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Today’s lecture
I Introduction

I Some words about logistic regression
I Generalized additive mixed-effects regression modeling
I Standard Italian and Tuscan dialects

I Material: Standard Italian and Tuscan dialects

I Methods: R code

I Results

I Discussion
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A linear regression model
I linear model : linear relationship between predictors and dependent

variable: y = a1x1 + ...+ anxn
I Non-linearities via explicit parametrization: y = a1x2

1 + a2x1 + ...
I Interactions not very flexible
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A generalized linear regression model
I generalized linear model : linear relationship between predictors and

dependent variable via link function: g(y) = a1x1 + ...+ anxn

I Examples of link functions:
I y2 = x ⇒ y =

√
x

I log(y) = x ⇒ y = ex

I logit(p) = log( p
1−p ) = x ⇒ p = ex

ex+1
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Logistic regression
I Dependent variable is binary (1: success, 0: failure), not continuous
I Transform to continuous variable via log odds: log( p

1−p ) = logit(p)
I Done automatically in regression by setting family="binomial"

I interpret coefficients w.r.t. success as logits: in R: plogis(x)
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A generalized additive model (1)
I generalized additive model (GAM): relationship between individual

predictors and (possibly transformed) dependent variable is estimated by
a non-linear smooth function: g(y) = s(x1) + s(x2, x3) + a4x4 + ...

I multiple predictors can be combined in a (hyper)surface smooth
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A generalized additive model (2)
I Advantage of GAM over manual specification of non-linearities: the

optimal shape of the non-linearity is determined automatically
I appropriate degree of smoothness is automatically determined on the basis

of cross validation to prevent overfitting

I Choosing a smoothing basis
I Single predictor or isotropic predictors: thin plate regression spline

I Efficient approximation of the optimal (thin plate) spline
I Combining non-isotropic predictors: tensor product spline

I Generalized Additive Mixed Modeling:
I Random effects can be treated as smooths as well (Wood, 2008)
I R: gam and bam (package mgcv)

I For more (mathematical) details, see Wood (2006)
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Standard Italian and Tuscan dialects
I Standard Italian originated in the 14th century as a written language
I It originated from the prestigious Florentine variety
I The spoken standard Italian language was adopted in the 20th century

I People used to speak in their local dialect

I In this study, we investigate the relationship between standard Italian and
Tuscan dialects

I We focus on lexical variation
I We attempt to identify which social, geographical and lexical variables

influence this relationship
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Material: lexical data
I We used lexical data from the Atlante Lessicale Toscano (ALT)

I We focus on 2060 speakers from 213 locations and 170 concepts
I Total number of cases: 384,454
I For every case, we identified if the lexical form was different from standard

Italian (1) or the same (0)
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Geographic distribution of locations
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Material: additional data
I In addition, we obtained the following information:

I Speaker age
I Speaker gender
I Speaker education level
I Speaker employment history
I Number of inhabitants in each location
I Average income in each location
I Average age in each location
I Frequency of each concept
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Modeling geography’s influence with a GAM
# logistic regression: family="binomial"
> geo = gam(NotStd ~ s(Lon,Lat), data=tusc, family="binomial")
> vis.gam(geo,view=c("Lon","Lat"),plot.type="contour",color="terrain",...)
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Adding a random intercept to a GAM
> model = bam(NotStd ~ s(Lon,Lat) + s(Concept,bs="re"),

data=tusc, family="binomial")
> summary(model)

Family: binomial
Link function: logit

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.3620 0.1152 -3.142 0.00168 **

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(Lon,Lat) 27.85 28.77 2265 <2e-16 ***
s(Concept) 168.63 169.00 66792 <2e-16 ***

R-sq.(adj) = 0.253 Deviance explained = 20.9%
fREML score = 5.4512e+05 Scale est. = 1 n = 384454
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Adding a random slope to a GAM
> model2 = bam(NotStd ~ s(Lon,Lat) + CommSize.log.z + s(Concept,bs="re")

+ s(Concept,CommSize.log.z,bs="re"),
data=tusc, family="binomial")

> summary(model2)

Family: binomial
Link function: logit

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.3625 0.1161 -3.123 0.002 **
CommSize.log.z -0.0587 0.0224 -2.621 0.009 **

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(Lon,Lat) 27.7 28.71 1984 <2e-16 ***
s(Concept) 168.6 169.00 82474 <2e-16 ***
s(Concept,CommSize.log.z) 154.2 170.00 33956 <2e-16 ***

R-sq.(adj) = 0.257 Deviance explained = 21.3%
fREML score = 5.4476e+05 Scale est. = 1 n = 384454
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Varying geography’s influence based on concept freq.
I Wieling, Nerbonne and Baayen (2011, PLOS ONE) showed that the

effect of word frequency varied depending on geography
I Here we explicitly include this in the GAM with te()

> m = bam(NotStd ~ te(Lon, Lat, Freq, d=c(2,1)) + ...,
data=tusc, family="binomial")

I As this pattern may be presumed to differ depending on speaker age, we
can integrate this in the model as well

> m = bam(NotStd ~ te(Lon, Lat, Freq, Age, d=c(2,1,1)) + ...,
data=tusc, family="binomial")

I The results will be discussed next... (Wieling et al., submitted)
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Results: fixed effects and smooths

Estimate Std. Error z-value p-value
Intercept -0.4188 0.1266 -3.31 < 0.001

Community size (log) -0.0584 0.0224 -2.60 0.009
Male gender 0.0379 0.0128 2.96 0.003

Farmer profession 0.0460 0.0169 2.72 0.006
Education level (log) -0.0686 0.0126 -5.44 < 0.001

Est. d.o.f. Chi. sq. p-value
Geo × frequency × speaker age 225.9 3295 < 0.001
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A complex geographical pattern
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Animation: increasing frequency for older speakers
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Animation: increasing frequency for younger speakers
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Results: random effects

Factors Random effects Std. dev. p-value
Speaker Intercept 0.0100 0.006
Location Intercept 0.1874 < 0.001
Concept Intercept 1.6205 < 0.001

Year of recording 0.2828 < 0.001
Community size (log) 0.1769 < 0.001
Average community income (log) 0.2657 < 0.001
Average community age (log) 0.2400 < 0.001
Farmer profession 0.1033 < 0.001
Executive or auxiliary worker prof. 0.0650 0.002
Education level (log) 0.1255 < 0.001
Male gender 0.0797 < 0.001

I Complex structure, logistic regression and large dataset: 23 hours of
CPU time
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By-concept random slopes for community size
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By-concept random slopes for speaker education level
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Discussion
I Using a generalized additive mixed-effects regression model (GAMM) to

investigate lexical differences between standard Italian and Tuscan
dialects revealed interesting dialectal patterns

I GAMs are very suitable to model the non-linear influence of geography
I The regression approach allowed for the simultaneous identification of

important social, geographical and lexical predictors
I By including many concepts, results are less subjective than traditional

analyses focusing on only a few pre-selected concepts
I The mixed-effects regression approach still allows a focus on individual

concepts

I There are some drawbacks to GAMMs, however...
I gam and bam are computationally somewhat more expensive than linear

mixed-effects modeling using lmer (lme4 package)
I Model comparison is problematic when including random-effect smooths

(i.e. using anova(gam1,gam2) is useless)
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Conclusion
I Generalized additive modeling is useful to study non-linear effects
I Use bam if your dataset is large
I Use s() for predictors which are on the same scale
I Use te() when predictors are on a different scale
I (there is also a third option, ti(), which should be used when testing

main effects and interactions)

I We will experiment with these issues in the lab session after the break!
I We use a subset of Dutch dialect data (faster: no logistic regression)
I Similar underlying idea: investigate the effect of geography, word frequency,

and location characteristics on pronunciation distances from standard Dutch
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Thank you for your attention!
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