all finite-state transductions can be encoded by a deterministic transducer.
As an example, a transduction which maps every a to a b if the input is of even length, and which
maps every a to itself otherwise is a finite-state transduction, but cannot be encoded deterministically.
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1997b, page 29).” In the determinization algorithm, local ambiguities such as those
encountered in state 0 in (here, A. . . F are arbitrary predicates < I1):

d@<@\@_‘ -

are solved by delaying the outputs as far as needed, until these symbols can be
written out deterministically:®

BA—C:ED

_)@ Ae - —B/\C:FD o A:A @) i

BAC:(EVF)D

The determinization algorithm for transducers maintains sets of pairs Q x IT*.
Such a set corresponds to a state in the determinized transducer. In order to
compute the transitions leaving such a set of pairs P, we compute for each m,
Trans”(m) = {(q, dp¥)|(p, d) € P, (p, 7,1V, q) € E}. In the example, we can be in states 3
and 4 after reading a symbol compatible with A, with pending outputs E and F. We
thus have P = {(3,E), (4,F)}. Therefore, we have:

Trans'(B) = {(2,ED)}, Trans"(c) = {(2,FD)}
Let TT/ be the predicates in the domain of Trans”. For each split of 1T’ into ;.
and 741 ... T, we have a proto-transition:

(P A . ATA=T g AL .. A=, Trans” () U ... U Trans® (m;))

In the example, we have the following proto-transitions (we need not represent the
() state):

( P, BA—C, {(2,ED)} )

( P, “BAC, {(2,FD)} )

( P BAcC, {(2,ED),(2,FD)} )

A transition is created from a proto-transition by removing the longest com-
mon prefix of predicates in the target pairs; this prefix is the sequence of output
predicates of the resulting transition. However, before we remove this longest com-
mon prefix, we first consider possible simplifications in the sequences of output

"We represent emissions associated with final states, as they surface in the determinization algo-
rithm below, using an extra transition with e as the domain part. We thus allow transitions (p, €, 1V, q)
only in case q is a final state and there are no transitions leaving q.

8By ‘writing out deterministically’ we mean writing out with a deterministic state transition. Such
‘deterministic’ outputs may still in the end be rejected if for some input, the machine ends in a
non-final state.
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predicates, by packing multiple sequences associated with the same target state
into a smaller number of sequences (using disjunction). In particular, two pairs
of target state and predicate sequences (p,V) and (pz,¥2) can be combined into
a single pair (p,¢) iff py =po =pand Py =m...m... 7T, Y = m...7... 71, and
Y =m...m V... m. Ina proto-transition this simplification is applied repeatedly
until no further simplifications are possible.

Here, the third proto-transition is simplified into:

( P, BAC, {(2,(EVF)D)} )

Moving the longest common prefix into the output part of the label yields:

( P, B/\—C:ED, {(2,¢)} )
( P, —B/\C:FD, {(2,¢e)} )
( P, BAC:(EVF)D, {(2,¢€)} )

The introduction of predicates thus has the interesting effect that certain non-
functional transducers can be treated by the transducer determinization algorithm.
Assume that B is the predicate {x, vy}, C is the predicate {y, z} and the predicates a,
D, E and F are true only of the symbols a, d, e and f respectively. The equivalent
normal transducer is:

This transducer cannot be treated by the transducer determinization algorithm
(that algorithm does allow a limited form of ambiguity, but only if this ambigu-
ity can be delayed to a final state; here this is not possible). However, the same
transduction can be determinized if expressed by a pfst:

xied

ae z:fd a:a
_>@ 1 2) @ a:a
w

If predicates are used, then a larger class of transductions can be implemented
efficiently. A precise classification of this class is beyond the scope of this paper, but
note that the type of ambiguities that can be implemented in this way is limited to
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ambiguities that extend only over a single symbol.® For instance, a simple example
such as the following cannot be determinized:

8.3.4 Determinization and identities

To treat identities, we must assume in the definition of proto-transition that if one
of the positively occurring predicates in the boolean combination is associated with
an identity, then the resulting predicate is associated with an identity as well. As an
example consider the following transducer. For simplicity we assume B and ¢ are
mutually exclusive predicates; as before ? is a predicate which is true of all symbols.
Also, we write (A):(A) for a transition A:A with an associated identity constraint.

2):(? 2):(?
(0:0) o, #):()

©)

Determinization produces:

B:B(?)(?)B

. 7): ?):
—0 00— =0

c:c(?(?)c

Outputs associated with an identity are delayed like ordinary outputs. Gener-
alizing an idea due to Tamas Gaal and Lauri Karttunen!® transducers with such
disconnected identities are interpreted as follows. During the transduction of a

90f related interest is the approach of (Kempe, 2000). He shows that ambiguous transductions
can be computed efficiently by factorizing an ambiguous transducer T into a functional transducer
T; and an ambiguous transducer T, such that T is equivalent to T; o T, and such that T, contains no
‘failing paths’. In typical cases, Ty contains meta-symbols which are expanded in T,. This approach
is more general in the sense that these meta-symbols range over sequences of symbols, rather than
single symbols. It is more limited in the sense that identities cannot be expressed.

personal communication
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string, a queue is maintained. Each time an input symbol is matched by a predi-
cate with an associated identity, this symbol is enqueued. If a symbol matched by
the corresponding predicate on the output side has to be written, then that symbol
is obtained by a dequeue operation. With this use of a queue, our method for inter-
preting a transducer is no longer finite state. The transducer itself, however, still
encodes a regular transduction.

A complication arises in cases like:

What sequence of output predicates should be put on the position of the *? Accord-
ing to the definitions, we get CE. However, this is not right because then there is a
path 0 — 3 — 4 — 1 which has an identity on the input side without a correspond-
ing identity on the output. Embedding such examples would lead to transducers
in which identities are ‘out of sync’. The determinization algorithm is therefore
extended by marking in the output part that the scope of an identity ends; pro-
cedurally such a mark is interpreted as a dequeue operation which ignores the
dequeued value. We write such a mark as (). In the example the sequence of out-
puts X becomes CE(). In the definition of proto-transition, if at least one of the
positively occurring m, has an associated identity then we append a () mark to each
of the outputs Trans”(m) for which m; was not associated with an identity.

8.3.5 Finite State Transducers with a bounded Queue

We are now ready to define predicate-augmented finite state transducers with a
bounded queue. A predicate-augmented finite state transducer with queue (qpfst)
M is a tuple (Q,X,TT,E,S,F) with Q a finite set of states, £ a set of symbols, 1T a
set of predicates over L. As before, S and F are sets of start states and final states
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respectively. E is a finite set Q x ((ITU{e}) x {0,1}) x ((TTU{A}) x {0, 1}H)* x Q.

In a transition, each predicate is associated with a queue marker, which is one
of {0,1}. On the input side, 1 will imply an enqueue operation of the symbol match-
ing the predicate; on the output side 1 will imply a dequeue operation of the symbol
matching the predicate. In the input part of the transition, e can be used as well,
in which case the queue marker must be O (input epsilons will be employed to
represent outputs associated with initial and final states). In the output part of
a transition we can have A instead of a predicate, in order to represent the ex-
plicit dequeue operations motivated earlier. We require that every A must have a
corresponding queue marker which is 1.

The relation O : ((TTU{A}) x{0,1})* x Z* x £* x £* determines the effect of the output
part of a transition. Its arguments represent respectively the output sequence of
a transition, the (incoming and outgoing) queues, and the resulting output string.
Note that queues are written from left to right in such a way that an element is
enqueued to the left and dequeued from the right.

1. for all x € L* we have (¢,x,x,¢e) € O
2. if (¢, x0,x,z) € O then for all 0 € £ we have ((A, 1), xp0,%,z) € O

3. if ($,x0,%x,z) € O then for all 0 € £ and 7 € 1T such that 7(o) we have
(7, 1), x00,%,0z) € O

4. if ($,x0,%x,z) € O then for all 0 € £ and © € 1T such that 7n(o) we have
((T(,O)(l),X(),X, GZ) €O

The relation E C QxI*xX*xQxX*xX*is arelation between source states, se-
quences of input symbols, sequences of output symbols, target states, and source-
and target queues. It is defined inductively.

1. forallp € Q, (p,e,€,p,€,€) € E.

2. for each transition (p,(€,0),¢,q) € E such that (d,xo,x,w) € O,
(p)e)w?q)XO)X)EE

3. for each transition (p,(m,0),¢,q) € E such that n(o) and ($,xo,x,w) € O,
(p‘G,W,q»XO»X) € k.

4. for each transition (p,(m,1),¢,q) € E such that n(o) and (¢, oxp,x,w) € O,
(p‘G,W,q»XO»X) € k.

5. if  (do,x1,y1,d1,%0,x1) _and  (q1,%x2,Y2,9,%1,x) are both in E then
(do,x1%2,Y1Y2,4,%0, %) € E

The relation R(M) gccepted by a gpfst M is defined to be {(wgq,w,)|qs € S,q¢ €
F (ds,wq, Wr, ds,€,€) € E}L.

Such gpfst are generally very powerful. However, the qpfst which result from
the generalized transducer determinization algorithm are all limited. Not only are
these transducers deterministic by construction, but they are also limited in the
way the queue is actually used: in each case the maximum size of the queue is
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some constant. And of course, since the input was a finite-state transducer, the
resulting equivalent qpfst describes a finite-state transduction too. Another way to
characterize this limited use of gpfst is to observe that in such cases every cyclic
path through such a transducer will have identical input and output queue: the
queue is only used in a strictly local sense.

The ordinary transducer determinization algorithm is guaranteed to terminate
only if the input transducer can be determined, i.e., the transducer must be sub-
sequential. A separate algorithm exists to check a given transducer for subse-
quentiality (section 8.5.2). The same termination property holds for the generalized
transducer determinization algorithm. If the generalized transducer determiniza-
tion algorithm terminates for a given pfst, then the result is an equivalent deter-
ministic qpfst. The application of a determinized (potentially non-functional) qpfst
T to a given string w is linear in the size of w, and independent of the size of T.

8.3.6 Synchronization

Operations such as composition are defined for pfst. Therefore, we have imple-
mented an operator which transforms a given bounded qpfst back into pfst by
synchronizing the identities. Of course, the resulting pfst will generally not be de-
terministic anymore.

The synchronization is implemented by an algorithm which maintains an
agenda of ‘synchronous states’ (initialized by the set of start states). For each state
on the agenda minimal synchronous paths are generated. The target states of these
paths are added to the agenda, and these paths themselves are broken into pieces
such that each piece is synchronous (by introducing transitions with € on the input
or output side).

8.3.7 Succinctness

Predicate-augmented finite state transducers typically require fewer transitions
than classical finite state transducers, by an argument similar to that for pfsr. In
the case of predicate-augmented pfst with bounded queue, however, the number of
states can often be much smaller than the number of states in an equivalent, clas-
sical, sub-sequential transducer. Consider again the first example in section 8.3.4.
Application of our variant of Mohri’s determinization algorithm yields a transducer
of 5 states and 5 transitions, repeated here for convenience:

B:B(?)(?)B

. 2): ?):e
—00—0— 0 =0

c:c(H(?c

Suppose we were to expand this example into a classical subsequential trans-
ducer, then depending on the size of the alphabet, the resulting transducers would
have many more states. The example for the alphabet {x, y, z} with 15 states and
31 transitions is given in figure 8.1; for an alphabet of 26 symbols, the result al-
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o

\\g/%

:bxxb c:cxxc

o

:bxyb c:cxyc

o

:bxzb c:cxzc

o

:byxb c:cyxc

:byyb c:cyyc

o

:byzb c:cyzc

o

:bzxb c:czxc

o

:bzyb c:czyc

o

:bzzb c:czzc

TITTTITT0

Figure 8.1: A minimal subsequential transducer without predicates. The equivalent
minimal transducer employing predicates only has 5 states and 5 transitions.

ready has 705 states and 2055 transitions. For an alphabet of 254 symbols, the
result has 64773 states and 193803 transitions. Instead of having two question
marks on the input side in a row, consider similar examples where we have k such
question marks in a row:

__»(§> i <§> - . 7 24k (:)

In these cases, the minimal gpfst will have 3 + k states. The equivalent minimal
subsequential transducer will require 3+ |Z|+|X[2+...+|Z|* states. An analysis of the
difference in succintness in terms of descriptional complexity (e.g. (Dassow, Paun,
and Salomaa, 1997)) is beyond the scope of this article; but this class of examples
suggests that there are arbitrarily many relations for which the qpfst device requires
exponentially fewer states than subsequential transducers.

8.4 Practical Considerations

Predicate-augmented finite state automata are fully integrated in version
6 of the Fsa Utilities toolbox. The toolbox is freely available from
http://www.let.rug.nl/ vannoord/Fsa/. In addition, some of the algorithms
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have been implemented in C++.

8.4.1 Membership and Non-membership Predicates

In practice, we have mostly assumed that all predicates are of the form € S and
¢ S for arbitrary finite sets of symbols S. The non-membership predicates are very
useful to specify in a compact form large (potentially infinite) sets of symbols. A
boolean combination of membership and non-membership predicates can always
be written in this form, as the following table shows:

P Q -P PAQ PVQ
€Sy €S, ¢S1 €S1nNS;, €S,US,

€St ¢S €S1—S2 ¢S,— 53
¢S1 ESZ ES] GSZ—S] Q_fS]—Sz
¢S1 ¢S2 ¢£S2UST ¢€S1NS2

In the implementation, any boolean combination of predicates that occurs is
immediately rewritten into this atomic form. Determining whether a symbol satis-
fies a predicate is trivial. Determining satisfiability of an atomic formula is trivial
too: the only atomic formula that is not satisfiable is € (). The actual computa-
tion thus involves standard operations on sets: membership, union, intersection
and difference. The implementation provides three alternative implementations, by
representing sets as ordered lists, bit vectors or balanced binary trees.

The system also supports the addition of various application-specific predicate
sets. There are various possibilities here. For instance, predicates could be ex-
pressed in terms of type hierarchies as in (Carpenter, 1992). Another possibility is
a predicate module in which predicates are membership tests of regular languages.
A syntax component could be implemented by a pfsr in which predicates describe
words. These predicates themselves might be implemented by finite automata over
character strings. If predicates get complicated, the efficiency of checking such
predicates may become important.

8.4.2 Smaller Transducers

The operations on predicate-augmented finite state recognizers and transducers
discussed here have been fully implemented and integrated in a finite state toolkit.
Although the implementation of these operations is more involved than for normal
automata it turned out that the introduction of predicates has improved perfor-
mance considerably, because automata are smaller.

For example, consider the soundex algorithm expressed as a regular expression,
presented at the Xerox web-site.!! The soundex algorithm maps proper names to
four-letter codes, where ‘similar’ names are assigned the same code. This algo-
rithm can be used to match names that are misspelled, for instance due to poor
handwriting or voice transmission; similar problems occur in historical archives.
A description of the algorithm and some historical remarks are given in (Knuth,
1998). The compilation of the soundex regular expression yields a transducer with

Uhttp://www.rxrc.xerox.com/research/mltt/fst/fsexamples.html



Algorithms for Linguistic Processing 183

ere((a,e,i,o,u))

a:a({a,e,i,0,u})a

({a, e}>:e<{a, e, j—r O, u})({a, e}>

ee{fa,e,1,0,u})

Figure 8.2: A minimal transducer with predicates implementing the phonological
rule e — a/_C a. The equivalent minimal transducer without predicates has 24
states and 620 transitions.

1217 transitions. By design, the soundex algorithm treats various classes of char-
acters identically. Using predicates for each of these classes yields a transducer
with 198 transitions. The construction is four times faster as well. Depending on
how predicates are implemented, running the resulting transducer might be slower.
In our experiments these effects were not noticeable.

The observation that the use of predicates generally leads to transducers with
fewer states can be observed in practically relevant examples as well. Consider the
following hypothetical phonological rule:

e—a/_C a

This rule indicates that an e should be mapped to an a if it is followed by a conso-
nant and an a. Assuming an alphabet consisting of 5 vowels and 21 consonants,
the corresponding minimal transducer for this example consists of 24 states and
620 transitions. If predicates are used, the resulting automaton only has 4 states
and 10 transitions (cf. figure 8.2).

8.5 Future Work

8.5.1 Minimization

The minimization algorithm for transducers (Mohri, 1994; Mohri, 2000) can be ap-
plied to a bounded qpfst without modifications. The transducer minimization algo-
rithm consists of two steps. In the first step, all output symbols are moved into pre-
ceding transitions as much as is possible. This is done by computing for each state
the longest common prefix of the outputs associated with all paths from that state
to a final state. The second step of the transducer minimization algorithm consists
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of the application of ordinary recognizer minimization to the resulting transducer,
temporarily treating the labels as atomic symbols.

The application of the transducer minimization algorithm to a bounded qfst
might result in a gpfst with identities in which the output has to be produced
before the corresponding input symbol has been observed. The queue-mechanism
can be generalized to treat such cases as well. We use an implementation of queues
described in (Sterling and Shapiro, 1994, page 299) in which an element can be de-
queued before it is enqueued. The output is a variable temporarily; obviously this
requires output to be buffered. We implemented this both in Cc++ as well as in
Prolog.

However, applying the transducer minimization algorithm in this way does not
neccessarily produce a minimal gpfst. One problem is that in the transducer mini-
mization algorithm, the final step consists of an application of the recognizer mini-
mization algorithm in such a way that the labels of the transducer are temporarily
treated as unanalyzable atoms. This works in the case of ordinary transducers,
but is not good enough for our purposes. The following example illustrates this
particular problem.

(@):(@) (a):(a)

o

{o):(b)
(la,pj):(la, b))

The transduction implemented by this transducer is simply the identity relation
over X*. However, the application of the transducer minimization algorithm will
produce an identical transducer, rather than the minimal one.

In the implementation in the Fsa Utilities we have constructed a variety of
heuristics, which includes a generalization of the transducer minimization algo-
rithm, in order to reduce the size of deterministic transducers. In most practical
cases, the heuristics produce a minimal transducer.

8.5.2 Subsequentiality and Bi-machines

Recall that the transducer determinization algorithm is guaranteed to terminate
only in case the input transducer can be determinized, i.e., the transducer de-
scribes a subsequential transduction. Therefore, it is important to implement an
algorithm which checks for this property. We are working on an algorithm to check
subsequentiality of a given pfst, based on the algorithm presented in (Roche and
Schabes, 1997b). We have adapted the algorithm proposed in (Roche and Schabes,
1997b) since it fails to treat certain types of transducer correctly; we intend to
provide details somewhere else.

A further natural extension is the generalization of bi-machines and the related
algorithms to the case of predicates.



Chapter 9

Approximation and Exactness in
Finite State Optimality Theory

The research reported in this chapter is conducted in close cooperation with Dale
Gerdemann (University of Tiibingen).

9.1 Introduction

Finite state methods have proven quite successful for encoding rule-based gen-
erative phonology (Johnson, 1972; Kaplan and Kay, 1994). Recently, however,
Optimality Theory (Prince and Smolensky, 1993) has emphasized phonological ac-
counts with default constraints on surface forms. While Optimality Theory (OT) has
been successful in explaining certain phonological phenomena such as conspiracies
(Kisseberth, 1970), it has been less successful for computation. The negative result
of (Frank and Satta, 1998) has shown that in the general case the method of count-
ing constraint violations takes OT beyond the power of regular relations. To handle
such constraints, (Karttunen, 1998) has proposed a finite-state approximation that
counts constraint violations up to a predetermined bound. Unlike previous ap-
proaches (Ellison, 1994; Walther, 1999), Karttunen’s approach is encoded entirely
in the finite state calculus, with no extra-logical procedures for counting constraint
violations.

In this paper, we will present a new approach that seeks to minimize constraint
violations without counting. Rather than counting, our approach employs a filter
based on matching constraint violations against violations in alternatively derivable
strings. As in Karttunen’s counting approach, our approach uses purely finite state
methods without extra-logical procedures. We show that our matching approach is
superior to the counting approach for both size of resulting automata and closeness
of approximation. The matching approach can in fact exactly model many OT anal-
yses where the counting approach yields only an approximation; yet, the size of the
resulting automaton is typically much smaller.

In this paper we will illustrate the matching approach and compare it with the
counting approach on the basis of the Prince & Smolensky syllable structure ex-
ample (Prince and Smolensky, 1993; Ellison, 1994; Tesar, 1995), for each of the
different constraint orderings identified in Prince & Smolensky.
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[]

empty string

[E1,E2,...,En] concatenation of E1...En
{} empty language
{E1,E2,...,En} unionofEl...En
(E) grouping for op. precedence
E* Kleene closure
E+ Kleene plus
E” optionality
El - E2 difference
“E complement
S E containment
El & E2 intersection
? any symbol
El x E2 cross-product
A o B composition
domain (E) domain of a transduction
range (E) range of a transduction

identity (E)
inverse (E)

identity transduction?
inverse transduction

Table 9.1: Regular expression operators.

9.2 Finite State Phonology

9.2.1 Finite State Calculus

Finite state approaches have proven to be very successful for efficient encoding of
phonological rules. In particular, the work of (Kaplan and Kay, 1994) has provided
a compiler from classical generative phonology rewriting rules to finite state trans-
ducers. This work has clearly shown how apparently procedural rules can be recast
in a declarative, reversible framework.

In the process of developing their rule compiler, Kaplan & Kay also developed a
high-level finite state calculus. They argue convincingly that this calculus provides
an appropriate high-level approach for expressing regular languages and relations.
The alternative conception in term of states and transitions can become unwieldy
for all but the simplest cases.!

Kaplan & Kay’s finite state calculus now exists in multiple implementations,
the most well-known of which is that of (Karttunen et al., 1996). In this paper,
however, we will use the alternative implementation provided by the FSA Utilities
(van Noord, 1997b; van Noord, 1999; van Noord and Gerdemann, 2000). The FSA
Utilities allows the programmer to introduce new regular expression operators of
arbitrary complexity. This higher-level interface allows us to express our algorithm
more easily. The syntax of the FSA Utilities calculus is summarized in Table 9.1.

The finite state calculus has proven to be a very useful tool for the development
of higher-level finite state operators (Karttunen, 1995; Kempe and Karttunen, 1996;

!Although in some cases such a direct implementation can be much more efficient (Mohri and
Sproat, 1996; van Noord and Gerdemann, 2000).

2If an expression for a recognizer occurs in a context where a transducer is required, the identity
operation will be used implicitly for coercion.
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Karttunen, 1996; Gerdemann and van Noord, 1999). An interesting feature of most
such operators is that they are implemented using a generate-and-test paradigm.
(Karttunen, 1996), for example, introduces an algorithm for a leftmost-longest re-
placement operator. Somewhat simplified, we may view this algorithm as having
two steps. First, the generator freely marks up possible replacement sites. Then
the tester, which is an identity transducer, filters out those cases not conforming to
the leftmost-longest strategy. Since the generator and tester are both implemented
as transducers, they can be composed into a single transducer, which eliminates
the inefficiency normally associated with generate-and-test algorithms.

9.2.2 Finite State Optimality Theory

The generate-and-test paradigm initially appears to be appropriate for optimality
theory. If, as claimed in (Ellison, 1994), Gen is a regular relation and if each
constraint can be implemented as an identity transducer, then optimality theory
analyses could be implemented as in 9.1.

Gen
o
Constraintl
o

o
ConstraintN

Figure 9.1: Optimality Theory as Generate and Test

The problem with this simple approach is that in OT, a constraint is allowed
to be violated if none of the candidates satisfy that constraint. (Karttunen, 1998)
treats this problem by providing a new operator for lenient composition, which is
defined in terms of the auxiliary operation of priority union. In the FSA Utilities
calculus, these operations can be defined as:3

macro (priority_union (Q,R),
{Q, “"domain(Q) o R}).
macro (lenient_composition (S, C)
priority_union(S o C, S)).

The effect here is that the lenient composition of s and C is the composition of s and
C, except for those elements in the domain of s that are not mapped to anything by
S o C. For these elements not in the domain of S o C, the effect is the same as the
effect of s alone. We use the notation S 1c C as a succinct notation for the lenient
composition of S and C. Using lenient composition an OT analysis can be written
as in 9.2.

5The notation macro (Exprl, Expr2) is used to indicate that the regular expression Exprl is an
abbreviation for the expression Expr2. Because Prolog variables are allowed in both expressions this
turns out to be an intuitive and powerful notation (van Noord and Gerdemann, 2000).
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Gen
1lc
Constraintl
1lc
lc
ConstraintN

Figure 9.2: Optimality Theory as Generate and Test with Lenient Composition

The use of lenient composition, however, is not sufficient for implementing opti-
mality theory. In general, a candidate string can violate a constraint multiple times
and candidates that violate the constraint the least number of times need to be
preferred. Lenient composition is sufficient to prefer a candidate that violates the
constraint O times over a candidate that violates the constraint at least once. How-
ever, lenient composition cannot distinguish two candidates if the first contains one
violation, and the second contains at least two violations.

The problem of implementing optimality theory becomes considerably harder
when constraint violations need to be counted. As (Frank and Satta, 1998) have
shown, an OT describes a regular relation under the assumptions that Gen is a
regular relation, and each of the constraints is a regular relation which maps a
candidate string to a natural number (indicating the number of constraint viola-
tions in that candidate), where the range of each constraint is finite. If constraints
are defined in such a way that there is no bound to the number of constraint viola-
tions that can occur in a given string, then the resulting OT may describe a relation
that is not regular. A simple example of such an OT (attributed to Markus Hiller) is
the OT in which the inputs of interest are of the form [a*,b*], Gen is defined as a
transducer which maps all a’s to b’s and all b’s to a’s, or alternatively, it performs
the identity map on each a and b:

{[(a xb)*, (b xa)*l,
[(a x a)*, (b x b)*]}

This OT contains only a single constraint, *A: a string should not contain a.
As can easily be verified, this OT defines the relation {(a"b™ a"b™)n < m} U
{{a™d™, b™a™)/m < n}, which can easily be shown to be non-regular.

Although the OT described above is highly unrealistic for natural language, one
might nevertheless expect that a constraint on syllable structure in the analysis
of Prince & Smolensky would require an unbounded amount of counting (since
words are of unbounded length), and that therefore such analyses would not be
describable as regular relations. An important conclusion of this paper is that,
contrary to this potential expectation, such cases in fact can be shown to be regular.

9.2.3 Syllabification in Finite State OT

In order to illustrate our approach, we will start with a finite state implementation
of the syllabification analysis as presented in chapter 6 of (Prince and Smolensky,
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1993). This section is heavily based on (Karttunen, 1998), which the reader should
consult for more explanation and examples.

The inputs to the syllabification OT are sequences of consonants and vowels.
The input will be marked up with onset, nucleus, coda and unparsed brackets;
where a syllable is a sequence of an optional onset, followed by a nucleus, followed
by an optional coda. The input will be marked up as a sequence of such syllables,
where at arbitrary places unparsed material can intervene. The assumption is that
an unparsed vowel or consonant is not spelled out phonetically. Onsets, nuclei and
codas are also allowed to be empty; the phonetic interpretation of such constituents
is epenthesis.

First we give a number of simple abbreviations:

macro (cons,
{blcldlf’glhl jlklllmlnl
p,a,r,s,t,v,w,x,¥,2} ) .

macro (vowel, {a,e,o,u,1}).
macro (o_br, "O["). % onset
macro (n_br, 'N[’). % nucleus
macro (d_br, "D["). % coda
macro (x_br, "X["). % unparsed
macro (r_br, 1) .

(

macro (bracket,
{o_br,n_br,d br,x _br,r _br}).

macro (onset, [o_br,cons”™ ,r_br])
macro (nucleus, [n_br,vowel”™ ,r_br])
macro (coda, [d_br,cons”™ ,r_br])
macro (unparsed, [x_br,letter ,r_br])

Following Karttunen, Gen is formalized as in 9.3. Here, parse introduces on-
set, coda or unparsed brackets around each consonant, and nucleus or unparsed
brackets around each vowel. The replace (T, Left,Right) transducer applies
transducer T obligatory within the contexts specified by Left and Right (Gerde-
mann and van Noord, 1999). The replace (T) transducer is an abbreviation for
replace (T, []1,[]1),i.e. T is applied everywhere. The overparse transducer intro-
duces optional ‘empty’ constituents in the input, using the intro_each_pos operator.*

In the definitions for the constraints, we will deviate somewhat from Karttunen.
In his formalization, a constraint simply describes the set of strings which do not
violate that constraint. It turns out to be easier for our extension of Karttunen’s
formalization below, as well as for our alternative approach, if we return to the
concept of a constraint as introduced by Prince and Smolensky where a constraint

“An alternative would be to define overparse with a Kleene star in place of the option operator.
This would introduce unbounded sequences of empty segments. Even though it can be shown that,
with the constraints assumed here, no optimal candidate ever contains two empty segments in a row
(proposition 4 of (Prince and Smolensky, 1993)) it is perhaps interesting to note that defining Gen in
this alternative way causes cases of infinite ambiguity for the counting approach but is unproblematic
for the matching approach.
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macro (gen, {cons, vowel}*
o
overparse
o
parse
o
syllable_structure ).

macro (parse, replace([[] x {o_br,d _br,x _br},cons, [] x r_br])
o
replace([[] x {n_br,x_br}, vowel, [] x r_br])).

macro (overparse, intro_each_pos([{o_br,d br,n_br},r _br]”7)).
macro (intro_each_pos(E), [[ [] x E, ?2]*,[] x E]).

macro (syllable_structure, ignore ([onset”,nucleus,coda”], unparsed) *) .
Figure 9.3: The definition of Gen

adds marks in the candidate string at the position where the string violates the
constraint. Here we use the symbol @ to indicate a constraint violation. After
checking each constraint the markers will be removed, so that markers for one
constraint will not be confused with markers for the next.

macro (mark_violation (parse),
replace(([] x @),x _br,[]).

macro (mark_violation (no_coda),
replace(([] x @),d br,[]).

macro (mark_violation(fill_nuc),
replace(([] x @), [n_br,r brl,[]1)).

macro (mark_violation(fill_ons),
replace(([] x @), [o_br,r_brl,[]1)).

macro (mark_violation (have_ons),
replace(([] x @), [],n_br)
o
replace((@ x []),onset, [])).

The parse constraint simply states that a candidate must not contain an un-
parsed constituent. Thus, we add a mark after each unparsed bracket. The no_coda
constraint is similar: each coda bracket will be marked. The fill nuc constraint is
only slightly more complicated: each sequence of a nucleus bracket immediately
followed by a closing bracket is marked. The fill ons constraint treats empty onsets
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in the same way. Finally, the have_ons constraint is somewhat more complex. The
constraint requires that each nucleus is preceded by an onset. This is achieved by
marking all nuclei first, and then removing those marks where in fact an onset is
present.

This completes the building blocks we need for an implementation of Prince and
Smolensky’s analysis of syllabification. In the following sections, we present two
alternative implementations which employ these building blocks. First, we discuss
the approach of (Karttunen, 1998), based on the lenient composition operator. This
approach uses a counting approach for multiple constraint violations. We will then
present an alternative approach in which constraints eliminate candidates using
matching.

9.3 The Counting Approach

In the approach of (Karttunen, 1998), a candidate set is leniently composed with the
set of strings which satisfy a given constraint. Since we have defined a constraint as
a transducer which marks candidate strings, we need to alter the definitions some-
what, but the resulting transducers are equivalent to the transducers produced by
(Karttunen, 1998). We use the (left-associative) optimality operator oo for applying
an OT constraint to a given set of candidates:®

macro (Cands oo Constraint,
Cands
o
mark violation (Constraint)
1lc
(S @)
o
{ ¢ex [1, 2 — @}~ ) .

Here, the set of candidates is first composed with the transducer which marks
constraint violations. We then leniently compose the resulting transducer with
" ($ @)%, which encodes the requirement that no such marks should be contained
in the string. Finally, the remaining marks (if any) are removed from the set of
surviving candidates. Using the optimality operator, we can then combine Gen
and the various constraints as in the following example (equivalent to figure 14 of
(Karttunen, 1998)):

macro (syllabify, gen
(eYe)
have_ ons
00
no_coda

5The operators ‘o’ and ‘Ic’ are assumed to be left associative and have equal precedence.
8As explained in footnote 2, this will be coerced into an identity transducer.
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0o
fill nuc
0o
parse
0o
fill ons ) .

As mentioned above, a candidate string can violate a constraint multiple times
and candidates that violate the constraint the least number of times need to be pre-
ferred. Lenient composition cannot distinguish two candidates if the first contains
one violation, and the second contains at least two violations. For example, the
above syllabify transducer will assign three outputs to the input bebop:

O[b]IN[e]X[b]X[o]X[p]
O[b]N[e]O[b]N[o]X[p]
X[b]X[e]O[b]N[o]X[p]

In this case, the second output should have been preferred over the other two,
because the second output violates ‘Parse’ only once, whereas the other outputs vi-
olate ‘Parse’ three times. Karttunen recognizes this problem and proposes to have a
sequence of constraints ParseO, Parsel, Parse2 ... ParseN, where each ParseX con-
straint requires that candidates not contain more than X unparsed constituents.”
In this case, the resulting transducer only approximates the OT analysis, because
it turns out that for any X there are candidate strings that this transducer fails
to handle correctly (assuming that there is no bound on the length of candidate
strings).

Our notation is somewhat different, but equivalent to the notation used by Kart-
tunen. Instead of a sequence of constraints ConsO ... ConsX, we will write Cands
oo Prec :: Cons, which is read as: apply constraint Cons to the candidate set
Cands with precision Prec, where “precision” means the predetermined bound on
counting. For example, a variant of the syllabify constraint can be defined as:

macro (syllabify, gen
00
have_ons

fe]e}
no_coda
00
1 :: fill_nuc
00
8 :: parse
00
fill_ons ) .

Using techniques described in 9.5, this variant can be shown to be exact for all
strings of length < 10. Note that if no precision is specified, then a precision of O is
assumed.

“This construction is similar to the construction in (Frank and Satta, 1998), who used a suggestion
in (Ellison, 1994).
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This construct can be defined as follows (in the actual implementation the reg-
ular expression is computed dynamically based on the value of Prec):

macro (Cands oo 3 :: Constraint,
Cands
o
mark _violation (Constraint)
1lc
(LS @), (S @), (8 @), (S @)])
1c
(LS @), (s @), (8 )]
1lc
(s @), (S @)])
1c
To(s Q)
o

e [1, 2 -@r* ).

9.4 The Matching Approach

9.4.1 Introduction

In order to illustrate the alternative approach, based on matching we return to the
bebop example given earlier, repeated here:

cl: Ol b ] N[ e ] X[ b ] X[ o] X[ p ]
c2: Ol b ] N[l e] O[ b ] N[ o] X[ p 1
c3: X[ b ] X[ e] Ol b ] N[ o] X[ p ]

Here an instance of X[’ is a constraint violation, so c2 is the best candidate. By
counting, one can see that c2 has one violation, while c1 and ¢3 each have 3. By
matching, one can see that all candidates have a violation in position 13, but cl
and c3 also have violations in positions not corresponding to violations in c2. As
long the positions of violations line up in this manner, it is possible to construct a
finite state filter to rule out candidates with a non-minimal number of violations.
The filter will take the set of candidates, and subtract from that set all strings that
are similar, except that they contain additional constraint violations.

Given the approach of marking up constraint violations introduced earlier, it is
possible to construct such a matching filter. Consider again the ‘bebop’ example. If
the violations are marked, the candidates of interest are:

Ol b ] N[ e ] X[ @b ] X[ @ o] X[ @p]
Ol b 1 N[ e ] Ol b 1 N[ o] X[ @ p ]
X[ @b ]l X[ @e ]l Ol b I NI o]l X[ @p ]

For the filter, we want to compare alternative mark-ups for the same input
string. Any other differences between the candidates can be ignored. So the first
step in constructing the filter is to eliminate everything except the markers and the
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macro (add_violation,

{ (bracket x []), ? - bracket}~* % delete brackets
o
[[? *, ([] x @)1+, 2 *] % add at least one @
o
{([] x bracket), ? - bracket}* % reinsert brackets

) .

Figure 9.4: Macro to introduce additional constraint violation marks.

original input. For the syllable structure example, finding the original input is easy
since it never gets changed. For the “bebop” example, the filter first constructs:

b e @b Q@o Q@ p
b e b o @ p
@b Qe b o @ p

Since we want to rule out candidates with at least one more constraint violation
than necessary, we apply a transducer to this set which inserts at least one more
marker. This will yield an infinite set of bad candidates each of which has at least
two markers and with one of the markers coming directly before the final ‘p’.

In order to use this set of bad candidates as a filter, brackets have to be rein-
serted. But since the filter does not care about positions of brackets, these can
be inserted randomly. The result is the set of all strings with at least two mark-
ers, one of the markers coming directly before the final ‘p’, and arbitrary brackets
anywhere. This set includes the two candidates c1 and ¢3 above. Therefore, after
applying this filter only the optimal candidate survives. The three steps of deleting
brackets, adding extra markers and randomly reinserting brackets are encoded in
the add_violation macro given in 9.4.

The application of an OT constraint can now be defined as follows, using an
alternative definition of the optimality operator:

macro (Cands oo Constraint,
Cands
o
mark_violation (Constraint)
o
” range (Cands
o
mark_violation (Constraint)
o
add_violation)
o
{((@ x [1), (- @)}* ).

Note that this simple approach only works in cases where constraint violations
line up neatly. It turns out that for the syllabification example discussed earlier
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that this is the case. Using the syllabify macro given above with this matching
implementation of the optimality operator produces a transducer of only 22 states,
and can be shown to be exact for all inputs!

9.4.2 Permutation

In the general case, however, constraint violations need not line up. For example,
if the order of constraints is somewhat rearranged as in:

parse oo fill ons oo have_ons
oo fill_nuc oo no_coda

the matching approach is not exact: it will produce wrong results for an input such
as ‘arts’

N[a]D[r]O[t]IN[]DI[s] gcf: artl@s
N[a]O[rIN[]ID[t]O[sIN[] $cf: ar@tsq

Here, the second output should not be produced because it contains one more vio-
lation of the £i11_nuc constraint. In such cases, a limited amount of permutation
can be used in the filter to make the marker symbols line up. The add_violation
filter of 9.4 can be extended with the following transducer which permutes marker
symbols:

macro (permute_marker,
[{[2 *, (@ x [1),?2 *, ([] x @)1,
[2 %, ([1 x @),? * (@ x [1)]}*,?2 *]).

Greater degrees of permutation can be achieved by composing permutemarker
several times. For example:®

macro (add_violation (3),

{ (bracket x []), (? - bracket)}~*
o
(02 *, ([1 x @)1+, 2 *]
o

permute_marker
o
permute_marker
o
permute_marker
o
{([] x bracket), (? - bracket)}* ).

So we can incorporate a notion of ‘precision’ in the definition of the optimality
operator for the matching approach as well, by defining:

8An alternative approach would be to compose the permutemarker transducers before inserting
extra markers. Our tests, however, show this alternative to be somewhat less efficient.



196 NWO Pionier Progress Report

macro (Cands oo Prec :: Constraint),
Cands
o
mark_violation (Constraint)
o
” range (Cands
o
mark _violation (Constraint)
o
add_violation (Prec))
o
{ (@ x [1),(2 - @Q)r* ).

The use of permutation is most effective when constraint violations in alternative
candidates tend to occur in corresponding positions. In the worst case, none of the
violations may line up. Suppose that for some constraint, the input “bebop” is
marked up as:

cl: @b @ e
c2: b e @

b o P
b @ o @p

In this case, the precision needs to be two in order for the markers in c1 to line
up with markers in c2. Similarly, the counting approach also needs a precision of
two in order to count the two markers in cl and prefer this over the greater than
two markers in c2. The general pattern is that any constraint that can be treated
exactly with counting precision N, can also be handled by matching with precision
less than or equal to N. In the other direction, however, there are constraints, such
as those in the Prince and Smolensky syllabification problem, that can only be
exactly implemented by the matching approach.

For each of the constraint orderings discussed by Prince and Smolensky, it turns
out that at most a single step of permutation (i.e. a precision of 1) is required
for an exact implementation. We conclude that this OT analysis of syllabification
is regular. This improves upon the result of (Karttunen, 1998). Moreover, the
resulting transducers are typically much smaller too. In 9.5 we present a number
of experiments which provide evidence for this observation.

9.4.3 Discussion

Containment. It might be objected that the Prince and Smolensky syllable struc-
ture example is a particularly simple containment theory analysis and that other
varieties of OT such as correspondence theory (McCarthy and Prince, 1995) are be-
yond the scope of matching.® Indeed we have relied on the fact that Gen only adds
brackets and does not add or delete anything from the set of input symbols. The
filter that we construct needs to compare candidates with alternative candidates
generated from the same input.

If Gen s allowed to change the input then a way must be found to remember the
original input. Correspondence theory is beyond the scope of this paper, however a

9(Kager, 1999) compares containment theory and correspondence theory for the syllable structure
example.
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simple example of an OT where Gen modifies the input is provided by the problem
described in 9.2.2 (from (Frank and Satta, 1998)). Suppose we modify Gen here so
that its output includes a representation of the original input. One way to do this
would be to adopt the convention that input symbols are marked with a following
0 and output symbols are marked with a following 1. With this convention Gen
becomes:

macro (gen,
{l(a x [a,0,b,1])*, (b x [b,0,a,1])*1,
[(a x [a,0,a,1])*, (b x [b,0,b,1])*]})

Then the constraint against the symbol a needs to be recast as a constraint
against [a, 1].!9 And, whereas above add_violation was previously written to ignore
brackets, for this case it will need to ignore output symbols (marked with a 1).
This approach is easily implementable and with sufficient use of permutation, an
approximation can be achieved for any predetermined bound on input length.

Locality. In discussing the impact of their result, (Frank and Satta, 1998) suggest
that the OT formal system is too rich in generative capacity. They suggest a shift
in the type of optimization carried out in OT, from global optimization over arbitrarily
large representations to local optimization over structural domains of bounded com-
plexity. The approach of matching constraint violations proposed here is based on
the assumption that constraint violations can indeed be compared locally.

However, if locality is crucial then one might wonder why we extended the local
matching approach with global permutation steps. Our motivation for the use of
global permutation is the observation that it ensures the matching approach is
strictly more powerful than the counting approach. A weaker, and perhaps more
interesting, treatment is obtained if locality is enforced in these permutation steps
as well. For example, such a weaker variant is obtained if the following definition
of permute marker is used:

% local variant
)1,
)1r* ).

macro (permute_marker,
{2z ,0(0[] x @),?2,(@ x []
(@ x [1),?2,([] x @

This is a weaker notion of permutation than the definition given earlier. Interest-
ingly, using this definition resulted in equivalent transducers for all of the syllabi-
fication examples given in this paper. In the general case, however, matching with
local permutation is less powerful.

Consider the following artificial example. In this example, inputs of interest are
strings over the alphabet {b,c}. Gen introduces an a before a sequence of b’s, or
two a’s after a sequence of b’s. Gen is given as an automaton in 9.5. There is

90T makes a fundamental distinction between markedness constraints (referring only to the sur-
face) and faithfulness constraints (referring to both surface and underlying form). With this mark-up
convention, faithfulness constraints might be allowed to refer to both symbols marked with O and
symbols marked with 1. But note that the Fi11 and Parse constraints in syllabification are also con-
sidered to be faithfulness constraints since they correspond to epenthesis and deletion respectively.
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Figure 9.5: Gen for an example for which local permutation is not sufficient.

only a single constraint, which forbids a. It can easily be verified that a matching
approach with global permutation using a precision of 1 exactly implements this
OT. In contrast, both the counting approach as well as a matching approach based
on local permutation can only approximate this OT.!!

9.5 Comparison

In this section we compare the two alternative approaches with respect to accuracy
and the number of states of the resulting transducers. We distinguish between ex-
act and approximating implementations. An implementation is exact if it produces
the right result for all possible inputs.

Assume we have a transducer T which correctly implements an OT analysis,
except that it perhaps fails to distinguish between different numbers of constraint
violations for one or more relevant constraints. We can decide whether this T is
exact as follows. T is exact if and only if T is exact with respect to each of the
relevant constraints, i.e., for each constraint, T distinguishes between different
numbers of constraint violations. In order to check whether T is exact in this sense
for constraint C we create the transducer is_exact (T, C):

macro (is_exact (T,C),
T
o
mark_ violation (C)
o
{(2 — @) x [1, @}*).

If there are inputs for which this transducer produces multiple outputs, then we
know that T is not exact for C; otherwise T is exact for C. This reduces to the
question of whether is_exact (T, C) is ambiguous. The question of whether a given
transducer is ambiguous is shown to be decidable in (Blattner and Head, 1977);
and an efficient algorithm is proposed in (Roche and Schabes, 1997b).!? Therefore,

"Matching with local permutation is not strictly more powerful than counting. For an example,
change Genin this example to: {[ ([] x a),{b,c}*1, [{b,c}*, ([1 x [a,al)]}. This can be exactly
implemented by counting with a precision of one. Matching with local permutation, however, cannot
exactly implement this case, since markers would need to be permuted across unbounded sequences.

12We have adapted the algorithm proposed in (Roche and Schabes, 1997b) since it fails to treat
certain types of transducer correctly; we intend to provide details somewhere else.
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in order to check a given transducer T for exactness, it must be the case that for
each of the constraints C, is_exact (T, C) is nonambiguous.

If a transducer T is not exact, we characterize the quality of the approximation by
considering the maximum length of input strings for which T is exact. For example,
even though T fails the exactness check, it might be the case that

in fact is exact, indicating that T produces the correct result for all inputs of length
<5.
Suppose we are given the sequence of constraints:

have_ons >> fill_ons >> parse
>> fill nuc >> no_coda

and suppose furthermore that we require that the implementation, using the count-
ing approach, must be exact for all strings of length < 10. How can we determine
the level of precision for each of the constraints? A simple algorithm (which does
not necessarily produce the smallest transducer) proceeds as follows. Firstly, we
determine the precision of the first, most important, constraint by checking exact-
ness for the transducer

gen oo P :: have_ons

for increasing values for P. As soon as we find the minimal P for which the exactness
check succeeds (in this case for P=0), we continue by determining the precision
required for the next constraint by finding the minimal value of P in:

gen oo 0 :: have_ons oo P :: fill ons

We continue in this way until we have determined precision values for each of the
constraints. In this case we obtain a transducer with 8269 states implementing:

gen oo 0 :: have_ons
co 1 fill_ons
oo 8 :: parse
oo 5 fill_nuc
oo 4 no_coda

In contrast, using matching an exact implementation is obtained using a precision
of 1 for the £ill_nuc constraint; all other constraints have a precision of 0. This
transducer contains only 28 states.

The assumption in OT is that each of the constraints is universal, whereas the
constraint order differs from language to language. Prince and Smolensky iden-
tify nine interestingly different constraint orderings. These nine “languages” are
presented in table 9.2.

In table 9.3 we compare the size of the resulting automata for the matching
approach, as well as for the counting approach, for three different variants which
are created in order to guarantee exactness for strings of length <5, <10 and < 15
respectively.

Finally, the construction of the transducer using the matching approach is typ-
ically much faster as well. In table 9.4 some comparisons are summarized.
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have_ons > fill_ons > no_coda
have_ons > no_coda > fill_nuc
no_coda > fill_nuc > parse >
have_ons > fill_ons > no._coda
have_ons >» no_coda > parse >
no_coda > parse > fill nuc >

©ONDO UL WN— A

constraint order

> fillonuc
> parse >
fill_ons >
> parse >
fill_nuc >
fill_ons >

> parse
fill ons
have_ons
fill_ nuc
fill ons
have_ons

have_ons > fill_ons > parse > fill nuc > no_coda
have_ons > parse > fill ons > fill nuc > no_coda
parse > fill ons > have_ons > fill_nuc > no_coda

Table 9.2: Nine different constraint orderings for syllabification, as given in Prince

and Smolensky, chapter 6.

Method Exactness Constraint order
1 2 3 4 5 6 7 8 9
matching exact 29 22 20 17 10 8 28 23 20
counting <5 95 220 422 167 10 240 1169 2900 4567
counting <10 280 470 1667 342 10 420 8269 13247 16777
counting <15 465 720 3812 517 10 600 22634 43820 50502

Table 9.3: Comparison of the matching approach and the counting approach for

various levels of exactness.
resulting transducer.

The numbers indicate the number of states of the

Method Exactness Constraint order
1 2 3 4 5 6 7 8 9
matching exact 1.0 09 09 09 08 0.7 1.5 1.3 1.1
counting <5 0.9 1.7 48 16 05 1.9 10.6 18.0 30.8
counting <10 2.8 4.7 286 4.0 05 4.2 832 112.7 160.7
counting <15 6.8 10.1 999 86 05 8.2 336.1 569.1 757.2

Table 9.4: Comparison of the matching approach and the counting approach for
various levels of exactness. The numbers indicate the CPU-time in seconds required
to construct the transducer.
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9.6 Conclusion

We have presented a new approach for implementing OT which is based on match-
ing rather than the counting approach of (Karttunen, 1998). The matching ap-
proach shares the advantages of the counting approach in that it uses the finite
state calculus and avoids off-line sorting and counting of constraint violations. We
have shown that the matching approach is superior in that analyses that can only
be approximated by counting can be exactly implemented by matching. Moreover,
the size of the resulting transducers is significantly smaller.

We have shown that the matching approach along with global permutation
provides a powerful technique technique for minimizing constraint violations. Al-
though we have only applied this approach to permutations of the Prince & Smolen-
sky syllabification analysis, we speculate that the approach (even with local permu-
tation) will also yield exact implementations for most other OT phonological anal-
yses. Further investigation is needed here, particularly with recent versions of OT
such as correspondence theory. Another line of further research will be the proper
integration of finite state OT with non-OT phonological rules as discussed, for ex-
ample, in papers collected in (Hermans and van Oostendorp, 1999) .

Finally, we intend also to investigate the application of our approach to syntax.
(Karttunen, 1998) suggests that the Constraint Grammar approach of (Karlsson et
al., 1995) could be implemented using lenient composition. If this is the case, it
could most probably be implemented more precisely using the matching approach.
Recently, (Oflazer, 1999) has presented an implementation of Dependency syntax
which also uses lenient composition with the counting approach. The alternative
of using a matching approach here should be investigated.
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Chapter 10

Finite State Methods for
Hyphenation

This chapter has benefitted from comments from reviewers and participants of the
Finite State Methods for Natural Language Processing 2001 workshop during ESS-
LLI XII in Helsinki. Following suggestions by Lauri Karttunen en Theo Jansen, the
method for compiling TgX patterns into a FST was implemented partially during the
workshop.

10.1 Introduction

Hyphenation is the task of identifying potential hyphenation points in words. A
typesetting program uses this information to produce justified paragraphs. In this
chapter, three finite-state hyphenation methods for Dutch are presented and com-
pared in terms of accuracy and size of the resulting automata.

Hyphenation can be done using a word list, using patterns, or using rules. The
first approach requires a word list with hyphenation points, usually derived from
an electronic dictionary. The major drawback of this method is that it will only
cover words explicitly listed in the dictionary.

Pattern-based methods specify hyphenation patterns, where a pattern typically
consists of a sequence of two or more characters, for which valid (or invalid) hy-
phenation positions are specified. The pattern can be applied to all words contain-
ing the pattern as a substring. A well-known pattern-based hyphenation-method,
described in more detail below, is that of Liang (1983), which is used in the type-
setting package TgX. Patterns are usually derived from a dictionary, but the crucial
difference with a method using word lists only is that patterns represent substrings
of words, and therefore also apply to words not in the word list.

Rule-based methods rely on syllable and morpheme structure to determine hy-
phenation points. The biggest challenge for rule-based methods is providing an
accurate description of the linguistic concepts involved. The approach described in
the next section uses the syllable structure to implement a hyphenation procedure.
No attempt was made, however, to deal accurately with morpheme structure in
derivations and compound words, and therefore the system achieves only modest
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accuracy. Rule-based methods use dictionary information only indirectly and are
therefore not restricted to a fixed set of words.

It has been observed that rule-based and pattern-based hyphenation can be
carried out by a finite-state transducer (Kaplan and Karttunen, 1998). Such a
transducer would take a character string as input and return a string with hy-
phenation points. A transducer of this form can be constructed by translating
hyphenation rules or patterns into a finite state transducer or sequence of trans-
ducers. As far as we are aware, no attempts have been made to actually develop an
accurate finite-state hyphenator for a given language.

Below, we consider three finite-state methods for constructing a hyphenator for
Dutch.

The core rule of Dutch hyphenation is that hyphenation points fall between syl-
lables, where words can be divided into syllables using a maximal onset rule. The
first method implements this rule as a deterministic finite state transducer. When
evaluated on word list derived from the Celex lexical database (Baayen, Piepen-
brock, and van Rijn, 1993), this simple system achieves a hyphen accuracy of
94.5%.

The second system builds on the results of the first system, but uses
transformation-based learning (TBL) (Brill, 1995) to derive rules which correct the
errors of the first system. The system is trained on the Celex word list. The in-
duced rules typically help to correct mistakes which are due to the fact that the
first system ignores morpheme structure. The hyphen accuracy after applying TBL
is 99.35%, which is a significant improvement over earlier results on the same task.
The rules induced by TBL can be interpreted as finite-state transducers (Roche and
Schabes, 1997a), and the application of a sequence of such rules corresponds to
the composition of the corresponding FST's. Constructing a single FST for the large
number of rules needed for accurate hyphenation (well over 1,000) remains a chal-
lenge.

Finally, we present some results for the pattern-based hyphenation method of
Liang (1983), which is used in TgX. The acquisition of patterns from a word list,
which is the crucial part of the method, appears to be a special case of TBL. The
hyphenation patterns for Dutch (more than 8,000) are derived from the same Celex
data as used in the experiments below. As all of the Celex data was used in creating
the patterns, we compared the performance of TgX and the TBL-system on running
text. Hyphen accuracy of TgX on running text is estimated to be 99.8%, whereas
the TBL-system achieves approximately 99.1% accuracy. Although the method of
Liang (1983) uses finite-state technology to store and apply patterns efficiently, the
hyphenation procedure itself is not a implemented as a FST. We present a method
for compiling hyphenation-patterns into a single FST which takes a word as input
and returns the word with the predicted hyphenation points.

10.2 Hyphenation rules for Dutch

Brandt Corstius (1978) gives the following procedure for hyphenating Dutch words:

Compound: First, if a word is a compound or derivation, insert hyphens between
word boundaries and derivational morphemes.
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Syllable: Next, insert hyphens between well-formed syllable strings,
Maximal Onset: While maximizing onsets.

The procedure can be illustrated using with the following example. The word
drugspanden (drug-houses) is a plural compound noun composed of drugs and
panden. Thus, the compound rule requires that a hyphenation point is inserted
between s and p. Next, panden can be segmented into syllables as pan-den or
pand-en. The ambiguity is resolved by the maximal onset rule, which states that
the segmentation pan-den is the correct one. Thus, the correct hyphenation is
drugs-pan-den. Note that the compound rule must identify compounds and deriva-
tional affixes, but not all morpheme structure. The word panden is a plural noun
consisting of the noun pand and the plural suffix -en, yet it is segmented as pan-
den.

There are a few cases which are not covered by the procedure above. In some
cases the spelling of a hyphenated word differs from that of its non-hyphenated
counterpart. The words extraatje (extra + dimunitive suffix tje ) is hyphenated as
extra-tjes. This phenomenon is known in TgX as discretionary hyphenation (So-
jka, 1995). Another complication arises in cases where a word has an ambiguous
morphological structure, and hyphenation depends on which analysis is chosen.
Daelemans and van den Bosch (1992) mention kwartslagen as an example, which
can be hyphenated as kwart-slagen (quarter turns) or kwarts-lagen (quartz layers).

Automated hyphenation of Dutch words is a well-studied problem. Brandt
Corstius (1978) reports high accuracies on manually constructed word lists for his
rule-based procedure. Using various machine learning techniques, Daelemans and
van den Bosch (1992) and Vosse (1994) were able to achieve hyphenation accuracies
of 97.8% - 98.3%. The hyphenation method of Liang (1983), which was originally
applied to English, has been adapted to Dutch (Tutelaers, 1999) with very accurate
results. A more detailed presentation of this method is given in section 10.6.

10.3 Syllable-based hyphenation

In this section a rule-based finite state method for hyphenating Dutch words is
presented. We concentrate on the definition of a transducer which inserts hy-
phens between well-formed syllables, while satisfying the maximal onset rule. The
replace-operator of Karttunen (1995) supports a straightforward definition of such
a transducer. The accuracy of the system is limited, as it ignores the fact that com-
pounds and derived words may require hyphenation patterns conflicting with the
maximal onset rule. In the next section, we present a method for correcting such
errors.

Finite state automata will be defined using regular expressions. Regular expres-
sions are compiled into automata by the sc fsa utilities toolkit (van Noord, 1997b;
van Noord and Gerdemann, 2001)! The regular expression syntax used in this
chapter is defined in figure 10.1.

Consider the problem of segmenting a word into a sequence of syllables. Given a
suitable definition of syllable, one might consider the following as a first attempt:

IThe sc fsa utilities toolkit is available from www.let.rug.nl/ vannoord/fsa.
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[l the empty string

[R1,...,Rn] concatenation
{R1,...,Rn} disjunction
R” optionality
R* zero or more occurrences of R
A:B the transducer which maps strings of A onto strings of B
id () identity: the transducer which maps each
element in A onto itself.
ToU composition of the transducers T and U.

macro (Term,R) use Term as an abbreviation for R.

Figure 10.1: FsA regular expression syntax used in this chapter. A and B are
regular expressions denoting recognizers, T and U transducers, and R can be either.

(1) [ [ syllable, []1:- ]1*, syllable ]

This regular expression defines a transducer that accepts non-empty sequences of
syllables as input and outputs the same sequence, with a hyphen inserted after
every syllable except for the last. Given an input such as alfabet (alphabet), it will
produce al-fa-bet, alf-a-bet, alf-ab-et, or al-fab-et, whereas in fact only the first is
correct. This transducer is non-deterministic and does not respect the maximal
onset rule. A second problem with this definition is that, in general, it will fail to
give the right results for syllables containing a nucleus represented by more than a
single character. l.e. for a word such as waait (blows), ((1)) would produce, among
others, an output with three hyphenation points (wa-a-it), whereas in fact waait is
a monosyllabic word. The problem is caused by the fact that the characters a,a,
and i represent a diphtong but can also each occur independently as a nucleus,
and form a syllable. Thus, it seems that apart from a maximal onset rule, there is
also something like a maximal nucleus rule.

A more accurate definition of hyphenation needs to define a deterministic au-
tomaton, which, given multiple ways of segmenting a string into valid syllables, re-
turns only the output in which both nuclei and onsets are maximal. Note that this
requires selection between alternatives, which seems hard to implement in finite-
state terms. However, Karttunen (1998) and Gerdemann and van Noord (2000)
propose finite state implementations of Optimality Theory (Prince and Smolensky,
1995) which address this issue explicitly. Karttunen’s finite-state analysis of the
oT theory of syllabification uses a cascade of finite state transducers composed
by means of an operation called lenient composition. The lenient composition of a
transducer A with a recognizer B is a transducer which is similar to A, except that
its only admitted outputs must be accepted by B as well. However, if no outputs
exist which satisfy B, all outputs are returned (and thus no filtering occurs). This
captures the effect of violable constraints as used in OoT. Karttunen shows that his
formalism correctly accounts for the semantics of constraints such as fill onset, a
constraint which prefers onsets to be filled. Fill onset is similar to the notion of
maximal onset required for Dutch hyphenation. Maximizing onsets (and nuclei) is
more complicated, however, as it requires a notion of longest match as well. While
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it is conceivable that the effect of a preference for maximal onsets and nuclei could
be defined using OT-style constraints, we opted for using an alternative finite-state
technique, in which longest match replacements are accounted for directly.

The replace-operator of Kaplan and Kay (1994) and Karttunen (1995) was in-
troduced to facilitate the implementation of (SPE-style) phonological rewrite rules
as finite state transducers. In the FSA-notation of Gerdemann and van Noord
(1999) a regular expression replace (Target, LeftContext, RightContext),
where Target is a transducer and LeftContext and RightContext are recogniz-
ers, defines a transducer which replaces all occurrences of the domain of Target
between LeftContext and RightContext by strings in the range of Target. Fur-
thermore, replace performs left-most, longest match, replacement, i.e. it operates
as if moving through the string from left to right, at each point identifying the
longest possible replacement target.

The regular expression for hyphenation given above can be rephrased as a re-
place statement, which inserts hyphens between syllables:

(2) replace([]:-, syllable, syllable)

Again, given an adequate definition of syllable, this transducer will insert
hyphens between syllable strings. Note, however, that the left-to-right mode of
application of replace ensures that hyphens are inserted as early as possible,
thus implicitly ensuring that onsets are maximal. The word alfabet is hyphenated
only as al-fa-bet by this expression, and not as any of the alternatives mentioned
above.

Implementing the maximal nucleus rule required for the correct hyphenation
of words containing multiple character nuclei, can be achieved using the longest
match property of replace explicitly:

(3) replace([ []:Q, identity(nucleus), [1:@ 1, [1, []1)

This transducer inserts the marker '@’ before and after nuclei. As the target for a
replacement is determined using longest match, multiple character strings corre-
sponding to a possible nucleus are always marked as a single nucleus. The word
waait is marked as w@aai@t only and not as W@Raa@@i@t or WRARRA@@{@t. Left-
to-right, longest match, identification of nuclei appears to be very accurate. One
rare case where it fails is the word dieet (diet), which contains the nucleus i followed
ee, but longest match recognizes ie and e.

A syllable-based hyphenation algorithm can now be given as the composition of
the transducers defined in (3) and (2), given a definition of syllable which incorpo-
rates the '@ -marker:

(4) replace([[]:Q, identity(nucleus), []:@Q1,I[]1,I[1])
o
replace( []:-, syllable, syllable )

The actual implementation imposes slightly weaker conditions on the insertion
of hyphens:
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() replace([[]:Q, identity(nucleus), []:@1,I[1,I[1])
o)
replace( []:-, [Q, consonant *], [onset”™, Q] )

Instead of specifying a full syllable as left and right context, this definition only
requires a left context consisting of a marker followed by an arbitrary number of
consonants (corresponding to the coda of the preceding syllable), and a right con-
text consisting of an (optional) onset followed by a marker. It imposes no constraints
on codas, other than that they must form a sequence of consonants. While this does
not lead to overgeneration, it does account for the hyphenation of loan-words con-
taining codas which do not follow Dutch spelling (i.e. the words checklist, arctisch,
and pizza are hyphenated as check-list, arc-tisch (arctic), and piz-za in spite of the
fact that ck, rc and z are normally not used as coda).

The accuracy of the hyphenation method defined above can be further improved
by making a number of adjustments. First, in syllables such as qua, the uis part
of the onset (i.e. the grapheme qu is pronounced as kw). As ua is not a nucleus,
two nucleus markers would be inserted in this case. To prevent such mistakes,
qu is transduced into Q by a preprocessing step, and transduced into qu again by
postprocessing. Second, the character x (pronounced as the two consonants ks)
is not followed (or preceded) by a hyphen in words such as examen in spite of the
fact that x separates the two nuclei e and a. This can be corrected for by explicitly
removing hyphens following x and preceding a vowel. Third, systematic exceptions
to the maximal onset rule exist. The long vowels a, o, u are written as aa, oo, uu
in syllables with a non-empty coda (aap, (monkey), oor (ear), uur (houn), but as
single characters in syllables with an empty coda (a-pen, o-ren, u-ren). This implies
that the correct hyphenation of haasten (to hurry) is haas-ten, and not haa-sten
(as the latter would result in a misspelled syllable haa). Note that the latter is
predicted by the maximal onset rule. The solution for this problem is to include a
following consonant in the definition of nucleus for the strings aa, oo and uu. Thus,
haasten is first transduced into h@aas@t@e@n and then into h@aas@-t@e@n, which
is the correct hyphenation after removal of the @-markers. Finally, as noted above,
in some cases (such as dieet) the longest match strategy for marking the nucleus
fails. Some of these mistakes can be corrected easily.

The actual implementation is given in figure 10.2.

Evaluation and Error-analysis

The deterministic FST for the regular expression for hyphenation as given in fig-
ure 10.2 has 89 states and 826 transitions.?

The Celex (Baayen, Piepenbrock, and van Rijn, 1993) pow-list (dutch or-
thograhpy words) provides hyphenation patterns for over 330,000 words. We re-
moved all items containing capitals and diacritics, and ensured that each word
form occurs only once. This leaves approximately 290,000 items. The average word
length is 10.85 characters and there are approximately 2.5 hyphens per word. On

?Transitions include predicates as described in (van Noord and Gerdemann, 2001). A predicate
ranges a set of symbols, and thus, the number of transitions is in general (much) smaller than would
normally have been the case.
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macro (hyphenate,

replace([q,ul:Q, [1, [1]) $ qu —> Q
o replace([ []:@, id(nucleus),[]1:@ 1,[]1,[]1) % mark nucleus
o replace([e,@,@]:[@,Q,e]l,i,{e,u}) % d@ie@@e@t —> dRiRReelt
o replace( []l:—, [@, cons *], [onset”™ , @Q@]) % insert hyphens
o replace(-:[], %, [@,{a,e,u,i,0,v}1]) % remove - after x
o replace(Q:[g,ul, [1, [1) $ Q —> qu
o replace(@: [] [1, 1) % remove markers
) .
macro (nucleus, { a, [a,il, la,a,il, ..., u, [u,1il, vy,
[{la,al,[o,0],[u,ul}, cons ]
}).
macro (onset, { b, [b,1]1, [b,r], ..., z, [z,w] } ).

Figure 10.2: Finite state syllable-based hyphenation of Dutch

this list, hyphenate achieves a word accurary of 86.1% and a hyphen accuracy of
94.5%.

A 10% subset of the data, containing 4,319 errors in total, was inspected for er-
ror analysis, where errors were counted and classified using the alignment method
described in the next section. As the system implements the maximal onset rule,
but has no way of recognizing compounds or derivational affixes, errors are ex-
pected to occur typically in situations where a word or affix boundary conflicts with
the maximal onset rule. This is confirmed by the fact that 87.5% of the errors
are cases where a hyphen is displaced one position to the left (i.e. drug-span-
den should be drugs-pan-den) and 1.1% of the errors are cases where a hyphen is
displaced two positions to the left (ang-staan-ja-gend (scary, lit. scare-on-malking)
should be angst-aan-ja-gend). A hyphen was displaced one position to the right in
4.9% of the errors. These are all caused by the fact that our list of onsets is not
exhaustive. For instance, the system produces ar-tis-jok (artichoke which should be
hyphenated as ar-ti-sjok) because it does not contain the onset sj. This type of error
can be excluded if all onsets occurring in the word list are included in the system.
This will have a negative effect on the overall accuracy, however, as expanding the
set of onsets will in general lead to an increase in cases where a hyphen is displaced
to the left as well. Including sj, for instance, implies that dok-ters-jas (doctors-coat)
will be hyphenated as dok-ter-sjas. As s is very frequent both in the final position of
a coda and in the first position of an onset, these errors will be frequent as well and
will outnumber the positive effect of being able to treat (rare) sj-onsets correctly.
In 5.5% of the errors the system has produced a spurious hyphen. These typically
occur in loan words containing a nucleus not included in the syllable-based sys-
tem (coach is hyphenated as co-ach) . The system missed a hyphen in 1.0% of the
errors. Such errors can for instance be caused by mistakes in the identification of
a nucleus. The word be-ij-ver (work towards) is hyphenated as beij-ver because ei
is a valid nucleus. This is a case, therefore, where the longest match strategy for
recognizing the nucleus fails and which was left unaccounted for in the definition
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of hyphenate.

10.4 Improving accuracy using TBL

Transformation-based learning (TBL) (Brill, 1995) can be used to improve the ac-
curacy of the system outlined above. Given a word list hyphenated by the base
system, aligned with the correct hyphenation patterns, TBL will attempt to induce
a rule which corrects the maximal number of errors while introducing a minimum
of new errors. This rule is applied to the training data. This process iterates un-
til no new rules with a score (i.e. the number of corrections minus the number
of errors introduced by a rule) above a certain threshold can be found. The fact
that most rules are not 100% accurate (i.e. introduce new errors besides correcting
existing errors) is not necessarily a problem, as more specific rules can be learned
later which correct the newly introduced errors. The result of TBL can be tested
on a data-set by applying the induced rules in the order in which they have been
induced.

10.4.1 Alignment

TBL requires aligned data for training and testing. Hyphenation can be seen as
a classification task, which decides, for instance, for each character whether it is
preceded by a hyphen or not. Thus, the result of hyphenating a word list using the
base system can be encoded as a character string, where each character is aligned
with a 1 if it is preceded by a hyphen, and with a O otherwise. Furthermore, as
some rules should apply only to the beginning or end of a word, boundary markers
are added. The correct hyphenation can be aligned with this string as a similar list
of O’s and 1’s:

word  potato +aardappel +
(6) |system aar-dap-pelf0 0 001001000
correct aard-ap-pel[0 0 000101000

For TBL, the encoding in (6) has the disadvantage that correcting a single error
(i.e. aar-dap-pel — aard-ap-pel) requires learning two error-correction rules, one
changing a 1 into a O when aligned with a d in a suitable context, and one changing
a O into a 1 when aligned with an a in a similar context. Obviously, these two rules
are closely related. Therefore, more effective error correction can take place if a
single rule could be learned to correct the error.

We therefore adopted a slightly more involved alignment procedure, where the
correct output can be marked with O and 1 as before, but also with 2 (the character
is followed by a hyphen), 3 (the next character is followed by a hyphen) or 9 (the
preceding character was preceded by a hyphen). Examples of the new alignment
method are given in figure 10.3.

Note that the system output is still given as a sequence of O’s and 1’s, and thus,
that the aligned system output does not contain information which points to the
correct alignment. Alignment of the correct answer with the system data requires
a procedure which codes the correct answer relative to the system output. As the
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word (potato)
system aar-dap-pel
correct aard-ap-pel

— =g
(e ee)
oo
o O +

word (coach)
system co-ach
correct coach

S O|a|IN —~

word  artichoke)
system ar-tis-jok
correct ar-ti-sjok

word  (scary)
system ang-staan-ja-gend
correct angst-aan-ja-gend

C OO O|°
C oo
o o
C ol
o O +

wrd (with make up on)
sys gesch-minkt
cor ge-schminkt

CO|I+||O O +||OC O|+||O O| +||©O © +
O OR||OC OO OlP||O OO D
eoNelldloNell-}l loNelisl loNollol foNoi
— Ol®n||O OR||H =[O =00 "

C O|Q||Ww—~n||Oo o™

O OlF|o oo on|o o oo
O ~g||oor|o=Toco+t|ooT

o ol

co|ln||loo|lz|lo o
O O|F|= ~=|—|lo o +
C oo ol
O O| +||—~ —|

Figure 10.3: Improved alignment

number of hyphens in the system output and the correct output tends to be equal
(but see below), a procedure which determines for each correct hyphen where it is
located relative to the corresponding system hyphen gives good results. If no cor-
responding system hyphen can be found in the two proceeding positions or in the
next position, a 0/1 alignment is introduced. Similarly, if a system hyphen cannot
be aligned with any hyphen in the correct answer, a 1/0 alignment is introduced.

10.4.2 Experiments

Training and test data consisted of the Celex word list described in the previous
section. The list was divided into 10 sections (selecting every 10th word, with an
offset of 0-9), hyphenated by the base system, and the result was aligned with the
correct hyphenation as provided by Celex.

For training and testing we used the fnTBL toolkit® (Ngai and Florian, 2001)
which implements an efficient version of Brill's original algorithm. Training took
between a few minutes and 3 hours, depending on the amount of data used and
the complexity of the rule templates.

Rule templates for TBL were provided which change the value of one cell in the
system output (i.e. change 1 into 2), using a surrounding window of maximally 5
characters as context to constrain the rule. For instance, to correct aar-dap-pel
into aard-ap-pel, the system might learn the following rule:

aarda

1
(7) I
2

3http: //nlp.cs.jhu.edu/ rflorian/fntbl/index.html
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Rank |Good Bad Score Rule
1{2918 314 2604 i-st — is-t
211890 103 1787 |-?achti — ?-achti
311666 101 1565 a-st — as-t
411411 135 1276| ing-s — ings-
5 714 37 677 u-st — us-t
6| 693 31 662 +ve-r — +ver-
7| 992 336 656 -th — t-h
811333 703 630| e-ste — es-te
9 635 36 599 +a-f — +af-

10| 596 27 569 +0o-n — +on-
16| 320 26 294| bes-t — be-st
27| 191 3 188 ges- — ge-s

1408 3 0 3| -??eid — ?-?eid

Figure 10.4: Rules learned by TBL, trained on 90% of the data. '?" represents an
arbitrary character, '+’ is the word boundary symbol.

initial| 10%| 20%]| 30%| 60%| 90%
Number of Induced Rules 264| 507| 737|1,139|1,409
Hyphen Accuracy 94.16|98.15|98.60|98.82|99.04 |99.27
Word Accuracy 85.30|95.3496.49(97.02|97.59|98.17

Figure 10.5: Results of learning hyphenation rules using 10%-90% of the data
(29.000 - 260.000 words).

An overview of some of the rules learned using 90% of the data for training is
given in figure 10.4. Half of the rules in the top-10 (1, 3, 4, 5, 8) illustrate that the
character ’s’ is problematic for hyphenation, as it can be the start of many different
onsets, but also can be the final character in many codas. The second rule correctly
hyphenates words with the suffix-morpheme -achtig, which counts as introducing
a boundary for the compound rule. The majority of induced rules are of the 1—-2
type. Rule 16 is the highest-ranked rule which makes a different correction. It is
of the 2—1 type and corrects the effect of an earlier rule (rule 8 in particular). Rule
27 is the second rule which shifts a hyphen leftward. It recognizes the prefix ge-.
Note that according to the maximal onset rule, the hyphen would have been placed
in front of the s to begin with. Thus, this rule also corrects some of the errors
introduced by rule 8 (and possibly by other preceding rules).

We performed experiments on various portions of the Celex data. The results
are given in figure 10.5. When trained on only 10% of the available data, TBL
learns a relatively small number of highly effective rules. The error rate can be
further reduced by using 90% of the data, although the number of induced rules
also increases substantially in that case.
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Discussion

The results improve considerably on previous work. The best result of Daelemans
and van den Bosch (1992) (98.3% hyphen accuracy) used an exemplar-based learn-
ing method, trained on a word list of 19,000 words and using a fixed context window
of 7 (i.e. the window only refers to the target character and the three preceding and
following characters). Vosse (1994) trains a Hidden-Markov Model and a pattern-
based hyphenator similar to the system of Liang (1983) on a word list of 190,000
words and achieves 97.8% and 98.2% hyphen accuracy for the Markov Model and
pattern-based system respectively.

The results given in figure 10.5 can be improved upon only slightly by using
more context. Using 90% of the data for training, a context of 7 gives a hyphen ac-
curacy of 99.35% (using 1,484 rules) and including information about the absence
or presence of other hyphens in the context gives an accuracy of 99.32% (using
1,404 rules).

Belz (2000) observes that the distribution of syllables is not equal for all po-
sitions within a word. That is, initial syllables will relatively often consist of a
derivational prefix, while final syllables will relatively often be inflection endings or
derivational suffixes. This suggests that learning can profit from a setup which
considers separately the first and second syllable string (and thus only the first
hyphen), the penultimate and last syllable (and thus only the last hyphen), and the
intermediate syllables and hyphens. We performed experiments where we tried to
learn hyphenation rules specifically for these positions. The experiments showed
that there is considerable variation in the diffuclty of placing the first, final, and
intermediate hyphens. Accuracies of 99.6% (using 185 rules) were obtained for the
final hyphen, 98.6% (748 rules) for the initial hyphen and 99.3% (446 rules) for the
intermediate hyphens. The high accuracy for the final hyphen is as expected, given
the large number of suffixes in this position. The low accuracy of the initial hyphen
(lower than that of the intermediate hyphens) is unexpected, however. At the mo-
ment, we have no explanation for this fact. The weighted average of the accuracies
for initial, intermediate, and final hyphens is 99.1%. This suggests that training on
specific subproblems does not by itself lead to higher overall accuracy.

10.5 Compilation of TBL rules to a FST

TBL rules can be interpreted as finite state transducers (Roche and Schabes,
1997a). A single rule corresponds to a transducer which interchanges characters
and hyphens or, alternatively, changes digits. Rules learned by TBL are applied to
the data in the order in which they are learned. A sequence of TBL rules therefore
corresponds to the composition of the individual rule transducers.

The syllable-based hyphenation system transduces an input string into a hy-
phenated string. TBL rules can be interpreted as rules which correct errors of the
base-system by shifting inserting or deleting hyphens in specific contexts. Recall
that, given the alignment-method used for TBL, changing a ’1’ into a '2’ means that
a hyphen has to follow rather than precede the corresponding character. Thus, the
first rule induced by TBL corresponds to the following regular expression:



214 NWO Pionier Progress Report

(8) replace([-,s]:I[s,-1, [1i], [])

The base system hyphenates communisme (comunism) as com-mu-ni-sme. The
regular expression above corrects this to com-mu-nis-me. Similar regular expres-
sions can be given for rules which shift a hyphen two positions rightwards, which
shift a hyphen leftward, or which insert or delete a hyphen.

A second method for interpreting the TBL-rules makes more direct use of the
alignment-method used for TBL. The output of the syllable-based system can be
transduced easily into a string where each character is preceded by a 'O’ or a '1’,
indicating the absence or presence of a hyphen in that position. Thus, com-mu-ni-
sme would be represented as (9-a). TBL-rules can now be interpreted as regular
expressions for replacing a single digit. Thus, the first rule learned by TBL would
now correspond to the regular expression in (9-b).

(9) a. 0cOoOm1mOulnOilsOmOe
b. replace(1:2, [i], [s])

The output of a cascade of such rules is a character string interspersed with
digits. The corresponding hyphenated string is obtained by a transducer which
deletes 0, translates a 1 into a hyphen, [2,C] into [C, -] (for any character C), etc.

A finite state transducer implementing the base system and the result of TBL
can now be conceptualized as follows:

(10) hyphenate
o
introduce_digits
o
apply_-rule_cascade
o
interpret_digits

The advantage of the second method is that TBL-rules correspond to one character
substitutions, whereas the first method introduces more complicated replacement-
targets. In practice, we observed that the second method is also less computation-
ally demanding (both in terms of memory required during compilation and in terms
of the size of the resulting automaton).

A disadvantage of the second method is that it requires that contexts must refer
both to characters and digits. That is, the fourth rule learned by TBL does not
correspond to (11-b) but to (11-¢), where digit is the disjunction defined in (11-a).

(11) a.macro(digit, {0, 1 ,2, 3, 9})
b. replace(1:2, [i,n,g]l, [s])
C. replace(l:2, [i,digit,n,digit,gl, [s])

Rule contexts therefore become very large (i.e. a 5 character context gives rise
to a regular expression with a context of length 10). In practice, compilation of
such rules is difficult. We therefore also experimented with a rule templates which
allowed digits to be included in the rules. The effect of this is that instead of having
to insert digit in contexts, we now obtain rules where the value of each digit in the
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Rules| no digits digits combined
S T S T| S T
25| 137 1155| 112 704 | 48 832
50| 355 4159| 261 2184|115 3163
75| 589 6883| 460 4229|180 5891
100| 783 9196| 611 5628|219 7673
150|1,152 13,867| 888 8,583|340 12,706
200|1,846 24,019|1,206 11,748|486 20,388
250(2,563 33,187|1,524 15,543 |642 27,860

Figure 10.6: Number of states S and transitions T for the FST consisting of the
composition of N TBL rules using various methods.

context is known (usually, 0). For instance, instead of learning the rule in (11-c),
the system now learns:

(12) replace(1:2, [i,0,n,0,9]1, I[s])

A second alternative we expermimented with is treating pairs of digits and char-
acters as a single symbol. This has the advantage that contexts are reduced even
further, but has the disadvantage that the alphabet increases to approximately 5 x
26 (i.e. all combinations of a digit used in the alignment and a character).

Some results for composing N FST’s for individual TBL-rules into a single trans-
ducer for the initial system, the system with digits in contexts, and the system with
combined characters, are given in figure 10.6. Although the size of the transducer
grows approximately linear with the number of incorporated rules, the overall size
of the transducer is nevertheless too large for incorporation of all 1,400 rules in-
duced by TBL. Using the Prolog-based FSA implementation on a 64-bit machine
with 1 Gb of memory, we managed to compile maximally 400 rules into a single
transducer. To apply the full set of induced rules to new data, the best one can do
therefore is compose FST’s for up to 400 rules, and use a pipeline architecture to
pass the output of one transducer as input to the next.

These results are less encouraging than those of Roche and Schabes (1997a).
Note, however, that the rule-set they experimented with were the result of applying
TBL for part-of-speech tagging (as in Brill (1995)). Their rule set consisted of 280
rules with a context of at most three symbols. If the rule set is much larger, and
contains lengthy contexts, compilation may not be feasible in practice.

10.6 A comparison with TgX

The pattern-based hyphenation method of Liang (1983), incorporated in TgX and
related programs such as KX, uses a word list to derive patterns which indicate
legal and illegal hyphenation points. The extraction of patterns is very similar to
TBL in that it tries to find the patterns which introduce most legal (or illegal) hy-
phenation points, while introducing a minimal number of errors. In this section, we
present two results which shed light on the relationship between the hyphenation
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Level Patterns String

(mark boundaries) .pijnappel.

1 jnja 1na .pijinjappel.

2 i2J Jona znap -pizjoniappel.

3 3pijn p3p .3pizjoniapspel.

4 .P4 Jnag 4pp peal 41.|.3psip72n184P3p€41.
5 psp .3p4izjonjaspspesl.
(interpret result) pijn—-ap-pel

Figure 10.7: Pattern-based Hyphenation in TgX

methods presented above and the pattern-based method. We evaluate the accuracy
of TgX and the TBL system for Dutch on running text. Next, we present a method
for compiling hyphenation patterns into a single FST. We start with an overview of
the pattern-based method.

10.6.1 Hyphenation in TgX

Hyphenation in TigX uses five levels of patterns to determine legal and illegal hy-
phenation points. Level 1 contains patterns which insert the digit 1, level 2 patterns
introduce 2, etc. In the resulting string, odd numbers stand for potential hyphen-
ation points, while even numbers indicate illegal hyphenation points. Tutelaers
(1999) illustrates the method with the example in figure 10.7. First, word bound-
ary markers (.) are added to the word to be hyphenated. Next, level 1 patterns are
applied. A pattern matches if it contains a character-string which matches some
part of the word. Application of the pattern means that the corresponding marker is
added to the word string. In this case, two patterns apply, introducing two markers.
Next, level 2 patterns are applied. Higher level rules override the effects of lower
rules, and thus the j,na pattern overwrites the effect of the jna pattern. In the
final step, odd numbers are realized as hyphens, while even numbers can simply
be discarded. KIEX adopts the typographic convention of never hyphenating words
after the first or before the penultimate and last character.

The acquisition of patterns follows a procedure which is strikingly similar to TBL.
In a first round, patterns are collected which identify a high number of potential
hyphenation points, while overgeneralizing minimally. In a second round, patterns
are learned which block the erroneuos hyphenation points which are the result of
applying the level-1 rules. This process iterates three more times, giving rise to five
levels of rules in total.

There are also a few differences between this method and TBL. First of all, all
patterns on a given level can be applied simultaneously to an input string. Ordering
of patterns is only relevant between levels. TBL rules, on the other hand, should be
applied in the order in which the are acquired. Second, the score of each rule must
be above a certain threshold T, where the score of a pattern is computed as follows:

(13) Score = Good x G — Bad x B
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Good and Bad are the counts for the number of correct and wrong applications
of the pattern to the data, G and B are weights which determine the accuracy of the
rule (i.e. by making B much higher than G, accurate rules will score higher than
less accurate rules which might correct a larger number of errors). The value of G,
B and the threshold T may vary per level. Furthermore, the maximal length of the
patterns considered may vary per level. A typical set-up appears to be one where
the context is short and the threshold is high initially, while for higher levels, the
context is longer, the threshold is lower, and the value of B is much higher than that
of G. For TBL, there is no fixed number of levels, and parameters can only be set
globally. Finally, Liang’s method learns both legal and illegal hyphenation points.
The TBL method combines the effect of identifying legal and illegal hyphenation
points by learning rules which shift a hyphen. Shifting a hyphen implicitly classifies
the original position as an illegal hyphenation point and the target position as a
legal hyphenation point.

Hyphenation patterns for Dutch were created on the basis of the same Celex
word list used for training and testing in the previous sections. As a consequence
of a spelling reform in 1996* the construction of patterns has been redone recently
(Tutelaers, 1999). The new Dutch pattern file contains a total of 8.870 patterns,
where patterns are maximally 8 characters long.

10.6.2 Hyphen accuracy on running text

Training and testing on word lists for which the correct hyphenation is known, is
convenient but also artificial, as the characteristics of running text differ sharply
from that of a word list. The average word length for the Celex list is 10.9 while it
is approximately 4.5 for Dutch running text. The average number of hyphenation
points per word is 2.5 for Celex, but only 0.6 for the fragment of running text
described below. Evaluation on running text may therefore give results which differ
from the results for a word list. Note also that, as the TEX patterns for Dutch were
derived using 100% of the Celex list, evaluation on outheld data from the word list
is impossible.

A test set was created consisting of 1,000 sentences of newspaper text (selected
from the CD-ROM version of de Volkskrant, 1997). This set contained a total of
11,641 words. Approximately 10% of the word types in the test set were not in-
cluded in the Celex. 4,219 of the words were hyphenated by ElzXwhen forced to
produce all hyphenation points, giving rise to a total of 7,024 hyphens. Instead
of checking all results, we only inspected those cases where ElzXand the TBL sys-
tem disagreed. This was the case for 83 words, 9 of which were typo’s which were
discarded. The results of the comparison are given in figure 10.8.

Both systems make very few mistakes, but TigX does considerably better than the
TBL system. The difference seems to be due mostly to the fact that TgXuses well over
8,000 patterns, where the TBL system uses only 1,400 patterns. On the other hand,
the TBL system only corrects the output of the syllable-based system, and thus is
expected to require less rules. Both systems used the same data for acquisition
of rules or patterns, but the TEX system uses rules with more context (up to 8

4See www.minocw.nl/spelling.
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EIrX TBL

Mistake 3 36

Missing hyphen 12 25

Total 15 61

Hyphen Accuracy 99.8 99.1
(estimate)

Word Accuracy 99.8 99.5
(estimate)

Mistakes by-pas-s-o-pe-ra-tie al-snog

(bypass-operation (eventually)

chi-que aut-hen-tieke

(chic) (authentic)

fa-mi-lief-ront be-de-vaart-soord

Sfamilyfront (holy place)

be-leid-sme-de-wer-ker

(burocrat) bus-i-ness

(business)

Missing ana-ly-semo-del afle-ve-ring

analysis model (sequel)

autofa-bri-kant erach-ter

(car manufacturer (behind it)

be-de-vaartsoord li-chaampje

(holy place) small body)

be-leidsme-de-wer-ker onaf-han-ke-lijke

(burocrat) (independent)

drugspan-den opeens

(drug houses) (suddenly)

Figure 10.8: Comparing Latex and TBL on 11,641 words (containing 7,024 potential

hyphenation points) of running text.
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characters). Furthermore, it seems the careful tuning of parameters guiding the
acquisition of patterns at each level allows the pattern-based system to acquire
more effective patterns than the generic TBL method.

It is tempting to think of the results in figure 10.8 as indications of accuracy.
Note, however, that, apart from the fact that the test set was small, the systems
have only been compared on words were there was disagreement. It is possible
therefore that the test results contain errors which have gone unnoticed because
both systems made the same mistake.

10.6.3 Compilation of patterns

Although Liang (1983) uses a finite-state method to store and apply patterns effi-
ciently, patterns are not actually compiled into a transducer which takes a word
as input and produces the hyphenation according to the patterns as output. The
construction of such a transducer is proposed in Kaplan and Karttunen (1998).

A hyphenating FST for hyphenation patterns can be constructed as the compo-
sition of the following sequence of transducers. First, O’s are introduced between
all characters in the input string. Next, level 1 rules are applied. Applying a level
1 rule means that a O is replaced by a 1 in the relevant context. For instance, the
pattern in (14-a) corresponds to the regular expression in (14-b). Note that contexts
must be interspersed with digits up to the corresponding level of rule application.
Application of all level 1 rules can be achieved by composing (in arbitrary order)
all regular expressions for the individual patterns into a single transducer. Higher
level rules must be able to overwrite the effect of earlier, lower level rules. This
can be achieved by interpreting a level 2 pattern such as (14-c) as the regular ex-
pression in (14-d). This pattern substitutes both O’s and 1’s by 2’s in the relevant
context. The level 1 transducer is composed with the transducer for all level 2 rules,
etc. Finally, odd numbers are realized as hyphens and even number are discarded.
Schematically, we have the FST defined by the regular expression in (14-e).

(14) a. jnja
b. replace(0:1, [j,{0,1},nl, [al)
C. jona
d. replace ({0,1}:2, (3], [n,{0,1,2},a])
€. insert_digits(0)
o
patterns (1)
o
patterns (2)
o
patterns (3)
o
patterns (4)
o
patterns (5)
o
digits2hyphens



220 NWO Pionier Progress Report

The construction of an FST for hyphenation patterns is not unlike the construc-
tion of an FST for TBL-rules. Yet, compilation of more than 8,000 patterns into a
single transducer turned out to be feasible. The result has over 600,000 transi-
tions, and gives rise to a binary of 15 Mb.

It is not clear why compilation of hyphenation patterns is ‘easier’ than compi-
lation of TBL patterns for the same task. One possible explanation could be the
fact that hyphenation patterns are ordered in blocks, where the application of rules
within a block is not ordered, whereas TBL-rules have to be applied in order of
acquisition. The latter suggests more interaction between rules than the former,
which might have an effect on the complexity of the corresponding automaton.
Strict ordering of TBL-rules is necessary because some rule may provide input for
a later rule (feeding), or because some rule blocks the application of a later rule
(bleeding). If no feeding or bleeding relationship exists between rules, they can be
applied in any order. We computed these relationships for the hyphenation rules
learned by TBL, and concluded that 19 blocks of rules (where the order of applica-
tion within a block is irrelevant) are needed to account for all feeding and bleeding
relationships. Thus, it seems that the interaction between rules is indeed more
complex in the TBL system than in the pattern-based system.

10.7 Conclusions

In this chapter we have presented two finite-state methods for hyphenation as well
as a method for compiling an existing method into a finite-state transducer. The
use of the replace-operator was crucial in all methods. In particular, the syllable-
based method capitalizes both on the fact that replace performs a longest-match
replacement and on the fact that it preforms replacements from left to right. The
method for compiling TBL-rules into a single transducer proposed by Roche and
Schabes (1997a) turned out to be impractical for the large number of rules required
for accurate hyphenation. Hyphenation patterns as used by TgX on the other hand,
proved to be compilable into a single FST, albeit a large one. It is unclear why TBL-
rules are 'harder’ in this respect than patterns.

Accuracy of hyphenation after applying TBL turned out to be higher than that
of previous systems for Dutch, that were trained and evaluated on word lists. The
numerous hyphenation patterns for Dutch used by TgX are even more accurate.
The acquisition of TBL-rules and hyphenation patterns is strikingly similar. By
using larger context windows for patterns, and by tuning the acquisition of patterns
carefully to the hyphenation problem, TEX is able to induce a much larger set of
patterns, which turns out to have a positive effect on accuracy.
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Chapter 11

Parse Selection with Log-linear
Models

11.1 Background

Computational linguistics adopts from theoretical linguistics the notion of a gram-
mar as a set of constraints on the relationship between the form of an utterance
and its meaning. The properties of grammars have important consequences for the
ways in which computational linguists process language. One fact which underlies
the search algorithms used for parsing is that the form-meaning relation is in gen-
eral many to many. For example, the sentence Chris saw tourists with binoculars
might mean either that Chris saw tourists who carried binoculars, or that Chris
saw tourists with the aid of binoculars (see Figure 11.1). This kind of ambiguity is
pervasive in language.

Computational linguistics has contributed to the study of language the insight
that the grammar allows a huge number of structures per form. This insight is
does not follow from common sense, as language users effortlessly recognize the
meaning intended in a particular context. But it is the repeated experience of all
computational grammar projects, especially those which attempt to encode gram-
mar precisely, that the number of structures which a sentence may have grows
exponentially as a function of the length of the sentence in words (Church and
Patil, 1982). An illustration of this effect was given in figure 5.2 in chapter 5.

This means that a fundamental problem facing developers of natural language
processing systems is that the grammatical constraints created by linguists admit
structures in language which no human would recognize. For example, a sentence
like The tourist saw museums sounds simple enough, but most NLP systems will
recognize not only the intended meaning, but also the meaning in which saw is a
noun, and the entire string is parsed as a determiner the followed by a compound
noun tourist saw museums. This reading is nonsensical, but cannot be ruled out
on purely structural grounds without also ruling out the parallel structure in the
circular saw blades.

The central importance of disambiguation, or of finding the intended reading
among the many readings produced by a parser, has been recognized at least since
1963, when a Harvard University research team headed by Susumo Kuno tested
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S S
/\ /\
NP VP NP VP
| _ | _
Chris V NP Chris VP PP
\ _— T _—
saw N’ PP AY4 NP P NP
[ | [ |
tourists P NP sa‘lw N’ with binoculars
| \ [
with  binoculars tourists

Figure 11.1: Possible structures corresponding to the two readings of Chris saw
tourists with binoculars.

their parser with the sentence Time flies like an arrow and were rewarded with four
separate readings. A typical architecture for disambiguation uses a probabilistic
context free rule system, where estimates of rule probabilities are de rived from the
frequency with which rules have been encountered in collections of parses which
have been disambiguated by hand. With a sufficient quantity of annotated training
data and careful selection of stochastic features, such systems perform adequately
enough on structural disambiguation tasks to support simple applications.

More sophisticated applications such as open-domain question answering or di-
alog systems, however, require more sophisticated grammar formalisms like Head-
Driven Phrase Structure Grammar (Pollard and Sag, 1994). Furthermore, as gram-
mars become more comprehensive, parsers will find an ever larger number of po-
tential readings for a sentence and effective disambiguation becomes even more
important. Since these formalisms involve more a complex flow of information than
simple context-free grammars, more complex statistical methods are required to
capture the subtle dependencies among grammatical structures.

As Abney (1997) shows, the simple rule frequency methods applied to disam-
biguating context free parses cannot be used for disambiguating constraint gram-
mar parses, since these methods rely crucially on the statistical independence of
context-free rule applications. Since constraint-based grammars involve more a
complex flow of information than context-free grammars, more complex statisti-
cal methods are required to capture the subtle dependencies among grammatical
structures.

One solution to the independence problem is provided by maximum entropy
models (Jaynes, 1957; Berger, Della Pietra, and Della Pietra, 1996; Della Pietra,
Della Pietra, and Lafferty, 1997), a class of exponential models which have proven
to be very successful in general for integrating information from disparate and pos-
sibly overlapping sources. Maximum entropy (ME) models, variously known as
log-linear, Gibbs, exponential, and multinomial logit models, provide a general pur-
pose machine learning technique for classification and prediction which has been
successfully applied to fields as diverse as computer vision and econometrics. In
particular, maximum entropy models have been fruitfully applied to the problem
of disambiguation in constraint based grammar formalisms (Johnson et al., 1999;
Riezler et al., 2000; Osborne, 2000; Malouf and Osborne, 2000; Bouma, van Noord,
and Malouf, 2001). Maximum entropy models require no unwarranted indepen-
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dence assumptions, and thus are well suited for capturing the kinds of interactions
found in constraint-based grammars.

A further benefit of maximum entropy models is that they allow stochastic rule
systems to be augmented with additional syntactic, semantic, and pragmatic fea-
tures, so that a broader range of resources can be brought to bear on the problem
of disambiguation. However, the richness of the representations maximum entropy
models is not without cost: even modest maximum entropy models can require
considerable computational resources and very large quantities of annotate train-
ing data in order to accurately estimate the model’'s parameters.

11.2 Stochastic unification-based grammars

Suppose we have a probability distribution p over a set of events X which are char-
acterized by a d dimensional feature vector function f : X — R4, In the context of
a stochastic context-free grammar (SCFG), for example, X might be the set of pos-
sible trees, and the feature vectors might represent the number of times each rule
applied in the derivation of each tree. Our goal is to construct a model distribution
q which satisfies the constraints imposed by the empirical distribution p, in the
sense that:

E,[fl = Eqlf] (11.1)

where E[f] is the expected value of the feature vector under the distribution p:

Eplfl = ) p(x)f(x)

xeX

In general, this problem is ill posed: a wide range of models will fit the con-
straints in (11.1). As a guide to selecting one that is most appropriate, we can
call on the Principle of Maximum Entropy of Jaynes (1957): “In the absence of ad-
ditional information, we should assume that all events have equal probability.” In
other words, we should assign the highest prior probability to distributions which
maximize the entropy.

H(q) =—) dq(x)logq(x) (11.2)
xeX
This is effectively a problem in constrained optimization: we want to find a distribu-
tion q which maximizes (11.2) while satisfying the constraints imposed by (11.1). It
can be straightforwardly shown (Jaynes, 1957; Good, 1963; Campbell, 1970) that
the solution to this problem has the parametric form:

exp (67f(x))
2 yex€xp (07f(y))

where 0 is a d-dimensional parameter vector and 8'f(x) is the inner product of the
parameter vector and a feature vector.

One complication which makes models of this form difficult to apply to prob-
lems in natural language processing is that the events space X is often very large or
even infinite, making the denominator in (11.3) impossible to compute. One mod-
ification we can make to avoids this problem is to consider conditional probability

(11.3)

de(x) =
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distributions instead (Berger, Della Pietra, and Della Pietra, 1996; Chi, 1998; John-
son et al., 1999). Suppose now that in addition to the event space X and the feature
function f, we have also a set of contexts W and a function Y which partitions the
members of X. In our SCFG example, W might be the set of possible strings of
words, and Y(w) the set of trees whose yield is w € W. Computing the conditional
probability qg(x/w) of an event x in context w as

exp (67f(x))
yEY(w) eXp (eTf(U))

qe(xw) = 5 (11.4)

now involves evaluating a more much tractable sum in the denominator.

Of course, in the case of a SCFG, the rule probabilities are independent and we
could use a much simpler probability model. The strength of ME models such as
(11.4) is that the independence assumption underlying standard SCFG parameter
estimation is replaced by the Maximum Entropy Principe, and ME models can be
used even when the feature probabilities are not independent. This means that
conditional ME models can be used to accurately model rule probabilities for the
Alpino grammar. Furthermore, we are not limited to looking only at rule probabili-
ties. Indeed, as we will see in the next sections, we can construct a disambiguation
model which is sensitive to a range of distinct but partially overlapping sources of
information.

11.2.1 Parse selection

For parse selection, we consider a context w to be a sentence and the events
x € Y(w) within this context are the possible parses of the sentence. Each parse is
characterized by a vector of feature values f(x), and may be compared on the basis
of those features with other possible parses. Disambiguated parsing proceeds in
two steps. In the first step a parse forest is constructed. The second step con-
sists of the selection of the best parse from the parse forest. Following Johnson et
al. (1999), the best-first search proceeds on the basis of the unnormalized condi-
tional probabilities derived from the numerator of equation (11.4) for each possible
subtree.

The motivation for constructing a parse forest is efficiency: the number of parse
trees for a given sentence can be enormous. In addition to this, in most applications
the objective will not be to obtain all parse trees, but rather the best parse tree.
Thus, the final component of the parser consists of a procedure to select these best
parse trees from the parse forest.

Note that best-first parsing methods proposed for SCFGs (e.g. Caraballo and
Charniak (1998)) cannot be used in this context. In attribute-value grammars, it
might easily happen that the locally most promising sub-trees cannot be extended
to global parses because of conflicting feature constraints.

A variety of parse evaluation functions were considered. A naive algorithm con-
structs all possible parse trees, assigns each one a score, and then selects the best
one. Since it is too expensive to construct all parse trees, we have implemented
an algorithm which computes parse trees from the parse forest as an approximate
best-first search. This requires that the parse evaluation function is extended to
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partial parse trees. We implemented a variant of a best-first search algorithm in
such a way that for each state in the search space, we maintain the b best can-
didates, where b is a small integer (the beam). If the beam is decreased, then we
run a larger risk of missing the best parse (but the result will typically still be a
relatively ‘good’ parse); if the beam is increased, then the amount of computation
increases as well.

11.2.2 Experiments and results

To evaluate the effectiveness of ME models for disambiguation, we constructed a
model for the Alpino grammar based on the dependency structures in the Alpino
treebank. The first step in building the model is to construct the reference distribu-
tion p(x) which defines the constraints (11.1). For each sentence in the tree bank,
we used the Alpino parser to construct a number of parses. Ideally, we would use
all parses licensed by the grammar as part of the training data. However, as a few
sentences have an astronomical number of parses, this is not practical. In addi-
tion, as Osborne (2000) observes, constructing a model based on a representative
sample of parses is not only more efficient, it often gives as good or better results.

Next, each parse was assigned a probability proportional to the number of er-
rors in its dependency structure, determined by comparison to the dependency
structure stored in the treebank. An ‘error’ is any relation which appears in the
dependency structure constructed by the parser but not in the treebank, or con-
versely which appears in the treebank but not in the constructed parse.

Then, since the model for the probability of parses is based on the probabilities
of features, each parse x is represented by a feature vector f(x) which character-
izes the properties of parses which the probability model will be sensitive to. These
features should not be confused with the features in an HPSG feature structure.
The features in this stochastic parsing model are chosen by the grammarian and
in principle they can be any characteristic of the parse that can be counted. The
features that we use at present are grammar rules, dependency relations, subcat-
egorization frames, and unknown word heuristics. For dependency relations and
subcategorization frames, we include both a fully lexicalized version of the feature
and a version backed off to fairly coarse-grained part of speech labels.

As an example of the features used in the model, consider one parse of the
following sentence in the treebank:

(1) Hijisna zijn reis naar de telefooncel niet meer teruggekeerd.
he is after his trip to  the phone.booth not more returned

‘He never returned after his trip to the phone booth.’

The rule features assigned are shown in Figure 11.2. The rules range from ex-
tremely general-every parse includes exactly one invocation of the rule robust-to
very specific, and are equivalent to the features that would be used in a probability
model for a SCFG. Besides the rule features, which are derived from the constituent
structure of the parse, we also add features based on its dependency structure.
First, for every head-dependent relation, there is a dependency feature (see Fig-
ure 11.3). Each dependency feature is a triple of pairs: the part of speech and



228 NWO Pionier Progress Report

robust top_start xp(1) mod1l

max xp(root) a_adv_a non_wh_topicalization(np_light,2)
imp subj_topic vproj_ve

v2_vp_vproj vp-mod-v vgap

mod2 pp-p-arg(np) adv.a

np-detn n_n_pps a_adv_a(not_er)

pp-p-arg(np) n(naar.a) a_adv_a(not_er)

np_detn vp-mod_v VvV

vgap vc_vb

Figure 11.2: Rule features and unknown word heuristics

lexeme of the head, a relation type and direction, and the part of speech and lex-
eme of the dependent, including both lexicalized and backed off versions. Finally,
subcategorization features (Figure 11.4) list all of the types of all the relations which
occur in the parse with a particular word as the head. These features too appear in
both lexicalized and backed off versions.

Finally, when we have constructed for each sentence w a set of parses x €
Y(w) with their reference probabilities p(x|w) and the corresponding feature vectors
f, we need to find a parameter vector 6 such that the conditional probabilities
(11.4) maximize the likelihood of the training data (or, equivalently, minimize the
divergence between the predicted distribution q(x|w) and the reference probabilities
p(x[w)).

The values of the parameters can be interpreted as weights reflecting preferences
for particular features: a large positive weight denotes a preference for the model to
use a certain feature, whereas a negative weight denotes a dispreference. Various
algorithms exist that guarantee to find the global optimal settings for these weights
so that the probability distribution in the training set is best represented, which we
will discuss in more detail in section 12. For the results reported in this section,
we used a limited memory variable metric algorithm.

For these experiments, we used the first 250 parses of 6,182 sentences from
the treebank. For 76% of the sentences, the parsers found fewer than 250 parses,
and for those sentences all parses were used. Overall, there were and average
of 86.6 parses per sentence in the training data. Two models were constructed,
a simple model using only 315 rule features, and a fully lexicalized model using
830,899 rule, dependency, and subcategorization features. The performance of
these models, evaluated using 10-fold cross-validation, are given in Table 11.1.
The concept accuracy metrics are defined in chapter 5.

Also shown are the results of using no disambiguation model (simply using the
first parse produced by the parser), and the best possible result (which is deter-
mined by the limitations in coverage of the Alpino grammar).

As these results show, adding lexical and lexicalized features to the model does
substantially increase the performance of the model, though at the cost of substan-
tial complexity. In addition, there is considerable room for improvement, both in
grammatical coverage and in the performance of the disambiguation model. Cur-
rent work is focused on addressing both the complexity and the performance issues
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verb:ben:su:left: pronoun:hij
verb:ben:su:left:pronoun:_
verb:ben:vc:right:verb:keer
verb:ben:vc:right:verb:_
verb:keer:su:left: pronoun:hij
verb:keer:su:left:pronoun:_
verb:keer:mod:left:preposition:na
verb:keer:mod:left:preposition:_
preposition:na:objl:right:noun:reis
preposition:_:objl:right:noun:reis
noun:reis:mod:right:preposition:naar
noun:reis:mod:right:preposition:_

preposition:naar:objl:right:noun:telefooncel

preposition:naar:objl:right:noun:_
noun:telefooncel:det:left:determiner:de
noun:telefooncel:det:left:determiner:_
noun:reis:det:left:determiner:zijn
noun:reis:det:left:determiner:_
verb:keer:mod:left:adjective:meer
verb:keer:mod:left:adjective:_
adjective:meer:mod:left:adverb:niet
adjective:meer:mod:left:adverb:_

verb:_:su:left:pronoun:hij
verb:_:su:left:pronoun:_
verb:_:vc:right:verb:keer
verb:_:vc:right:verb:_
verb:_:su:left:pronoun:hij
verb:_:su:left:pronoun:_
verb:_:mod:left:preposition:na
verb:_:mod:left:preposition:_
preposition:na:objl:right:noun:_
preposition:_:objl:right:noun:_
noun:_:mod:right:preposition:naar
noun:_mod:right:preposition:_

preposition:_:objl:right:noun:_
noun:_:det:left:determiner:de
noun:_:det:left:determiner:_
noun:_:det:left:determiner:zijn
noun:_:det:left:determiner:_
verb:_:mod:left:adjective:meer
verb:_:mod:left:adjective:_
adjective:_:mod:left:adverb:niet
adjective:_:mod:left:adverb:_

Figure 11.3: Dependency features

noun:telefooncel:[det]
preposition:naar:[obj1]

noun:reis:[det,mod]
preposition:na:[obj1]
adjective:meer:[mod]

noun:_:[det]
preposition:_:[obj1]
noun:_:[det,mod]
preposition:_:[obj1]
adjective:_:[mod]

preposition:_:obj1:right:noun:telefooncel

verb:keer:[su,mod,mod] verb:_:[su,mod,mod]
verb:ben:[su,vc] verb:_:[su,vc]

Figure 11.4: Subcategorization frames

CA CA.
No model 68.76 0.00
Rules 78.56 59.65
Lex+Backoff 80.12 69.14
Best 85.19 100.00

Table 11.1: Performance evaluation of disambiguation models
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by more elaborate feature and model selection strategies.

11.3 Feature merging

One of the goals of model selection is to maximally exploit the small but informa-
tive training data set we have by taking a more sophisticated view of the feature set
itself. To this end we experimented with the method of feature merging, a means
of constructing equivalence classes of statistical features based upon common el-
ements within them. This technique allows the model to retain information which
would otherwise be discarded in a simple frequency-based feature cutoff by pro-
ducing new, generalized features which serve as a variant of backed-off features.

11.3.1 The Features and Feature Merging

The model depends on the distribution of the features and their informativeness,
thus it is important that the features used be germane to the task. In parsing,
features should reflect the sort of information pertinent to making structural deci-
sions.

In the present experiments, we employ several types of features corresponding
to grammatical rules, valency frames, lexicalized dependency triples, and lexical
features constituting surface forms, base forms, and lexical frames (a subset of the
sentences and features used for the experiments described in the section 11.2.2).
Instances of each feature type were collected from the training data in advance to
yield a feature set consisting of 82,371 distinct features.

Examples of these features may be seen below, where example 1 is a rule for
creating a VP, 2 contains a valency frame for the noun mens, 3 describes a depen-
dency triple between the noun mens and the adjective modern, and the direction of
the modification, and finally example 4 contains lexical information about the word
modern as it occurs in context.
vp-arg-v (np)
noun (de) :mens: [mod]
noun:mens:mod:left:adjective:modern

W N~

moderne:modern:adjective (e, adv)

11.3.2 Noise reduction and feature merging

The feature set used here exploits the maxent technique in that it relies on features
which are overlapping and mutually dependent. The features represent varying
degrees of linguistic generality and hence some occur much more frequently than
others. Furthermore, the features may also represent information which is redun-
dant in the sense that it is represented in multiple different features, in which case
we say that the features “overlap”. Features which share information in this way
are necessarily dependent in their distributions.

The overlapping features allow for a variety of “backing off” in which features
which share a structure but contain less specific information than others are used
in the same model as features with more specific information.
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It is desirable that the features be as informative as possible. The model should
contain specific features to the extent that the features’ distributions are accurately
represented in the training data. There is a point, however, regardless of the size of
the corpus, at which the specificity of features translates to sparseness in the data,
causing noise and leading to deterioration in the model’s performance.

A number of approaches have been taken to smoothing exponential models,
including imposing a Gaussian prior over the distribution (Chen and Rosenfeld,
1999) and building the feature set up by a process of induction to ensure that only
maximally representative features are admitted into the model (Della Pietra, Della
Pietra, and Lafferty, 1997). The most commonly employed and computationally
inexpensive approach to reducing noise is to use a frequency-based feature cutoff
(Ratnaparkhi, 1998), in which features which occur fewer times in the training data
than some predetermined cutoff are eliminated. This has shown to be an effective
way to improve results. Because of its simplicity and effectiveness, it is the ap-
proach we have focused on improving on in the present research. Although it is an
effective way to reduce noise in a model, there is a risk with a cutoff that informa-
tion encoded in the discarded features may be useful. A feature may be rare due
to some rare element within it, but otherwise useful. To prevent discarding such
useful features, we experiment with a method of feature merging similar to that
introduced by Mullen and Osborne (2000) and explored in detail by Mullen (2002).
This approach considers features as being composed of informative elements. Be-
fore any feature cutoff is applied, features which are identical except for particular
rare elements are generalized by merging; that is, the features are unioned and con-
sidered as a single feature. The elements upon which these merges are done are
determined with a pre-set threshold, and merges are done on elements which occur
fewer times than this. The merging process eliminates the distinction between two
features, thus eliminating the information provided by the element which distin-
guishes them, while the rest of the information provided by the merged features
remains intact in the model.

Individual unique features may be considered as sets of instantiations in the
data. A feature which is the result of merging is thus the union of the features
which were merged. The count of occurrences of the new feature is the sum of the
counts of the merged features. If a cutoff is incorporated subsequently, the newly
merged feature is more likely to survive in the model, as its frequency is greater than
each of the features before merging. Thus information in features which otherwise
might have been lost in a cutoff is retained in the form of a more general feature.

11.3.3 Building merged models

The first step is to determine how the features are composed and what the ele-
ments are which make them up. Factors which contribute most to sparseness,
such as lexical items and certain grammatical attributes, are good candidates. In
the present work, lexical items, both sentence forms and word stems, are consid-
ered as elements. Frequency counts are taken for all elements. A threshold is
determined using a held-out test set. Using this threshold, a new model is created
as follows: in the representation of the original model’s features, all instances of
elements which occur fewer times than the threshold are replaced by a dummy
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element. Features which were identical aside from these infrequent elements are
thus rendered completely identical. For example, let

feature 1 = A : B with count 2
feature 2 = A : C with count 4

where A, B, and C are elements. We may count the occurrences of each element
in the training data and find that the count of A is 20, of B is 5, and of C is 7.
We determine by use of held-out test data that an optimal cutoff is, e.g., 10. Since
both B and C have counts lower than this, all instances of B and C are replaced by
a dummy element X. Thus features 1 and 2 above are both in effect replaced by
feature 3, below, whose count is now the sum of those of the features which have
been merged.

feature 3 = A : X with count 6

Iterative scaling was performed on the new feature set to obtain the appropriate
maximum entropy weights (see section 12).

11.3.4 Composition of features

A quality of compositionality is necessary in features in order to perform the merg-
ing operation. That is, it is necessary that features be composed of discrete el-
ements for which frequency counts can be attained from the data. The features
described in subsection 11.3.1 may be viewed as being composed of words, base
forms, POS tags, grammar attributes, and other discrete elements which occur
together in a particular way. Merging proceeds by first establishing a merging
threshold via experiments on held-out data. Frequencies of all elements are gath-
ered from the training data. Finally, features containing elements whose counts
are fewer than the threshold are merged. This is done by replacing all instances of
sub-threshold elements with a dummy element in features. For example, if it were
found that the element modern had a count less below the threshold, all features
containing that would be altered. A feature such as

noun:mens:mod:left:adjective:modern
would be changed to
noun:mens:mod:left:adjective: xxxxx

and likewise if the element aardig occurred with a count below the threshold, the
same would be done with the feature

noun:mens:mod: left:adjective:aardig
so that both features merged as the single feature
noun:mens:mod: left:adjective: xxxxx

with a count equal to the sum of the two merged features.
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Model CA CA,
baseline 63.01 0.00
maxent 77.45 56.99
maxent+cutoff 79.36 64.52
maxent+cutoff+merge 80.01 67.08
best possible 88.35 100.00

Table 11.2: Preliminary results on held-out data

11.3.5 Why feature merging?

It is well known that many models benefit from a frequency-based feature cutoff.
Using feature merging, we seek to take a more sophisticated view of the features
themselves, allowing the same degree of noise reduction as a feature cutoff, while
simultaneously generalizing the features to obtain the benefits of backing off. By
operating on sub-feature information sources, we hope to discard noisy information
from the model with a greater degree of control, maintaining useful information
contained by features which would otherwise be lost.

11.3.6 Experiments

Experiments to evaluate the effectiveness of feature merging were performed using
the features described above with a training set of 1,220 sentences, whose parses
totaled 626,699 training events, initially with a held-out set of 131 sentences and
subsequently on a test set of unseen sentences totaling 566 sentences. A merging
threshold of 500 and a feature cutoff of 500 were determined by use of the held-out
test set. The number of active (non-zero weighted) features in the original model was
75,500, the number of active features in the model with cutoff alone was 11,639,
and the number of active features in the model which had been merged prior to the
cutoff was 11,890.

As in the previous experiments, for each sentence in the test set, the dependency
structure of the highest scoring parse was extracted and compared to the gold
standard dependency structure in the treebank, and the concept accuracy was
calculated. The results given below for each model are in terms of average per-
sentence raw and adjusted concept accuracy.

Preliminary results on held-out data to establish thresholds, shown in ta-
ble 11.2, were promising, suggesting that incorporation of merging with a merge
threshold of 500 elements performed somewhat better than the best possible fea-
ture cutoff of 500 elements alone.

Unfortunately, these preliminary results were not supported by experiments on
unseen data. As can be seen in table 11.3, the averaged results of four folds of
ten-fold cross validation, representing a total of 566 sentences, show that the use
of merging at the threshold determined by the held-out data does not appear to
benefit the model.

Thus, results so far are inconclusive. The effectiveness of the merging technique
appears to depend greatly on qualities of the feature set itself. It is hoped that
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Model CA CA,
baseline 58.92 0.00
maxent 71.53 45.77
maxent+cutoff 73.67 53.54
maxent+cutoff+merge 73.26 52.05
best possible 86.47 100.00

Table 11.3: Results on unseen data

further experiments with different types of features will shed light on circumstances
in which feature merging may be most effectively employed as a tool to optimize
model performance.

11.4 Conclusions and future work

In this section we have shown how to construct maximum entropy models for parse
selection. These models are capable to some extent to disambiguate natural lan-
guage sentences. We showed that an accuracy of about 80% can be obtained using
such models. Given the current state of the grammar, this means that the maxi-
mum entropy model solves about 70% of the disambiguation problem.

We have also attempted to improve the models by means of feature selection.
The results we obtained are inconclusive.

In the near future we hope to improve the models in two ways. Firstly, we will
attempt to apply other feature selection methods in order to construct accurate and
compact models. Secondly, we will attempt to improve our results by incorporating
unsupervised methods. Such methods do not rely on the availability of large sets
of annotated sentences. If models are to be sensitive to lexical information, then
it appears unlikely that the amount of annotated date that would be required will
ever become available. Therefore, methods that are capable of extracting lexical
information from unannotated data or automatically annotated data appear to be
a necessity.



Chapter 12

Parameter estimation

A leading advantage of maximum entropy models is their flexibility: they allow
stochastic rule systems to be augmented with additional syntactic, semantic, and
pragmatic features. However, the richness of the representations is not without
cost. Even modest ME models can require considerable computational resources
and very large quantities of annotated training data in order to accurately estimate
the model’s parameters. While parameter estimation for ME models is conceptually
straightforward, in practice ME models for disambiguation, like many other nat-
ural language tasks, are usually quite large, and frequently contain hundreds of
thousands of free parameters. Estimation of such large models is not only expen-
sive, but also, due to sparsely distributed features, sensitive to round-off errors.
Thus, highly efficient, accurate, scalable methods are required for estimating the
parameters of practical models.

In this chapter, we discuss experiments comparing a number of algorithms for
estimating the parameters of ME models, including Generalized Iterative Scaling
and Improved Iterative Scaling, as well as general purpose optimization techniques
such as gradient ascent, conjugate gradient, and variable metric methods. Surpris-
ingly, the widely used iterative scaling algorithms perform quite poorly, and for all
of the test problems, a limited memory variable metric algorithm outperformed the
other choices.

12.1 Maximum likelihood estimation

Given the parametric form of an ME model in (11.4), fitting an ME model to a
collection of training data entails finding values for the parameter vector 6 which
minimize the Kullback-Leibler divergence between the model qg and the empirical
distribution p:

p(xw)

qo(xw)

D(plido) = 3_ p(x,w)log

w,x

or, equivalently, which maximize the log likelihood:

L(6) = }_p(w,x)1og do(xw) (12.1)

w,x
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ESTIMATE (p)

1 8°«0

2 k&0

3 repeat

4 compute q™ from 0¥
5 compute update 5
6 oik+1) (k) 4 §(k)

7 k—k+1

8 until converged

9 return 6%

Figure 12.1: General parameter estimation algorithm

The gradient of the log likelihood function, or the vector of its first derivatives with
respect to the parameter 0 is:

G(0) =) plxulfy) =) p(x)de(ux)f(y)
XY XY

or, simply:
G(e) = Ep[ﬂ - qu [ﬂ (122)

Since the likelihood function (12.1) is concave over the parameter space, it has a
global maximum where the gradient is zero. Unfortunately, simply setting G(6) =0
and solving for 6 does not yield a closed form solution, so we proceed iteratively.
Figure 12.1. At each step, we adjust an estimate of the parameters 8 to a new es-
timate 0(**!) based on the divergence between the estimated probability distribution
q™® and the empirical distribution p. We continue until successive improvements
fail to yield a sufficiently large decrease in the divergence.

While all parameter estimation algorithms we will consider take the same gen-
eral form, the method for computing the updates 5 at each search step differs
substantially. As we shall see, this difference can have a dramatic impact on the
number of updates required to reach convergence.

12.2 Iterative Scaling

One popular method for iteratively refining the model parameters is Generalized
Iterative Scaling (GIS), due to Darroch and Ratcliff (1972). An extension of Itera-
tive Proportional Fitting (Deming and Stephan, 1940), GIS scales the probability
distribution q® by a factor proportional to the ratio of E,[f] to E o [fl, with the
restriction that } ;fj(x) = C for each event x in the training data (a condition which
can be easily satisfied by the addition of a correction feature). We can adapt GIS to
estimate the model parameters 0 rather than the model probabilities q, yielding the

update rule:
1
Eplfl \°
5 =10 L
& <Eq(k) [ﬂ)
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The step size, and thus the rate of convergence, depends on the constant C: the
larger the value of C, the smaller the step size. In case not all rows of the training
data sum to a constant, the addition of a correction feature effectively slows con-
vergence to match the most difficult case. To avoid this slowed convergence and the
need for a correction feature, Della Pietra, Della Pietra, and Lafferty (1997) propose
an Improved Iterative Scaling (I1S) algorithm, whose update rule is the solution to
the equation:

Eplfl = ) p(w)a™(xiw)f(x) exp(M(x)5™)

where M(x) is the sum of the feature values for an event x in the training data. This
is a polynomial in exp (6(”), and the solution can be found straightforwardly using,
for example, the Newton-Raphson method.

12.3 First order methods

Iterative scaling algorithms have a long tradition in statistics and are still widely
used for analysis of contingency tables. Their primary strength is that on each
iteration they only require computation of the expected values E ). They do not
depend on evaluation of the gradient of the log-likelihood function, which, depend-
ing on the distribution, could be prohibitively expensive. In the case of ME models,
however, the vector of expected values required by iterative scaling essentially is
the gradient G. Thus, it makes sense to consider methods which use the gradient
directly.

The most obvious way of making explicit use of the gradient is by Cauchy’s
method, or the method of steepest ascent (Zhu, We, and Mumford, 1997). The gra-
dient of a function is a vector which points in the direction in which the function’s
value increases most rapidly. Since our goal is to maximize the log-likelihood func-
tion, a natural strategy is to shift our current estimate of the parameters in the
direction of the gradient via the update rule:

s = «KIG(p)y

where the step size «!¥) is chosen to maximize L(8) + §(Y), Finding the optimal
step size is itself an optimization problem, though only in one dimension and, in
practice, only an approximate solution is required to guarantee global convergence.

Since the log-likelihood function is concave, the method of steepest ascent is
guaranteed to find the global maximum. However, while the steps taken on each
iteration are in a very narrow sense locally optimal, the global convergence rate of
steepest ascent is very poor. As shown in Figure 12.2, each new search direction
is orthogonal (or, if an approximate line search is used, nearly so) to the previous
direction. This leads to a characteristic “zig-zag” ascent, with convergence slowing
as the maximum is approached.

One way of looking at the problem with steepest ascent is that it considers the
same search directions many times. We would prefer an algorithm which consid-
ered each possible search direction only once, in each iteration taking a step of
exactly the right length in a direction orthogonal to all previous search directions.
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Figure 12.2: Steepest ascent in two dimensions

This intuition underlies conjugate gradient methods (see, e.g., Shewchuk, 1994)
which choose a search direction which is a linear combination of the steepest ascent
direction and the previous search direction. The step size is selected by an approx-
imate line search, as in the steepest ascent method. Several non-linear conjugate
gradient methods, such as the Fletcher-Reeves (cg-fr) and the Polak-Ribire-Positive
(cf-prp) algorithms, have been proposed. While theoretically equivalent, they use
slightly different update rules and thus show different numeric properties.

12.4 Second order methods

Another way of looking at the problem with steepest ascent is that while it takes
into account the gradient of the log-likelihood function, it fails to take into account
its curvature, or the gradient of the gradient. The usefulness of the curvature is
made clear if we consider a second-order Taylor series approximation of L(6 + 6):

L(0+8)~L(B)+8"G(0) +%6TH(6)6 (12.3)

where H is Hessian matrix of the log-likelihood function, the d x d matrix of its
second partial derivatives with respect to 0. If we set the derivative of (12.3) to zero
and solve for 8, we get the update rule for Newton’s method:

s — H (g G(a™) (12.4)

Newton’s method converges very quickly (for quadratic objective functions, in one
step), but it requires the computation of the inverse of the Hessian matrix on each
iteration.



Algorithms for Linguistic Processing 239

Figure 12.3: Limited memory variable metric method (dashed lines show Newton’s
method for comparison)

While the log-likelihood function for ME models in (12.1) is twice differentiable,
for large scale problems the evaluation of the Hessian matrix is computationally
impractical, and Newton’s method is not competitive with iterative scaling or first
order methods. Variable metric or quasi-Newton methods avoid explicit evaluation
of the Hessian by building up an approximation of it using successive evaluations
of the gradient. That is, we replace H~'(6(®) in (12.4) with a local approximation of
the inverse Hessian B(®):

5K — B(k)G(e(k))
with B(¥) a symmetric, positive definite matrix which satisfies the equation:

B(k)y (k) — glk=T1)

where y® = G(8) — G(ok—1).

Variable metric methods also show excellent convergence properties and can be
much more efficient than using true Newton updates, but for large scale problems
with hundreds of thousands of parameters, even storing the approximate Hessian
is prohibitively expensive. For such cases, we can apply limited memory variable
metric methods, which implicitly approximate the Hessian matrix in the vicinity
of the current estimate of 8 using the previous m values of y® and 5. Since
in practical applications values of m between 3 and 10 suffice, this can offer a
substantial savings in storage requirements over variable metric methods, while
still giving favorable convergence properties (see Figure 12.3).!

'For algorithmic details and theoretical analysis of first and second order methods, see, e.g., No-
cedal (1997) or Nocedal and Wright (1999).
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12.5 Comparing estimation techniques

The performance of optimization algorithms is highly dependent on the specific
properties of the problem to be solved. Worst-case analysis typically does not re-
flect the actual behavior on actual problems. Therefore, in order to evaluate the
performance of the optimization techniques sketched in previous section when ap-
plied to the problem of parameter estimation, we need to compare the performance
of actual implementations on realistic data sets (Dolan and Moré, 2000; Benson,
MclInnes, and Moré, 2000; Dolan and Moré, 2002).

As a basis for the implementation, we have used PETSc (the “Portable, Extensi-
ble Toolkit for Scientific Computation”), a software library designed to ease develop-
ment of programs which solve large systems of partial differential equations (Balay
et al., 2001; Balay et al., 1997; Balay et al., 2002). PETSc offers data structures
and routines for parallel and sequential storage, manipulation, and visualization of
very large sparse matrices.

For any of the estimation techniques, the most expensive operation is computing
the probability distribution q and the expectations E[f] for each iteration. In order
to make use of the facilities provided by PETSc, we can store the training data as a
(sparse) matrix F, with rows corresponding to events and columns to features. Then
given a parameter vector 6, the unnormalized probabilities g are the matrix-vector
product:

go =expFo

and the feature expectations are the transposed matrix-vector product:
Eq,[fl = Fqo

By expressing these computations as matrix-vector operations, we can take advan-
tage of the high performance sparse matrix primitives of PETSc.

For the comparison, we implemented both Generalized and Improved Iterative
Scaling in C++ using the primitives provided by PETSc. For the other optimiza-
tion techniques, we used TAO (the “Toolkit for Advanced Optimization”), a library
layered on top of the foundation of PETSc for solving non-linear optimization prob-
lems (Benson et al., 2002). TAO offers the building blocks for writing optimization
programs (such as line searches and convergence tests) as well as high-quality im-
plementations of standard optimization algorithms (including conjugate gradient
and variable metric methods).

Before turning to the results of the comparison, two additional points need to
be made. First, in order to assure a consistent comparison, we need to use the
same stopping rule for each algorithm. For these experiments, we judged that
convergence was reached when the relative change in the log-likelihood between
iterations fell below a predetermined threshold. That is, each run was stopped
when:

ILe™) —r(e* 1)
L(6)
where the relative tolerance e = 10~7/. For any particular application, this may or

may not be an appropriate stopping rule, but is only used here for purposes of
comparison.

<e€ (12.5)
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dataset classes contexts features mnon-zeros
rules 29,602 2,525 246 732,384
lex 42,509 2,547 135,182 3,930,406

summary 24,044 12,022 198,467 396,626
shallow 8,625,782 375,034 264,142 55,192,723

Table 12.1: Datasets used in experiments

Finally, it should be noted that in the current implementation, we have not ap-
plied any of the possible optimizations that appear in the literature (Lafferty and
Suhm, 1996; Wu and Khudanpur, 2000; Lafferty, Pereira, and McCallum, 2001)
to speed up normalization of the probability distribution q. These improvements
take advantage of a model’s structure to simplify the evaluation of the denomina-
tor in (11.4). The particular data sets examined here are unstructured, and such
optimizations are unlikely to give any improvement. However, when these optimiza-
tions are appropriate, they will give a proportional speed-up to all of the algorithms.
Thus, the use of such optimizations is independent of the choice of parameter esti-
mation method.

12.6 Experiments

To compare the algorithms described in §12.1, we applied the implementation
outlined in the previous subsection to four training data sets (described in Ta-
ble 12.1) drawn from the domain of natural language processing. The ‘rules’ and
‘lex’ datasets are examples of stochastic attribute value grammars from the exper-
iments described in section 11.2.2. The ‘summary’ dataset is part of a sentence
extraction task (Osborne, to appear), and the ‘shallow’ dataset is drawn from a text
chunking application (Osborne, 2002). These datasets vary widely in their size and
composition, and are representative of the kinds of datasets typically encountered
in applying ME models to NLP classification tasks.

The results of applying each of the parameter estimation algorithms to each of
the datasets is summarized in Table 12.2. For each run, we report the KL diver-
gence between the fitted model and the training data at convergence, the prediction
accuracy of fitted model on a held-out test set (the fraction of contexts for which the
event with the highest probability under the model also had the highest probability
under the reference distribution), the number of iterations required, the number of
log-likelihood and gradient evaluations required (algorithms which use a line search
may require several function evaluations per iteration), and the total elapsed time
(in seconds).?

There are a few things to observe about these results. First, while IIS converges
in fewer steps the GIS, it takes substantially more time. At least for this imple-

2The reported time does not include the time required to input the training data, which is difficult
to reproduce and which is the same for all the algorithms being tested. All tests were run using one
CPU of a dual processor 1700MHz Pentium 4 with 2 gigabytes of main memory at the Center for High
Performance Computing and Visualisation, University of Groningen.
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Dataset Method KL Div.  Acc Iters Evals Time
rules gis 5.124x10 2 47.00 1186 1187 16.68

iis 5.079x10 2 43.82 917 918 31.36
steepest ascent 5.065x1072 44.88 224 350 4.80
conjugate gradient (fr) 5.007x107% 44.17 66 181 2.57
conjugate gradient (prp) 5.013x107% 46.29 59 142 1.93
limited memory var. metric 5.007x107% 44.52 72 81 1.13
lex gis 1.573x107% 46.74 363 364 31.69
iis 1.487x107% 42.15 235 236 95.09
steepest ascent 3.341x10 3 42.92 980 1545 114.21
conjugate gradient (fr) 1.377x10 3 43.30 148 408 30.36
conjugate gradient (prp) 1.893x10 3 44.06 114 281 21.72
limited memory var. metric 1.366x10 3 43.30 168 176 20.02
summary gis 1.857x10 3 96.10 1424 1425 107.05
iis 1.081x10 3 96.10 593 594  188.54
steepest ascent 2.489x107% 96.33 1094 3321 190.22
conjugate gradient (fr) 9.053x107> 95.87 157 849 49.48
conjugate gradient (prp)  3.297x107% 96.10 112 537 31.66
limited memory var. metric 5.598x107° 95.54 63 69 8.52
shallow gis 3.314x107% 14.19 3494 3495 21223.86
iis 3.238x107% 5.42 3264 3265 66855.92
steepest ascent 7.303x1072% 26.74 3677 14527 85062.53
conjugate gradient (fr) 2.585x1072 24.72 1157 6823 39038.31
conjugate gradient (prp) 3.534x1072 24.72 536 2813 16251.12
limited memory var. metric 3.024x10"% 23.82 403 421 2420.30

Table 12.2: Results of comparison.

mentation, the additional bookkeeping overhead required by IIS more than cancels
any improvements in speed offered by accelerated convergence. This may be a mis-
leading conclusion, however, since a more finely tuned implementation of IIS may
well take much less time per iteration than the one used for these experiments.
However, even if each iteration of IIS could be made as fast as an iteration of GIS
(which seems unlikely), the benefits of IIS over GIS would in these cases be quite
modest.

Second, note that for three of the four datasets, the KL divergence at conver-
gence is roughly the same for all of the algorithms. For the ‘summary’ dataset,
however, they differ by up to two orders of magnitude. This is an indication that
the convergence test in (12.5) is sensitive to the rate of convergence and thus to the
choice of algorithm. Any degree of precision desired could be reached by any of the
algorithms, with the appropriate value of e. However, GIS, say, would require many
more iterations than reported in Table 12.2 to reach the precision achieved by the
limited memory variable metric algorithm.

Third, the prediction accuracy is, in most cases, more or less the same for all
of the algorithms. Some variability is to be expected—all of the data sets being
considered here are badly ill-conditioned, and many different models will yield the
same likelihood. In a few cases, however, the prediction accuracy differs more sub-
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stantially. For the two SAVG data sets (‘rules’ and ‘lex’), GIS has a small advantage
over the other methods. More dramatically, both iterative scaling methods perform
very poorly on the ‘shallow’ dataset. In this case, the training data is very sparse.
Many features are nearly ‘pseudo-minimal’ in the sense of Johnson et al. (1999),
and so receive weights approaching —oco. Smoothing the reference probabilities
would likely improve the results for all of the methods and reduce the observed
differences. However, this does suggest that gradient-based methods are robust to
certain problems with the training data.

12.7 Conclusion

The most significant lesson to be drawn from these results is that, with the excep-
tion of steepest ascent, gradient-based methods outperform iterative scaling by a
wide margin for almost all the datasets, as measured by both number of function
evaluations and by the total elapsed time. And, in each case, the limited memory
variable metric algorithm performs substantially better than any of the competing
methods.
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Chapter 13

Word Sense Disambiguation

A major problem in natural language processing is that of lexical ambiguity, be
it syntactic or semantic. A word’s syntactic ambiguity can be resolved by apply-
ing part-of-speech taggers which predict the syntactic category of a word in texts
with high levels of accuracy (see for example (Brill, 1995) or (Brants, 2000)). The
problem of resolving semantic ambiguity, which is generally known as word sense
disambiguation (WSD), has proved to be more difficult than syntactic disambigua-
tion.

Disambiguation involves two major steps: First, the possible senses for every
ambiguous word have to be determined. This can either be achieved through an
inventory of senses (e.g. Machine Readable Dictionaries (MRDs)), listing equiva-
lents in a different language (bilingual dictionaries) or grouping features, categories
and/or associated words. In a second step, the appropriate sense has to be as-
signed to ambiguous words using information about the context (linguistic and
extra-linguistic) as well as external knowledge sources.

The only way to assign the meaning of a word in a particular usage is thus to
examine its context. For instance, the English word bank—an extensively cited
example of lexical ambiguity—can refer to the bank of a river or to the pecuniary
institution. For this reason, a computer program analyzing the sentence “The boy
leapt from the bank into the cold water” will need to decide which reading of ‘bank’
was intended, in order to be able to come up with the correct meaning for the
sentence. The overall goal of word sense disambiguation systems is to attribute the
correct sense(s) to words in a text.

13.1 Approaches to WSD

There are three ways to approach the problem of assigning the correct sense(s) to
ambiguous words in context: a knowledge-based approach, which uses an explicit
lexicon (MRDs, Thesauri), corpus-based disambiguation, where the relevant infor-
mation about word senses is gathered from training on a large corpus, or, third
alternative, a hybrid approach combining aspects of the aforementioned method-
ologies (see (Ide and Véronis, 1998) for a more thorough discussion).

A corpus-based approach has the advantage that text material is easily acces-
sible. The possible means used to attribute senses to ambiguous words are then
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distributional information and contextwords. Distributional information about an
ambiguous word is the frequency distribution of its senses. Contextwords are the
words found to the right and/or the left of a certain word, thus collocational infor-
mation.

There are two possible approaches to corpus-based WSD systems: Supervised
and unsupervised WSD. Supervised approaches use a training and a testing phase.
During training on a disambiguated corpus, probabilistic information about con-
textwords as well as distributional information about the different senses of an
ambiguous word are collected. In the testing phase, the sense with the highest
probability computed on the basis of the training data (contextwords) is chosen.
Training and evaluating such an algorithm presupposes the existence of sense-
tagged corpora. Unsupervised algorithms, on the other hand, are applied to raw
text material and annotated data is only needed for evaluation.

The major difficulties of a corpus-based approach are the need for manual
sense-tagging and data sparseness. So far there has not been a lot of sense-tagged
material made publicly available, and even for English the corpora are still very (if
not too) small. One approach to solve the problem is to manually sense-tag corpora
using e.g. (Euro)WordNet hierarchies. Another, less time consuming, possibility
is the application of unsupervised machine learning techniques (Schiitze, 1998) to
WSD (although the ‘evaluation problem’ stays the same, see section 13.2).

The difficulty of data sparseness for WSD lies in the fact that there is a dispar-
ity in frequency among different senses of an ambiguous word. Smoothing is used
to ensure that infrequent data or unseen data is treated properly. Class-based
(Yarowsky, 1992) and similarity-based (Karov and Edelman, 1996; Karov and Edel-
man, 1998) models try to overcome data sparseness by generalizing over classes of
words.

13.2 Attempt at Evaluation: Senseval

Evaluation is an important matter within the discipline of NLP in general, and
in WSD in particular. To evaluate means to compare the results of a particular
system with what is seen as correct solution to the problem. In WSD, sense-tagged
corpora are needed for evaluation. So far, reliable evaluation data can only be
produced through hand-annotation which is very time and expertise-intensive as
well as dependent on the skills of the annotator(s).!

Another difficulty of evaluating WSD systems with regard to each other is that
different lexicons with different sense inventories are used. This means that there
is no basis on which to compare the systems. Also, different additional knowledge
sources might be employed by different systems which does not facilitate compari-
son either.

A first attempt within WSD to setup a common task for several systems in order
to allow for evaluation is Senseval. Senseval-1, held in 1998, was “the first open,

'A measure for the quality of hand-annotated text has been established, the Inter-Tagger Agree-
ment (ITA). See (Kilgarriff, 1998a) for an extensive discussion over the production of Gold Standard
datasets.
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community-based evaluation exercise for WSD programs” in which 18 systems par-
ticipated (Kilgarriff and Rosenzweig, 2000). The setup allowed for supervised and
unsupervised systems to participate, and included a coarse and fine-grained level
of sense distinctions.

Several choices regarding task design, corpus and dictionary used had to be
made. The task was chosen to be a lexical task which means that only a (small) set
of previously chosen ambiguous words is disambiguated. An all-words approach, in
contrast, would mean annotating all ambiguous (content) words in a given corpus.
The HECTOR lexical database (Atkins, 1993) was chosen for corpus and dictio-
nary since this database had not been widely used in WSD before and was readily
available. The results of Senseval-1 showed the state-of-the-art for supervised (fine-
grained) WSD to be 78% correct. Unfortunately, no precise results on unsupervised
systems are reported. It is only stated that for unsupervised systems “scores were
both lower and more variable” (although of the 18 participating systems 10 were
supervised and 8 were unsupervised).

After the success of Senseval-1, Senseval-2 was started in 2000, broadening the
task to different languages, to a choice between lexical or all-words disambiguation,
as well as to a more flexible framework (See (Edmonds and Cotton, 2001) for an
overview).2

The results for the Senseval-2 English lexical sample task show a much lower
state-of-the-art disambiguation rate for supervised (fine-grained) WSD, namely 64%
correct. This amounts to a drop in performance of around 14% in comparison to
the Senseval-1 results. According to (Kilgarriff, 2001) the difference is due to the
different lexicon. For the Senseval-2 task WordNet was used as sense inventory.
This choice was motivated by the fact that WordNet is very widely used (not only in
WSD) and has become almost a de facto standard. The biggest drawback with using
WordNet, however, is that some of the sense distinctions are not clear and/or well-
motivated due to the fact that WordNet is organized around groups of words with
similar meanings (so called synsets), and not around words (as in a dictionary).
If the sense distinctions are not clear o start with, the task of disambiguating is
obviously more difficult which explains the lower results.

In the context of Senseval-2, the first sense-tagged corpus for Dutch was made
available (see (Hendrickx and van den Bosch, 2001) for a detailed description) which
underlines the importance of Senseval for this project. Since the release of the
data, new experiments are being conducted using real ambiguous words (see sec-
tion 13.6)—in contrast to the preliminary experiments presented in the next section.

13.3 Preliminary Experiments

In this section, we will report on three preliminary experiments that have been
carried out during the first phase of the project. They all used a supervised WSD
algorithm (see section 13.3.2) which was trained on either the European Corpus

2The data for various languages is available from http: //www.sle.sharp.co.uk/senseval2/.
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Initiative (ECI) corpus of Dutch® or on the Senseval-1 corpus®. Since there is
no disambiguated material available for the Dutch ECI corpus (which means that
evaluation of results is not possible), we artificially created such data using pseu-
dowords.

13.3.1 Pseudowords

The technique of pseudowords consists of introducing a form of artificial ambiguity
in (untagged) corpora. First of all, two or more words, sensewords, are chosen.
Training then takes place on the disambiguated corpus, collecting probabilities for
the chosen sensewords. For testing, all occurrences of the sensewords are replaced
by a non-existing word, a pseudoword. The goal is then to recover the correct
senseword for every pseudoword introduced in the corpus.

Suppose we chose the sensewords ‘aantal’ and ‘tijd’ and combined them to form
the pseudoword ‘aantijd’. The original sentences (1) and (2)—which are used in
training as well as in evaluation—will then become test sentences (3) and (4).

(1) Hun aantal groeit en volgens justitie lijkt aan die groei geen einde te komen.
(2) Tot die tijd blijven de stellingen betrokken.
(3) Hun aantijd groeit en volgens justitie lijkt aan die groei geen einde te komen.

(4) Tot die aantijd blijven de stellingen betrokken.

Gale, Church, and Yarowsky (1992b) used pseudowords to overcome the “testing
material bottleneck”, as well as Schiitze (1992) and Schiitze (1998), who tried to
escape the need for hand-labeling using artificial ambiguous words for evaluation
purposes.

13.3.2 Naive Bayes Classification

In the case of the preliminary experiments reported here, we chose to work with
a naive Bayes classifier (Duda and Hart, 1973) because it is easy to implement,
performs relatively well, is rather fast and is used fairly often.

In addition to that, a Bayes classifier uses only distributional information and
contextwords to compute probabilities which corresponds to only using information
which is available from the corpus itself without the need of any additional material,
such as a dictionary or the like. The contextwords are assumed to be independent
of position and of each other—they constitute a bag of words—which corresponds
to the Bayes independence assumption.

First, the disambiguation algorithm is trained on part of the unambiguous cor-
pus, attributing probabilities to the contextwords found to the right and the left of

5The ECl is a digitally available multilingual corpus distributed by ELSNET which contains material
on a number of European languages, among others Dutch. See http://www.elsnet.org/eci.html
for a complete listing of available languages and ordering information.

“Publicly available at http://www.itri.brighton.ac.uk/events/sensevall/ARCHIVE/
resources.html.
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the senseword(s) for various context window sizes. This is done using Bayes rule

P(clsk)
P = P
(sklc) Plo) (sk)
where sy is sense k of ambiguous word w in context ¢ = {cy,...,cn}, the contextwords

within the specified context window. “Training” as used here amounts to counting
which senses are used most often in a given context.

Testing takes place on the ambiguous text where the algorithm selects the most
probable senseword for each pseudoword according to Bayes decision rule

Decide s’ if P(s’|c) > P(si/c) for sy # s’

Finally, the computed sensewords are compared to the original sensewords in
the disambiguated corpus and the percentage of correctly disambiguated instances
of pseudowords is calculated.

Despite its relatively ‘naive’ approach, the Naive Bayes classifier performs rel-
atively well, especially in comparison with other, more sophisticated approaches
(Mooney, 1996; Escudero, Marquez, and Rigau, 2000).

As has been pointed out in section 13.1, sparse data is a problem in corpus-
based WSD. If a contextword has not been seen with a particular sense of an am-
biguous word in the training data, the probability P(v;) of contextword v; in the
context of all senses sy of ambiguous word w will be 0. This means that no choice
can be made using the naive Bayes Classification algorithm explained above.

In such a case, smoothing techniques are applied. In the experiments described
in sections 13.3.5, 13.3.3 and 13.3.4, a fixed penalty of —log 0.01 (corresponding to
a probability of p = 0.01) has been used. Possible extensions would be to use more
sophisticated smoothing techniques, e.g. Good-Turing.

13.3.3 First Experiment: Varying Corpus Size

In a first experiment, we looked at the changes of performance in the classification
algorithm used depending on corpus size. When working with statistical methods,
changes in corpus size/training instances are expected to be reflected in changes
of performance (Langley, Iba, and Thompson, 1992). The usual assumption is that
the bigger the corpus the better the performance.

Settings: Corpus and Pseudowords

The corpus used in this experiment was the ECI Corpus of Dutch which contains
approximately 3 Million words of raw text. The corpus includes transcripts of radio
programs, newspaper articles, magazine issues, and some technical texts.

Choosing high frequency nouns, six pseudowords were created, four of which
consist of two sensewords and two of which consist of 3 sensewords. Table 13.1
gives an overview over the sensewords chosen as well as their frequency and the
frequency baseline.?

SThere are two possibilities to calculate the baseline for WSD Systems: the random baseline, which
chooses a possible sense at random, or the frequency baseline, where the most frequent sense is
always chosen. Usually the frequency baseline lies higher than the random baseline, which is why it
is a more representative lower bound.
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Pseudow. || Senseword 1 Senseword 2 Senseword 3 | Baseline
word | frequ. |word [frequ. [word |[frequ.
aantijd aantal 1995 |tijd 1747 53.31%
lagem land 2991 |gemeente | 1018 74.60%
nedmin nederland | 2675 |minister |[3155 54.11%
prespol | president |2356 |politie 1568 60.04%
neduir nederland | 2675 |duitsland |719 |irak [2818 | 45.36%
plonbe plan 1059 |onderwijs |960 |beleid | 908 36.18%

Table 13.1: Overview Pseudowords

Underlying Assumptions

In the experiment described, we departed from two underlying assumptions: Topic
coherence and ‘All information’. The idea of topic (or discourse) coherence states
that words usually keep the same sense within a paragraph or document (Gale,
Church, and Yarowsky, 1992a; Yarowsky, 1993).° The size of the context win-
dow used was thus restrained to paragraphs, which means that if the window size
on either side was bigger than the paragraph boundary, everything beyond that
boundary was not taken into account.”

Furthermore, no stoplist was used in the reported experiments. One of the work-
ing hypotheses was to test whether taking into consideration all available context
information including function words could produce good results. In the case of
nouns with different articles, for instance, working with a stoplist would definitely
be counter-productive. Also, for words with a very different syntactic distribution,
like ‘nederland’ and ‘minister’, prepositions and articles are good indicators for a
certain ‘sense’.

Results and Evaluation

In the reported experiment, results were ten times cross-validated. The context
window was restricted to 3 words to the left and the right of the pseudoword. We
take a similar approach to (Chodorow, Leacock, and Miller, 2000) choosing a fixed
context window size of +3. Similar results can be observed when different context
sizes are used.

The results obtained (see table 13.2) clearly show that more training instances
do help improve the performance of the naive Bayes classification algorithm used.
The overall performance of the algorithm is quite good, especially considering the
fact that the results are solely based on statistical information.

SKrovetz (1998) has shown that this is only (partially) true for homonymous senses, but is not the
case for polysemous words.

"There was a big variation in paragraph lengths (1-15 sentences). It is not quite clear yet what sort
of noise is introduced through this fact.
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| Pseudoword || Baseline | 0.5M Words [ 1.5M Words | 3M Words|
aantijd 53.31 80.32 84.0884.97 (+31.66)
lagem 74.60 78.54 80.08|82.65 (+08.05)
nedmin 54.11 84.45 83.18(85.02 (+30.91)
prespol 60.04 73.99 79.09 | 83.21 (+23.17)
neduir 45.36 65.83 66.38|70.83 (+25.47)
plonbe 36.18 58.32 67.25(67.70 (+31.52)

Table 13.2: Results with varying corpus size (in %), optimal performance per row
in bold

|Pseudoword [|Baseline] all] 0.6] 0.7] 0.8] 0.9] 1]
aantijd 53.31[84.97|85.0384.97| 79.83|76.64|72.11
lagem 74.60(82.65| 82.65(82.62 82.88|81.83|81.60
nedmin 54.11(85.02|85.09|84.25| 82.85|71.66 |69.49
prespol 60.04 |83.21|83.43(81.97| 81.15(79.23|78.63

Table 13.3: Results with varying thresholds (in %), optimal performance per row in
bold

13.3.4 Second Experiment: Varying Thresholds for Contextwords

In a different experiment, we looked at the use of contextwords. The main idea was
to only use contextwords of a certain informative value (expressed through placing
a threshold on the probability of each contextword) and to find the cutoff at which
the amount of data still used in the disambiguation process and the informative
value converge. The thresholds represent how well a particular contextword helps
to disambiguate an ambiguous word/pseudoword. A threshold of 1.0 means that
a contextword is only used for disambiguation if the probability of contextword v;
given sense k of ambiguous word w is 1 (p(vjlsx) = 1).

The corpus and overall settings were the same as in the experiment reported in
section 13.3.3. Only the four pseudowords consisting of two senses were used.

Results and Evaluation

As the results in table 13.3 show there is no clear cutoff value at which the perfor-
mance of the algorithm improves for all pseudowords. A tendency can be observed
that using a threshold of 0.6 (which means that all contextwords are used except
those which are (almost) equally likely to occur with both senses of a given ambigu-
ous word) works best.

13.3.5 Third Experiment: Pseudowords vs. Real Ambiguous Words

In the last experiments reported, we investigated whether disambiguating pseu-
dowords is comparable to the task of disambiguating real ambiguous words and we
reached the conclusion that these two tasks are not identical (Gaustad, 2001).
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Outline of the Problem

The idea to compare the task of disambiguating real ambiguous words to disam-
biguating artificially ambiguous words arose from our work on supervised WSD for
Dutch. Since there are no sense-tagged corpora available for Dutch, another means
of testing algorithms has to be used. An obvious solution is the use of pseudowords:
they are easily created, only raw text material is needed and any supervised algo-
rithm can be tested. The one question that remained unanswered was whether
using pseudowords would yield results comparable to real WSD and whether the
seemingly ‘easy way out’ could really be seen as equivalent to the disambiguation
of real ambiguous words.

Unfortunately, there has not been a lot of work on pseudowords and, to the best
of our knowledge, no work at all on their usefulness in testing word sense disam-
biguation systems. The major problem involved in this comparison is to find a valid
setting for a comparison: the elements to be compared—pseudowords and real am-
biguous words —are too different from each other to be compared directly. Schtitze
(1998) explains it in the following way: “[The better performance on pseudowords]
can be explained by the fact that pseudowords have two focused senses—the two
word pairs they are composed of.” Real ambiguous words, on the other hand, con-
sist of sub-senses that are difficult to identify for humans as well as for computers.

Way of Proceeding

A direct comparison of the task of WSD and the task of disambiguating pseu-
dowords is not possible. The only way to compare these two tasks is to indirectly
compare their results on the same corpus, using the same algorithm and general
settings. The comparison does have its limitations: Although we use the same set-
tings for both tasks, the difference between them lies in the actual words (or pseu-
dowords) to be disambiguated. There is no measure to express their differences or
similarities. This is precisely why there is no possibility of a direct comparison.

We decided to proceed in two steps. First, real ambiguous words were chosen
from the Senseval-1 corpus making use of the dictionary entries as well as the
training and testing material provided. Only nouns which were not ambiguous
regarding part of speech and for which there was training data were taken into
account.

In a second step, we chose the sensewords of a pseudoword according to the
frequency distribution of the senses of the real ambiguous words that were tested.
Among the possible sensewords that exhibited the same frequency distributions
as the real ambiguous words and which fulfilled the constraint of having approxi-
mately the same baseline, an arbitrary selection was made.

If the results of this second task are significantly different from the results of the
first task on the same corpus, this will show that the results involving pseudowords
depend entirely on the choice of sensewords. This means that the disambiguation
of pseudowords is not identical to the real WSD task. Note that if one does not
have access to sense-tagged corpora, no information about the distribution of the
senses of real ambiguous words is available, which means that it is not really a
comparable setup!
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Settings: Corpus and Ambiguous Words/Pseudowords

The corpus used in this experiment are the English Senseval-1 resources. The
advantage of using this material is that it is (lexically) sense-tagged for a number
of real ambiguous words which means that the evaluation data for real ambigu-
ous words is at hand. Furthermore, there have been numerous publications on
the construction of the material, on choices made regarding annotation, on inter-
annotator agreement, etc. ((Kilgarriff, 1998b; Kilgarriff and Rosenzweig, 2000), and
see also section 13.2), which allow for a thorough understanding of the real world
disambiguation task. This is an important precondition to being able to extensively
compare this task to nearly the same task using pseudowords.

The perhaps most important factor in this comparison is the choice of elements
of comparison, in this case the ambiguous words and the sensewords chosen to
constitute the different pseudowords.

The choice of ambiguous words depended, on the one hand, on the available
Senseval-1 material (evaluation data). On the other hand, we only selected nouns
which were not ambiguous in part-of-speech.® No stemming was used. The am-
biguous words and their senses? chosen for the experiments can be seen in ta-
ble 13.410,

The main criteria for choosing the sensewords constituting the pseudowords
were their frequency in the corpus as well as their part of speech. For the compar-
ison with each ambiguous word, five pseudowords were made up. The distribution
of these pseudowords’ sensewords was chosen to be as similar as possible to the
distribution of the different senses of the ambiguous words. An overview (including
frequencies) of the pseudowords and the corresponding ambiguous word is given
in table 13.4.

Results and Evaluation

The results in table 13.5 clearly show that the performance of the naive Bayes clas-
sification algorithm used is significantly better on pseudowords than on real am-
biguous words. A possible reason for this is the relatedness of sense distinctions in
real ambiguous words whereas the sensewords that constitute pseudowords have
two very clearly distinct senses.

A possible explanation for the fact that the performance on real ambiguous
words is considerably bad—it constantly fails to reach the baseline—is that there
is not enough training data. Note that the baseline of most ambiguous nouns in
the Senseval-1 corpus is relatively high which means that one sense accounts for
most occurrences of the ambiguous word. This makes the disambiguation task

8A number of ambiguous words in the Senseval-1 material had to be simultaneously part-of-speech
and lexically disambiguated, e.g. bet, giant, promise. There were also cases with no training material
provided (disability, hurdle, rabbit, steering) which were not taken into account given that we worked
with a supervised algorithm.

9The senses were taken from the Senseval-1 dictionary entries. Only the coarse-grained distinc-
tions were taken into account.

19Since the sense hairsh does not occur in the testing data, we decided to only consider two senses
for shirt and, consequently, for the pseudowords.
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| [[Amb./Ps.word | Senses/S.words | Freq. train [ Freq. test | Baseline |

Ambig. word || accident crash 1058 248 | 92.88%
chance 178 19
Pseudowords || timwe time 722 306 | 91.90%
weekend 73 27
yeatra year 708 307 | 92.47%
traffic 86 25
peolang people 673 268 | 92.10%
language 54 23
woan world 422 187 | 92.12%
animal 39 16
goveq government 396 184 | 92.35%
equipment 31 15
Ambig. word || behavior social 969 267 | 95.70%
of thing 29 12
Pseudowords || peostan people 673 268 | 93.40%
standards 41 19
tima time 722 306 | 95.33%
machine 49 15
yeagro year 708 307 | 95.34%
growth 58 15
wodat world 422 187 | 94.92%
data 36 10
gopay government 396 181 | 95.26%
payment 30 9
Ambig. word || excess aglut 103 108 | 58.06%
of or after poss 65 67
surplus 10 9
too much 73 2
Pseudowords || womuconba | world 422 187 | 58.62%
music 231 97
concert 43 16
battle 42 19
gopoemch government 396 184 | 57.64%
police 218 98
empire 37 16
champion 45 19
dacipapro day 373 161 | 57.71%
city 211 83
palace 37 16
protection 45 19
pemanora people 673 268 | 58.64%
man 377 154
noise 33 16
railway 33 19
heterite head 349 150 | 58.37%
team 162 72
river 42 16
technology 34 19
Ambig. word || shirt t-shirt 132 73| 57.06%
garment 336 105
Pseudowords || schoclu school 178 87| 59.02%
club 140 72
mastre market 190 89| 58.55%
street 158 63
cimon city 211 83| 58.04%
month 130 60
coufam country 201 91| 57.96%
family 117 66
wogia women 189 91| 58.33%
giants 140 65

Table 13.4: Overview ambiguous words and corresponding pseudowords
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| Basel. | Results | Difference |
accident 92.88| 84.45 -8.43
timwe 91.90| 91.56 -0.34
yeatra 92.47| 91.77 -0.70
peolang 93.10| 91.88 - 0.59
woan 92.12| 93.44 + 0.97
goveq 92.35| 91.33 -1.14
mean - 0.40 [+ 0.89]
behaviour 95.70| 84.95 -10.75
peostan 93.40| 92.99 -0.41
tima 95.33| 95.64 + 0.31
yeagro 95.34| 94.04 -1.30
wodat 94.92| 93.79 -1.18
gopay 95.26| 96.36 +1.10
mean - 0.29 [+ 1.24]
excess 58.06| 50.35 -7.71
womuconba || 58.62| 71.86 +13.24
gopoemch 57.64| 72.92 +15.28
dacipapro 57.71| 73.98 +16.27
pemanora 58.64| 73.00 +14.36
heterite 58.37| 74.39 +16.02
mean +15.03 [+ 1.55]
shirt 58.98| 57.50 -1.48
schoclu 59.02| 72.79 +13.77
mastre 58.55| 74.83 +16.28
cimon 58.04| 78.69 +20.65
coufam 57.96| 63.91 + 5.95
wogia 58.33| 72.22 +13.89
mean +14.1 [+ 6.6]

Table 13.5: Pseudowords vs. Real Ambiguous Words: Results (in %)
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comparatively harder and might be a possible explanation for the bad performance
on real ambiguous words.

We conclude from the results that the task of disambiguating pseudowords is
comparable only in a limited way to the task of disambiguating real ambiguous
words. The results on pseudowords will usually be better which might lead to false
assumptions about the performance of a given algorithm on the real problem.

The results obtained from disambiguating artifical ambiguous words differ
greatly from the results of real ambiguous words. This indicates that pseudowords
cannot be taken as a substitute for testing with real ambiguous words.

Testing of WSD algorithms is very difficult without evaluation data. The as-
sumption that artificially created ambiguous words are a good substitute for real
ambiguous words is not valid, as has been shown by the experiment reported in
section 13.3.5. Thus the initial problem—wanting to test algorithms for languages
without sense tagged corpora—remains.

13.4 Research Questions

Based on the research review and the conducted preliminary experiments, the fol-
lowing questions concerning WSD are raised.

1. What kind of linguistic information is most useful for WSD?

2. How can one successfully combine statistical approaches to WSD with linguis-
tic information?

3. How can the interplay between corpus, linguistic information sources and
disambiguation proper be optimised?

The research plans are to implement a WSD algorithm which makes use of
different types of linguistic information (e.g. part-of-speech, dependency relations,
selectional restrictions) in combination with statistical methods.

Statistical approaches have proved to be successful and rather efficient, but
intuitively one would think that the addition of linguistic information should lead to
increases in performance!l. In WSD, it has not yet been systematically investigated
whether this is the case.

A major question that will be investigated is what kind of linguistic information
is most useful for word sense disambiguation (see section 13.5). Also, different lin-
guistic information might be useful depending on the syntactic category and other
characteristics of the target word, as different disambiguation strategies might be
needed for different groups or classes of target words.

It seems reasonable to include information made available by the Alpino gram-
mar and parser developed in the context of the PIONIER-project described in this
report. This ‘collaboration’ also facilitates the integration of the developed WSD
system into the final NLP tool for Dutch.

UEor example, Wilks and Stevenson (1997) state that: “Our intuition is that word sense disam-
biguation can be most effectively carried out combining [different, orthogonal] knowledge sources.”
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13.5 Linguistic Information for WSD

There are different sources of knowledge which can be used in WSD. As has been
said above, the use of linguistic knowledge for a WSD system has not been thor-
oughly investigated yet, although it might lead to significant increases in perfor-
mance.!? Types of linguistic knowledge to be possibly used in WSD are detailed
in the following sections. The linguistic information will be used in addition to
statistical information (e.g. bigrams, see (Pedersen, 2001)) and a statistics-based
algorithm (see section 13.3.2).

13.5.1 Morphological Information

Lemmatising Lemmatising is the process of stripping words from morphological
information and only keeping root forms. Generalizing over different morphological
realizations of words might be an advantage when working with verbs. For nouns
(and probably also adjectives and adverbs) it might be disadvantageous not to in-
clude morphological information. Important facts about e.g. senses which are only
applicable in case of plural might be lost. There is also the danger of overgeneral-
ization which might lead to not being able to distinguish between different words
anymore because they are shortened to the same basic form.

13.5.2 Syntactic Information

Part-of-speech (POS) POS tags contain syntactic information at word level. They
can be used in the following way. Senses that do not match the POS of the am-
biguous word in context can be eliminated. This reduces the number of senses that
have to be considered in the disambiguation process.

Subcategorization Frames Subcategorization frames provide valency informa-
tion for different categories of words (nouns, verb, adjectives). They are typically
associated with selectional restrictions, i.e. restrictions on the meaning of gram-
matical complements, and thus they could be useful e.g. in determining which
senses of nouns are appropriate as complements of a certain sense of a verb given
a particular syntactic construction, and vice versa.

Dependency Relations Dependency relations hold between constituents in a sen-
tence which are dependent on each other. Since dependency structures do not
necessarily reflect surface (syntactic) structure, they are a valuable source of in-
formation when full parses are unavailable. Being able to identify dependencies
between constituents could be used to determine which words might contain more
important disambiguation clues than others.

2There are attempts to integrate linguistic knowledge into WSD systems (see e.g. Ng and Lee’s
(1996) exemplar-based approach which uses POS, stemming and verb-object syntactic relations),
but, to the best of our knowledge, no systematic research has been conducted yet.
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13.5.3 Semantic Information

WordNet WordNet is a lexicon where the similarity between words is represented
hierarchically. Lexical information is organized by semantic properties. In addition
to semantic information, relations, such as for instance hyponymy or hyperonymy,
between words and concepts are also defined. Different approaches to WSD have
used information from WordNet (Leacock, Chodorow, and Miller, 1998; Hawkins,
1999). An asset is that WordNet provides semantic information attached to lexical
items. One of the difficulties with the architecture of this lexicon, on the other hand,
is the fact that different POS are contained in separate hierarchies. Also, related
words cannot be clustered easily since they might be classified far away from each
other (referred to as ‘tennis problem’, see section 3.5 in (Hawkins, 1999)).

Selectional Restrictions Selectional restrictions are restrictions on the meaning
of grammatical complements. In (Resnik, 1993; Resnik, 1997) selectional restric-
tions are used to resolve syntactic ambiguity. Resnik’s hypothesis is that many
lexical relationships reflect underlying conceptual relationships and that statistical
disambiguation strategies should take those into account. Prior to using selectional
restrictions the grammatical links between words must already have been identi-
fied. A drawback of this approach is that selectional restrictions are only useful for
the resolution of broad sense ambiguity since fine-grained senses often belong, or
are used with, the same semantic class.

13.5.4 Pragmatic Information

Topical information A thesaurus usually contains information about subject ar-
eas, often called pragmatic codes. Using these codes can help to optimize the choice
of senses: the goal is to achieve the greatest overlap of pragmatic codes within a text
with paragraphs as basic units (Wilks and Stevenson, 1997; Wilks and Stevenson,
1998). Yarowsky (1992), for instance, uses Roget’s thesaurus to identify salient
contextwords that appear with an ambiguous word belonging to a certain category.
These can then be used to resolve ambiguity since they provide evidence for a par-
ticular category.

13.6 Follow-Up Experiments

13.6.1 Experiments on Senseval-2 Data

The experiments described in the first part of this chapter on word sense disam-
biguation have shown that the use of pseudowords to investigate WSD is not a
viable option. Since the sense-tagged dataset for Dutch has been made available
in the context of Senseval-2, we have started a first batch of experiments system-
atically investigating the influence of different sources of linguistic information on
disambiguation accuracy.

The statistical classifier used in these experiments is a maximum entropy clas-
sifier. Maximum entropy is a general technique for estimating probability distri-
butions from data. If nothing about the data is known, it involves selecting the
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most uniform distribution where all events have equal probability. In other words,
it means selecting the distribution which maximizes the entropy.

If data is available, labeled training data is seen as a number of features which
are used to derive a set of constraints for the model. This set of constraints char-
acterizes the class-specific expectations for the distribution. So, while the distri-
bution should maximize the entropy, the model should also satisfy the constraints
imposed by the labeled training data. A maximum entropy model is thus the model
with maximum entropy of all models that satisfy the set of constraints derived from
the training data.

The maximum entropy model is built using the following formula:

plch) = Zexp (Z mfi(x,c)>

where f;i(x, c) is the number of times feature i is used to find class c for event x,
and the weights A; are chosen to maximize the likelihood of the training data and
maximize the entropy of p.

The main advantage of maximum entropy modeling over a Naive Bayes classi-
fier is that dependencies between different features are taken into account. Also,
heterogeneous and overlapping sources of information can be integrated into the
statistical model. Furthermore, good results have been produced in other areas
of NLP research using maximum entropy techniques (Berger, Pietra, and Pietra,
1996).

In order to be able to systematically investigate the influence of different sources
of linguistic information in WSD, we set up the following scheme for the first exper-
iments on the Senseval-2 data for Dutch.

First, the Senseval-2 data is tokenized, lemmatized and part-of-speech-tagged
(using a Brill-style tagger for Dutch (Drenth, 1997) with only the main categories
of the WOTAN tag set (Berghmans, 1994)). In a second step, linguistic information
is tested on its value for WSD. The kinds of information included in these first
experiments will be: the ambiguous word itself, the lemma of the ambiguous word,
its part-of-speech, context words to the left and the right of the ambiguous word
(either full word-forms or lemmas), as well as dependency relations for heads and
dependents. Varying the amount of information included, different feature sets are
built. The ambiguous word and its lemma constitute the core information which is
always included in the feature set. Every feature set is tested using the maximum
entropy classifier and the classification accuracy is evaluated against the frequency
baseline (see footnote 5 in section 13.3.3).

13.6.2 Bootstrapping

The production of sense-tagged training material for supervised algorithms is very
time- and expertise-intensive. The same is true for evaluation data for any algo-
rithm, be it supervised or unsupervised. In order to overcome this problem partly,
bootstrapping can be used.

Bootstrapping means that a small corpus is sense-tagged by hand and used as
seed information for a classifier. Iteratively, large amounts of unlabeled data are
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then labeled using the seed information, and the newly labeled data is in turn used
as input to build a new classifier. In this way, labeled data can be acquired quickly.
Its quality is assured through hand-correction (which is a lot less time-consuming
than hand-labeling all the data). This method has been applied to WSD with good
results (Yarowsky, 1995).

In the context of this project, the idea is to use Alpino to annotate sentences with
a seed collection of senses, hand correct the output, increase the seed collection and
retrain the classifier using the newly labeled data set and the larger seed collection.
This incremental method of semi-automatic annotation will provide us with more
training and testing data for the final WSD system. Also, this method is a lot less
time and labor consuming than hand-annotation
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Leonoor van der Beek, Gosse Bouma, Robert Malouf and Gertjan van Noord. The
Alpino Dependency Treebank. Empirical methods in the new millennium: Linguisti-
cally Interpreted Corpora (LINC 2001), Leuven, August 29 2001.

Leonoor van der Beek, The Alpino Dependency Treebank; three tools for treebank-
ing, CLIN 2001, Twente University, Enschede, November 30 2001.

Leonoor van der Beek, Cleft Sentences. BCN Poster Day. February 2002, Gronin-
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Gosse Bouma, Finite State and Data-Oriented Methods for Grapheme to Phoneme
Conversion, NAACL 2000, Seattle. May 2000.
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Jan Daciuk, Computer-assisted Enlargement of Morphological Dictionaries, Finite
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sity of Twente, Enschede, November 30 2001.

Jan Daciuk. Computer-Aided Enlargment of Morphological Dictionaries. Presented
at the Natural Language Processing Seminar, The Linguistic Engineering / Formal
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Linguistics Group, Linguistic Engineering Group at the Department of Artificial
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Jan Daciuk. Incremental Construction of Minimal, Deterministic, Acyclic, Finite-
State Automata. Presented at the Seminar ftir Sprachwissenschaft, Tabingen Uni-
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Jan Daciuk. Construction of Guessing Automata for Morphological Analysis and
Morphological Descriptions. Presented at the Seminar fiir Sprachwissenschatft,
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Tanja Gaustad, The Best of two Worlds: Word Sense Disambiguation Using Statis-
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Tanja Gaustad, Word Sense Disambiguation as Classification Problem. Potchef-
stroomse Universiteit vir Christelike Hoér Onderwys, Potchefstroom, South Africa.
March 2002.

Tanja Gaustad, Gosse Bouma, Accurate Stemming and Email Classification. CLIN
2001, Enschede, November 30 2001.

Tanja Gaustad, Statistical Corpus-Based Word Sense Disambiguation: Pseu-
dowords vs. Real Ambiguous Words, ACL 2001, Toulouse, France, July 9-11 2001.

Tanja Gaustad, Extraction and Verification of Subcategorization Patterns for
French Verbs. EURALEX 2000, Stuttgart, August 2000

Tanja Gaustad, Word Sense Disambiguation Using a Naive Bayes Classification
Algorithm and Pseudowords. BCN Poster Day, January 2001, Groningen.

Robert Malouf, Tony Mullen, Gertjan van Noord, Probabilistic parsing with the
Alpino grammar, CLIN 2001, Enschede, November 30 2001.

Robert Malouf and Miles Osborne. A toolkit for robust and efficient maximum
entropy language modeling. CLIN 2000, Tilburg, November 2000.

Robert Malouf, Stochastic Head-Driven Phrase Structure Grammar. Department of
computational linguistics, University of Saarbriicken, May 2002. [invited]

Robert Malouf. Mixed categories in constraint-based grammars. Emanuel Vasiliu
Lectures in Formal Grammars, University of Bucharest, April 2002. [invited]

Robert Malouf, Stochastic Head-Driven Phrase Structure Grammar. Deparment of
Linguistics and Oriental Languages, San Diego State University, December 2001.
[invited]

Robert Malouf, Stochastic Head-Driven Phrase Structure Grammar, Human Com-
munication Research Centre, University of Edinburgh, June 2001. [invited]

Robert Malouf, Practical and efficient default unification. Microsoft Research, Red-
mond, Washington. December 2000. [invited]

Gertjan van Noord and Dale Gerdemann, Finite State Transducers with Predicates
and Identity, CLIN Tilburg, November 3, 2000.

Gertjan van Noord, Alpino: Wide Coverage Computational Analysis of Dutch, Com-
puting with LLL Seminar, University of Amsterdam, June 15 2001 [invited].
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Gertjan van Noord, with Dale Gerdemann, Invited Speaker at SIGPHON 2000, Finite
State phonology, Approximation and Exactness in Finite State Optimality Theory.
August 2000, Luxembourg.

Gertjan van Noord, Wide Coverage Computational Analysis of Dutch. University of
Sussex. Brighton. February 21 2002 [invited].

Gertjan van Noord, Wide Coverage Computational Analysis of Dutch. Johns Hop-
kins University. Baltimore. April 9 2002 [invited].

Robbert Prins and Gertjan van Noord. Unsupervised POS-Tagging Improves Parsing
Accuracy and Parsing Efficiency. BCN Poster Day. February 2002, Groningen.

Begona Villada Moiron, Gosse Bouma. A corpus-based approach to the acquisition
of collocational prepositional phrases. CLIN 2001, Enschede. November 30 2001.

Begona Villada Moirén. Extraction of collocational prepositions. BCN Poster Day.
February 2002, Groningen.
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Other Research Activities

Gosse Bouma:

program committee Learning Language in Logic, Lisbon, 2000.
program committee International Conference on HPSG, Berkely, 2000.
member Corpusannotatie NWO project Corpus Gesproken Nederlands.

member coordinating committee Elektronisering van de ANS, Nederlandse
Taalunie.

member Platform for Taal- en Spraaktechnologie, Nederlandse Taalunie.
editorial board Computational Linguistics
program committee Formal Grammar 2002.

program committee LREC Workshop Beyond Parseval: towards Improved Eval-
uation Measures of Parsing Systems.

program committee ESSLLI 2003.

Jan Daciuk:

reviewer for Computational Linguistics and Natural Language Engineering

reviewer for workshop Finite State Methods in Natural Language Processing.
Helsinki. 2001

Tanja Gaustad:

organiser TABU-day, one-day conference on general linguistics, University of
Groningen, June 22 2001.

organiser 13th CLIN Meeting (Computational Linguistics in the Netherlands),
to be held 29 november 2002, University of Groningen.
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Robert Malouf:

e one week lecture at ESSLLI (with Miles Osborne), An Introduction to Stochas-
tic Attribute-Value Grammars. Helsinki august 2001.

e one week lecture at HPSG Summer School, Statistics for Linguists, Trond-
heim, Summer 2001.

e KNAW Research Fellow as of January 1, 2002.
e HPSG-L electronic mailing list manager
¢ Reviewer for Computational Linguistics, Language and Computation, Natural
Language Engineering, Natural Language and Linguistic Theory
Gertjan van Noord:
e area chair, COLING, Saarbrtiicken. 2000.
¢ tutorial chair EACL/ACL 2001 Toulouse, 2000.
¢ editorial board Computer Speech and Language.

e editorial board of WEB-SLS, The European Student Journal of Language and
Speech.

e program committee Workshop Using Toolsets and Architectures to build NLP
Systems. Luxembourg, 2000.

e program committee Workshop Efficiency in Large-scale Parsing Systems, Lux-
embourg. 2000.

e program committee TAG+ Workshop, Paris. 2000.
e program committee TAG+ Workshop, Venice. 2001.
e program committee International Conference on HPSG, Norway. 2001.

e program committee International Workshop on Naturl Language Understanding
and Logic Programming. Copenhagen, 2002.

e co-chair workshop Finite State Methods in Natural Language Processing.
Helsinki. 2001

e co-chair 20 years of two-level morphology. August 2001. Helsinki. 2001.

e one week lecture at the LOT summerschool, Tilburg, June 2000 entitled Finite
State Language Processing.

e co-promoter of Rob Koeling. Dialogue-Based Disambiguation: Using Dialogue
Status to Improve Speech Understanding, 2002. University of Groningen.
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Software and other resources

A number of software packages as well as a number of other resources are main-
tained by members of the Pionier group. These resources are freely availabe to
other members of the research community (the detailed conditions of usage may
vary).

Adfa Adfa is a program for testing various acyclic automata construction methods.
http://www.eti.pg.gda.pl/ jandac/adfa.html

Alpino Treebanks Collection of corpora annotated with CGN dependency struc-
tures. http://www.let.rug.nl/ vannoord/trees/

Estimate Estimate is a program for parameter estimation of maximum entropy
models. http://www.let.rug.nl/ malouf/maxent/

Fadd . Fadd is a library accessing dictionaries in form of finite-state automata,
finite-state perfect hashing functions, and compressed finite-state language
models (as produced by the s_fsa program). http://www.eti.pg.gda.pl/ jan-
dac/fadd.html

FSA Utilities This is a collection of utilities to manipulate regular expres-
sions, finite-state automata and finite-state transducers. Manipulations
include automata construction from regular expresssions, determiniza-
tion (both for finite-state acceptors and finite-state transducers), mini-
mization, composition, complementation, intersection, Kleene closure, etc.
http://www.let.rug.nl/ vannoord/Fsa

Minim A set of programs for testing automata minimization algorithms, and in
particular Daciuk’s version of the incremental algorithm by Bruce Watson.
http://www.eti.pg.gda.pl/ jandac/minim.html

S_FSA A package of programs for construction and use of finite-state automata
for morphological analysis, spelling correction, restoration of diacritics, and
perfect hashing. http://www.eti.pg.gda.pl/ jandac/fsa.html

Hdrug Hdrug is an environment to develop logic grammars / parsers / generators
for natural languages. http://www.let.rug.nl/ vannoord/Hdrug/
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Stemmer/Lemmatiser A dictionary-based stemmer/lemmatiser for Dutch based
on CELEX. http://www.let.rug.nl/ tanja/code.html
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List of Project Members

Leonoor van der Beek AIO, started April 1 2001. Planned end-date April 1 2005.

Gosse Bouma UD at Alfa-informatica RuG. Some of his teaching is taken over by
replacements which are being financed from the Pionier budget.

Jan Daciuk Postdoc. Started February 1 2000. End-date February 1 2003.

Tanja Gaustad AIO, started April 1 2000. Between april 1 2001 and october 1
2001, Tanja worked for an email classification project (Kennisontwikleling in
Partnerschap with Bussiness Support Center, Groningen). Therefore, planned
end-date October 1 2004.

Robert Malouf Postdoc. From July 1 2001 until January 1 2002. Both before and
after this period, Malouf participated in the project.

Tony Mullen Researcher. After his Ph.D. project, Mullen worked for three months
for Pionier (January 1 2002 - April 1 2002). During this period he finished his
Ph.D.

Robbert Prins AIO, started November 1 2000. Planned end-date November 1 2004.

Gertjan van Noord UHD at Alfa-informatica RuG. Some of his teaching is taken
over by replacements which are being financed from the Pionier budget.

Begona Villada Moiron AIO, started November 1 2000. Planned end-date Novem-
ber 1 2004.
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Appendix F

Financial overview

The following table gives the financial situation of the project. All amounts in EURO.

1999 2000 2001 2002 2003 2004 2005 total
Personnel:
Daciuk 50166 57907 60417 5055 173545
Gaustad 19344 14167 30978 35573 27695 127757
Prins 4499 27781 29376 32415 30772 124843
Villada 5660 27855 29604 32866 29184 125169
Malouf 20244 20244
Mullen 11001 11001
vd Beek 18576 25394 28470 32813 113456
Teaching 11104 22949 51731 42867 14689 9999 153339
Further Costs 59 88075 10545 13613 13613 13613 139518
Reserved 190522
| Total 1179394 |

e Teaching refers to a number of teachers we have employed which take over
most of the teaching obligations of Gosse Bouma and Gertjan van Noord.

e Further Costs include travel money (for conference visits, etc.) and non-
standard hardware. In the first year of the project we invested in a cluster
of 7 Alpha Unix machines (64bit).

e Reserved includes reservation for the free Post-doc position, as well as addi-
tional teaching replacement, a.o.



