Finite Automata for Compact Representation of
Language Models in NLP

Jan Daciuk, Gertjan van Noord
Alfa Informatica, Rijksuniversiteit Groningen
Oude Kijk in 't Jatstraat 26, Postbus 716
9700 AS Groningen, the Netherlands
e-mail: {j.daciuk,vannoord} @let.rug.nl

April 12, 2001

Abstract

A technique for compact representation of language models in Nat-
ural Language Processing is presented. After a brief review of the mo-
tivations for a more compact representation of such language models, it
is shown how finite-state automata can be used to compactly represent
such language models. The technique can be seen as an application
and extension of perfect hashing by means of finite-state automata.
Preliminary practical experiments indicate that the technique yields
considerable and important space savings of up to 90% in practice.

1 Introduction

An important practical problem in Natural Language Processing (NLP) is
posed by the size of the knowledge sources that are being employed. For NLP
systems which aim at full parsing of unrestricted texts, for example, realistic
electronic dictionaries must contain information for hundreds of thousands
of words. In recent years, perfect hashing techniques have been developed
based on finite state automata which enable a very compact representation
of such large dictionaries without sacrificing the time required to access the
dictionaries [7, 11, 10]. A freely available implementation of such techniques
is provided by one of us [4, 3].

A recent experience in the context of the Alpino wide-coverage grammar
for Dutch [1] has once again established the importance of such techniques.

"mttp://www.pg.gda.pl/~jandac/fsa.html

The Alpino lexicon is derived from existing lexical resources. It contains
almost 50,000 stems which give rise to about 200,000 fully inflected entries
in the compiled dictionary which is used at runtime. Using a standard
representation provided by the underlying programming language (in this
case Prolog), the lexicon took up about 27 Megabytes. A Prolog library has
been constructed (mostly implemented in C++) which interfaces Prolog
with the tools provided by the s_fsa [4, 3] package. The dictionary now
contains only 1,3 Megabytes, without a noticeable delay in lexical lookup
times.

However, dictionaries are not the only space consuming resources that
are required by current state-of-the-art NLP systems. In particular, lan-
guage models containing statistical information about the Co-occurrence of
words and/or word meanings typically require even more space. In order
to illustrate this point, consider the model described in chapter 6 of [2]; a
recent, influential, dissertation in NLP. That chapter describes a statisti-
cal parser which bases its parsing decisions on bigram lexical dependencies,
trained from the Penn Treebank. Collins reports:

All tests were made on a Sun SPARCServer 1000E, using 100%
of a 60Mhz SuperSPARC processor. The parser uses around 180
megabytes of memory, and training on 40,000 sentences (essen-
tially extracting the co-occurrence counts from the corpus) takes
under 15 minutes. Loading the hash table of bigram counts into
memory takes approximately 8 minutes.

A similar example is described in [5]. Foster compares a number of
linear models and maximum entropy models for parsing, considering up
to 35,000,000 features, where each feature represents the occurrence of a
particular pair of words.

The use of such data-intensive probabilistic models is not limited to pars-
ing. For instance, [8] describes a method to learn the ordering of prenominal
adjectives in English (from the British National Corpus), for the purpose of
a natural language generation system. The resulting model contains counts
for 127,016 different pairs of adjectives.

In practice, systems need to be capable to work not only with bigram
models, but trigram and fourgram models are being considered too. For in-
stance, in order to solve PP-attachment ambiguities, [9] describe an unsuper-
vised method which constructs a model, based on a 125-million word newspa-
per corpus, which contains counts of the relevant (V, P, N3) and (N1, P, No)
trigrams, where P is the preposition, V is the head of the verb phrase, N; is

the head of the noun phrase preceding the preposition, and Ny is the head of
the noun phrase following the preposition. In speech recognition, language
models based on trigrams are now very common [6].

For further illustration, a (Dutch) newspaper corpus of 40,000 sentences
contains about 60,000 word types; 325,000 bigram types and 530,000 trigram
types. In addition, in order to improve the accuracy of such models, much
larger text collections are needed for training. In one of our own experiments
we employed a Dutch newspaper corpus of about 350,000 sentences. This
corpus contains more than 215,000 unigram types, 1,785,000 bigram types
and 3,810,000 trigram types. A straightforward, textual, representation of
the trigram counts for this corpus takes more than 82 Megabytes of storage.
Using a standard hash implementation (as provided by the gnu version of
the C++ standard library), will take up 362 Megabytes of storage during
run-time. Initializing the hash from the table takes almost three minutes.
Using the technique introduced below, the size is reduced to 49 Megabytes;
loading the (off-line constructed) compact language model takes less than
half a second.

All the examples illustrate that the size of the knowledge sources that
are being employed is an important practical problem in NLP. The run-
time memory requirements become problematic, as well as the CPU-time
required to load the required knowledge sources. In this paper we propose
a method to represent huge language models in a compact way, using finite-
state techniques. Loading compact models is much faster, and in practice
no delay in using these compact models is observed.

2 Formal Preliminaries

In this paper we attempt to generalize over the details of specific statistical
models that are employed in NLP systems. Rather, we will assume that such
models are composed of various functions from tuples of strings to tuples
of numbers. Each such language model function T/ is a finite function
(Wi x ... x W;) = (Z1 x ... x Zj). The word columns typically contain
words, word meanings, the names of dependency relations, part-of-speech
tags and so on. The number columns typically contain counts, the —log of
probabilities, or potential other numerical information such as diversity.
For a given language model function 7%, it is quite typical that some of
the dictionaries W7 ... W, may in fact be the same dictionary. For instance,
in a table of bigram counts, the set of first words is the same as the set of
second words. The technique introduced below will be able to take advan-

tage of such shared dictionaries, but does not require that the dictionaries
for different columns are the same. Naturally, more space savings can be
expected in the first case.

3 Compact Representation of Language Models

A given language model function 7% : (W1 X ... x W;) = (Z1 X ... x Zj)
is represented by (at most) ¢ perfect hash finite automata, as well as a
table with 7 + j rows. Thus, for each W}, we construct an acyclic finite
automaton out of all words found in Wj,. Such an automaton has additional
information compiled in, so that it implements perfect hashing ([7],[11],[10]).
The perfect hash automaton converts between a word w € W), and a unique
number 1 < |W|. We write N (w) to refer to the hash key assigned to w by
the corresponding perfect hash automaton.

If there is enough overlap between words from different columns, then
we might prefer to use the same perfect hash automaton for those columns.
This is a common situation in n-grams used in statistical natural language
processing.

We construct a table such that for each w; ... w; in the domain of T,
where T'(wy ...w;) = (21...2;), there is a row in the table consisting of
N(w1),...,N(w;),21,-.-,2,. Note that all cells in the table contain num-
bers. We represent each such number on as few bytes as are required for
the largest number in its column. The representation is not only compact,
it is machine-independent (in our implementation, the least significant byte
always comes first). The table is sorted. So a language model function is
represented by a table of compressed numbers, and a number of perfect hash
automata converting words into the corresponding hash keys.

The access to a value T'(w . . . wy,) involves converting the words wy . .. wy,
to their hash keys N(w1)...N(w,) using perfect hashing automata; con-
structing a query string from the hash keys by compressing these hash keys;
and using a binary search for the query string in the table; T'(w; ... wy) is
then obtained by de-compressing the values found in the table.

There is a special case for language model functions 7%/ where i = 1.
Because the words are unique, there is no need to store their numbers in
the table. The numbers just serve as indices in the table. Also the access
is different than in the general case. After we obtain the word number, we
use it as the address of the numerical part of the tuple.

4 Preliminary Results

We have performed a number of preliminary experiments. The results are
summarized in table 1. The text method indicates the size required by a
straightforward textual representation. The old methods indicate the size
required for a straightforward Prolog implementation (as a long list of facts)
and a standard implementation of hashes in C++. It should be noted that a
hash would always require at least as much space as the text representation.
We compared our method with the hash-map datastructure provided by
the gnu implementation of the C++ standard library (this was the original
implementation of the knowledge sources in the bigram POS-tagger, referred
to in the table).?

The concat dict method indicates the size required if we treat the se-
quences of strings as words from a single dictionary, which we then repre-
sent by means of a finite automaton. No great space savings are achieved in
this case, because the finite automaton representation is able only to com-
press prefixes and suffixes of words; if these ‘words’ get very long (as you
get by concatenating multiple words) then the automaton representation is
not suitable. The final new column indicates the space required by the new
method introduced in this paper.

We have compared the different methods on various inputs. The Alpino
tuple contains tuples of two words, two part-of-speech tags, and the name
of a dependency relation. It relates such a 5-tuple with a tuple consisting
of three numbers. The rows n sents trigram refers to an artificial test in
which we calculated the trigram counts for a Dutch newspaper corpus of n
sentences. The n sents fourgram rows is similar, but this case we computed
the fourgram counts. Finally, the POS-tagger row presents the results for
a “visible Markov-model” part-of-speech tagger for Dutch (using a tag set
containing 8,644 tags), trained on a corpus of 232,000 sentences. Its knowl-
edge sources are a table of bigrams of tags (containing 124,209 entries) and
a table of word/tag pairs (containing 209,047 entries).

As can be concluded from the results in table 1, the new representation
is in all cases the most compact one, and generally uses less than half of
the space required by the textual format. Hashes, which are mostly used
in practice for this purpose, consistently require about ten times as much
space.

2The sizes reported in the table are obtained using the Unix command wc -c, except
for the size of the hash. Since we did not store these hashes on disk, the sizes were
estimated from the increase of the memory size reported by top. All results are obtained
on a 64bit architecture.

test set text old concat dict new
Prolog C++ hash

Alpino tuple 9,475 44,872 NA 4,636 4,153
20,000 sents trigram 5,841 32,686 27,000 6,399 2,680
40,000 sents trigram 11,320 61,672 52,000 11,113 4,975
20,000 sents fourgram 8,485 45,185 33,000 13,659 3,693

40,000 sents fourgram 16,845 88,033 65,000 20,532 7,105

POS-tagger 15,722 NA 45,000 NA 4,409

Table 1: Comparison of various representations (in Kbytes)

5 Variations and Future Work

We have investigated additional methods to compress and speed-up the rep-
resentation and use of language model functions; some other variations are
mentioned here as pointers to future work.

In the table, the hash key in the first column can be the same for many
rows. For trigrams, for example, the first two hash keys may be identical
for many rows of the table. The same situation can arise for other columns.
By representing them once, and providing a pointer to the remaining part,
and doing the same recursively for all columns, we arrive at a structure
called trie. In the trie, edges going out from root are labeled with all the
hash keys from the first column. They point to vertices with outgoing edges
representing tuples that have the same two words at the beginning, and
so on. By keeping only one copy of hash keys from the first few columns,
we hope to economize the storage space. However, we also need additional
memory for pointers. A vertex is represented as a vector of edges, and each
edge consists of two items: the label (hash key), and a pointer. The method
works best when the table is dense, and when it has very few columns.
We construct the trie only for the columns representing words; we keep the
numerical columns intact.

For dense tables, we may perceive the trie as a finite automaton. The
vertices are states, and the edges — transitions. We can reduce the number
of states and transition in the automaton by minimizing it. In that process,
isomorphic subtrees of the automaton for the word columns are replaced
with single copies. This means that additional sharing of space takes place.
However, we need to determine which paths in the automaton lead to which
sequences of numbers in the numerical columns. This is done, again, by
means of perfect hashing. This implies that each transition in the automaton
not only contains a label (hash key) and a pointer to the next state, but also

a number which is required to construct the hash key. Although we share
more transitions, we need space for storing those additional numbers.

The use of such a perfect hash automaton over sequences of perfect hash
keys can be faster too. The look-up time in the table for the basic model
described in the previous section is determined by binary search. Therefore,
the time to look-up a tuple is proportional to the binary logarithm of the
number of tuples. It may be possible to improve on the access times by using
interpolated search instead of binary search. In an automaton, it is possible
to make the look-up time independent from the number of tuples. This is
done by using the sparse matrix representation ([12]) applied to finite-state
automata ([10]). A state is represented as a set of transitions in a big vector
of transitions for the whole automaton. The transitions do not have to
occupy adjacent space; they are indexed with their labels, i.e. the label is
the transition number. As there are gaps between labels, there are also gaps
in the representation of a single state. They can be filled with transitions
belonging to other states, provided that those states do not begin at the
same point in the transition vector. However, it is not always possible to fill
all the gaps, so some space is wasted.

Preliminary results on this alternative representation of language model
functions are discouraging. If we take the word-holding part of the table,
and create an automaton with each row converted to a string of transitions
labeled with word numbers from successive columns, and then minimize that
automaton, and compare the number of transitions, we get from 27% to 44%
reduction. However, the transition holds two additional items, usually of
the same size as the label, which means that it is 3 times as big as a simple
label. In the trie representation, we don’t need numbering information, so
the transition is twice as big as the label, but the automaton has even more
transitions. Also, the sparse matrix representation introduces additional
loss of space. In the first fit method, 59% to 79% of space in the transition
vector is not filled. This loss is due to the fact that the labels on outgoing
transitions of a state can be any subset of numbers from 0 to over 50,000.
This is in sharp contrast with natural language dictionaries, for instance,
where the size of the alphabet is much smaller.

Further experiments are required, however, before this method can be
dismissed conclusively. Our method of placing states in the transition vector
in quite naive; we can replace it with a more clever method yielding better
space efficiency. We can also divide the vector into several columns corre-
sponding to the columns of the table in the initial tuple representation. The
width of those columns can be varied, e.g. the last column does not need
the pointer field, and the width of the numbering information field in the

last columns can be smaller than in the initial ones. The improvements will
not give us a more compact representation of tuples than the base one, but
the alternative representation may be preferred by those who want to trade
space for speed.

Alternatively, we could represent a language model function 7%/ as an
i-dimensional array A[l...4]. As before, there are perfect hashing automata
for each of the dictionaries Wy ... W,,. For a given query wy . .. w,, the value
[N(wy)...N(wy)] is then used as an index into the array A. Because the
array is typically very sparse, it should be stored using a sparse matrix
representation. It should be noted that this approach would give very fast
access, but the space required to represent A is at least as big (depending
on the success of the sparse matrix representation) as the size of the table
constructed in the previous method.

6 Acknowledgments

This research was carried out within the framework of the PIONIER Project
Algorithms for Linguistic Processing, funded by NWO (Dutch Organization
for Scientific Research) and the University of Groningen.

References

[1] Gosse Bouma, Gertjan van Noord, and Robert Malouf. Wide coverage
computational analysis of Dutch. 2001. Submitted to volume based on
CLIN-2000. Available from http://www.let.rug.nl/"vannoord/.

[2] Michael Collins. Head-Driven Statistical Models for Natural Language
Parsing. PhD thesis, University Of Pennsylvania, 1999.

[3] Jan Daciuk. Experiments with automata compression. In M. Daley,
M. G. Eramian, and S. Yu, editors, Conference on Implementation and
Application of Automata CIAA’2000, pages 113-119, London, Ontario,
Canada, July 2000. University of Western Ontario.

[4] Jan Daciuk. Finite-state tools for natural language processing. In COL-
ING 2000 Workshop on Unsing Tools and Architectures to Build NLP
Systems, pages 34-37, Luxembourg, August 2000.

[6] George Foster. A maximum entropy/minimum divergence translation
model. In K. Vijay-Shanker and Chang-Ning Huang, editors, Proceed-

[6]

[7]

(8]

[9]

[10]

[11]

[12]

ings of the 38th Meeting of the Association for Computational Linguis-
tics, pages 37-44, Hong Kong, October 2000.

Frederick Jelinek. Statistical Methods for Speech Recognition. MIT
Press, 1998.

Claudio Lucchiesi and Tomasz Kowaltowski. Applications of finite au-
tomata representing large vocabularies. Software Practice and Experi-
ence, 23(1):15-30, Jan. 1993.

Robert Malouf. The order of prenominal adjectives in natural language
generation. In K. Vijay-Shanker and Chang-Ning Huang, editors, Pro-
ceedings of the 38th Meeting of the Association for Computational Lin-
guistics, pages 85-92, Hong Kong, October 2000.

Patrick Pantel and Dekang Lin. An unsupervised approach to preposi-
tional phrase attachment using contextually similar words. In K. Vijay-
Shanker and Chang-Ning Huang, editors, Proceedings of the 38th Meet-
ing of the Association for Computational Linguistics, pages 101-108,
Hong Kong, October 2000.

Dominique Revuz. Dictionnaires et lexiques: méthodes et algorithmes.
PhD thesis, Institut Blaise Pascal, Paris, France, 1991. LITP 91.44.

Emmanuel Roche. Finite-state tools for language processing. In
ACL’95. Association for Computational Linguistics, 1995. Tutorial.

Robert Endre Tarjan and Andrew Chi-Chih Yao. Storing a sparse table.
Communications of the ACM, 22(11):606-611, November 1979.

