
Flexible Semantics Communication in Integrated
Speech/Language Architectures

Abdel Kader Diagne and John Nerbonne∗

Deutsches Forschungszentrum für Künstliche Intelligenz

Stuhlsatzenhausweg 3
6600 Saarbrücken 11, Germany

{ diagne, nerbonne } @dfki.uni-sb.de

Abstract: We consider communication between modules in an integrated architecture
for Speech and Natural Language (NL), in particular the communication with the seman-
tics module. In an integrated Speech/Language system several components—phonology
(intonation), syntax, context model—may express meaning constraints, which the seman-
tics module must flexibly manage and evaluate, in order to enable semantic inference.
This paper describes an implemented approach in the ASL Project in which nonsemantic
modules provide feature-based contraints that are then translated into a meaning repre-
sentation language. We realize these translator functions in the spirit of federated
agents’ architectures (Genesreth); this functionality is required in heterogenous integrated
architectures, and is implemented here using compiler technology.
Keywords: Software Interoperability, Translator Functions, Agents’ (Federation) Archi-
tectures, Interfaces
Area: Natural Language and Speech Understanding.
Deutsche Zusammenfassung Wir betrachten die Kommunikation zwischen Modulen in
einem System zur integrierten Analyse von Sprachlauten und Sprachstrukturen (Speech
and Language) und speziell die Kommunikation mit dem Semantikmodul in so einem Sys-
tem. Sowohl die Syntax als auch u.a. die Phonologie (Intonation) und das Kontextmodell
dürfen Einschränkungen über Semantik ausdrücken. Das Semantikmodul muß diese Con-
straints verwerten und darauf basierend Inferenzen vollziehen. Diese Arbeit beschreibt
einen im ASL-Projekt bereits implementierten Ansatz, in dem nicht-semantische Module
Einschränkungen über die Semantik in Form von Merkmalsstrukturen an den Semantik-
modul liefern, die dann in die semantische Repräsentationssprache übersetzt werden. Wir
realisieren diese Übersetzungsfunktionen im Sinne der ”‘föderativen Agentenarchitek-

∗This work was supported by research grant ITV 9102 from the German Bundesministerium für
Forschung und Technologie (BMFT) to the DFKI ASL project. We thank Joachim Laubsch for valu-
able discussions. Diagne is the principal author and technical contributor for the work presented here.

1

tur”’ (Genesreth); Übersetzungsfunktionalität ist in solchen heterogenen Agentenarchitek-
turen erforderlich und wird hier mittels Kompilertechnologie implementiert.

1 Introduction and Motivation

The technical kernel of the present paper is the description of an implemented general
translation facility for a semantics module. This facility translates constraints from nonse-
mantic modules into a meaning representation language. It may be seen as a generalization
of the syntax/semantics interface customary in NLP systems, but it is superior first in al-
lowing multiple determination of semantics (important in speech/language applications),
and second in enabling independent engineering for a semantics module—allowing it to
function in various systems with minimal system prerequisites. The translation facility
is best seen as the instantiation of (one part of) the facilitator in federated agents’
architectures [4].

This introduction discusses both motivational points and the sketches the place of trans-
lator functions in integrated agents’ architectures. The next section gives a brief overview
on the meaning representation formalism NLL and describes its interfacing facilities. In
Section 3 we describe our design for translating feature based formalisms into NLL, em-
phasizing its debt to compiler technology. We discuss problems that arise, our present
solutions, and implementation issues. Examples are provided. A final section attempts to
evaluate this work and give perspectives for interfacing the semantics module with further
components in integrated speech/language architectures.

1.1 Semantics in Speech/Language Systems

The need for a general translation facility arises particularly in speech/language systems,
in which input to the semantics module comes not only from syntax and lexicon, but also
from suprasegmental phonology (intonation and focus accent) among perhaps others. In
order to deal with these multiple sources of semantic content, we abandon the idea of
there being a functional, homomorphic relation between a single (syntactic) source and a
semantic representation, and instead conceive of semantics construction as a constraint-
satisfaction process ([10, 11], in which syntax, suprasegmental phonology (and eventually
contextual pragmatics) provide constraints on logical form which the semantics module
evaluates, reasons from, and applies appropriately (our present applications are calendar
management and train schedule information). The constraint-satisfaction view of semantics
construction is furthermore useful in speech/language systems because it allows one to deal
with partial information incrementally [5]. A first motivation for our translation facility
is that it enables the constraint-satisfaction view of semantics construction. Figure 1
sketches the place of the semantics module in the communication model proposed for the
ASL-Nord-Project [12].

2

@
@

J
J
J

J
J
J

HHHH

�
�

�
�

�
�
�
�
�
�
�.

.

.

.

.

.

.

.

.

.

Signalanalysis

Pragmatics

Syntax

Phonology

Morphology

Application
(e.g. Database)

Translator-
Functions

Facilitator
Semantics

Figure 1: Information Flow to Semantics in a Speech System: The semantics in-
terface contains translator-functions (one for each incoming specification language), which
render incoming data and queries to the module in the semantics’ internal representation
language. The translators’ design is based on compiler technologies, which improves the
generality of the approach.

1.2 Engineering for Computational Semantics

But the facility is also very useful in systems where semantics remains entirely syntax-
driven. The language in which constraints are formulated is generally that of typed feature
logic ([2], [3]), and the semantic representation language is generally a variant of a higher-
order predicate logic, e.g., generalized quantifier language or the language of discourse
representation theory, (here it is NLL, described in Section 2 below). The modules thus
do not use the same language, and indeed could not, under normal assumptions about the
expressive capabilities required in phonology and syntax on the one hand, and semantics
on the other. This justifies the need for translator functions (even if more traditional
syntax/semantics interfaces could suffice here).

This motivation is strengthened if one considers the state of natural language engi-
neering for large NL systems. These are presently too complex for any single small group
to develop. As a result, today’s systems increasingly involve some incorporation of het-
erogeneous modules taken from different development efforts. This tactic of eclectically
combining modules has great potential but harbors serious system architecture (commu-
nication) problems. It is easy to find components which perform well in specific systems,
but which are difficult to use elsewhere because of idiosyncratic input and interface re-
quirements. This suggests that the design of contemporary components should foresee
the needs of software interoperability—the deployment of components in heterogeneous
systems—from the beginning, insisting on modularity, flexibility (ease of experiment), and
tolerance (minimal interface requirements) [9]. The translator facilities we provide in the

3

�
�

�
�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Q

Q
Q

Q
Q

Q
Q

Q
Q

QQ
����������������

�
�

�
�

�
�

�
�

�
b

b
b

b
b

b
b

b
b

b
b

bb

Coordinator

PhonologyMorphology

Semantics

Pragmatics Syntax
Application
(e.g. Database)

Facilitator

Translator-Functions
(TF-1, ..., TF-i, ..., TF-n)

Signalanalysis

Figure 2: Communication in an agents’ architecture with a global facilitator. Each module
(agent) is related to a global facilitator which manages the communication. The facilitator
consists of a coordinator, responsible for brokering and scheduling, and a set of translator-
functions. Each module may use a different input/output data format. The task perfomed
by each translator-function is to translate incoming data for further processing in a par-
ticular module. The coordinator determines the further destination of outgoing data, and
invokes translators where needed.

work described serve especially the last purpose—they allow a very general use of the se-
mantics module they provide interface to, without prerequisites about the theories, designs
or even implementation languages of other system components.

1.3 Agents’ Architectures

Even if we claim a general usefulness for the translator functions described below, they
are quite specifically required in contemporary designs for federated agents’ architectures
[4]. These systems are designed to allow for heterogeneous agents (modules), and foresee
that their federated actions may be coordinated by a facilitator, whose tasks include
brokering (deciding on responsibilities), scheduling (allocating resources and priorities),
and translating (one agent’s representations into another’s). The last function is required
wherever agents may be heterogeneous. Figure 2 sketches a federated agents’ architecture.

The work we present here is compatible with the view of the semantics module as an
agent whose language is NLL, which cooperating agents need not know. The translation
into NLL is accomplished by the functions we detail here.

4

2 Overview of NLL

NLL is a logical language for representing the meaning of natural language expressions
on the computer[8].1 Its design has five goals:

1. to provide an independent semantics module for NLP systems;

2. to support some semantic inference;

3. to provide a base for disambiguation (like SRI’s QLF, quasi-logical form, [1]) and
domain-specific interpretation (e.g., transduction into a database query language,
such as SQL, or a language for controlling an application, such as the AKA-MOD
agents’ system);

4. to support experimentation at the level of semantic representation; and

5. to facilitate the semantic representation of common grammatical constructs (lexical
and syntactic).

NLL is based on predicate logic with keyworded arguments; it contains several fur-
ther expressive devices developed for the representation of NL, including plurals terms, λ

abstracts, generalized quantifiers, comparative predicates and the measure phrases they
employ (’60 meters’), complex determiners, and variable-binding terms. In several in-
stances inference rules associated with the defined devices are implemented, and in general
inference is supported to the extent that is required in interface applications [6]. For ex-
ample, there are implemented rules for implied conjunct removal, subsumtion of a literal
by specialization, distributive inferences for plural terms, simplification rules for locative
terms, rewriting rules for disambiguation, and substitution [7].

3 Semantics Communication Facilities

Since NLL is designed to function as an independent module, a number of interfaces
are available. NLL can be created using (i) any of numerous constructor functions; (ii)
through the invocation of a reader which parses the logical syntax of NLL: or (iii) through
the specification of NLL structures in a feature description language. In this fashion, NLL
attempts to allow the NL system developer with a number of choices. We should note that
both interfaces (ii) and (iii) require only that strings be provided to the NLL modules.
There is no requirement that the syntax be based on a particular theory, programming
language or even machine architecture.

The interface (iii), specifying NLL via typed feature structures, is of central interest
here, because it allows the integration of multiple modules simultaneously constraining
semantics—the speech situation. In the case where multiple modules constrain semantics,

1NLL was first developed by Joachim Laubsch and John Nerbonne Hewlett-Packard Laboratories. A.
Kader Diagne has since joined the effort at the German Research Center for Artificial Intelligence (DFKI).

5

the constraints are first unified before being passed to the interface. The interface itself is
effected by a translation function which takes as input a string representation of a typed
feature structure and outputs an NLL expression, suitable for processing by the NLL
inference engine. The function is structured as a compiler—it reads the feature expression,
parses it into an abstract syntax tree, performs tree-transformations to eliminate structural
divergences, and substitutes corresponding NLL atoms to obtain a final translation.

Compiling expressions from a source into a target language is a widely applicable tech-
nology which we apply in NLP architectures. Here we compile feature structure descrip-
tions into meaning representations, realizing the translator function of the facilitator in
the federated agents’ archictecture (above).

3.1 Parsing Feature Descriptions

The feature-based semantics interface had to meet the following requirements: (i) applica-
bility to different formalisms implemented in different programming languages; (ii) mini-
mal requirements for input/output data; (iii) satisfactory compilation time. The particular
feature formalism is variable in that the feature structure description language is specified
declaratively (cf. Appendix A), and is irrelevant to the core translation procedures. The
implementation lanaguage may likewise be ignored, since we use the string representa-
tion of the feature module—which minimizes our input requirements. The employment of
compiler-compiler technology provides satisfactory compilation time.

The interface inputs a string representing a feature structure description, e.g., in the
language specified by the BNF presented below in Appendix A (only appropriately typed
slots are considered by the compiler). This concrete syntax is parsed into an abstract

syntax tree, which is in turn input to the transformation routines. The distinction
between concrete and abstract syntax allows us to use a the same compilation routines for
superficially different feature formalisms (and we have tested this against two formalisms).
For example, the feature structure descriptions below result in the same abstract syntax
tree illustrated in Figure 3:

Expression BNF Specification

[(pred talk) (agent Jones) (theme NLP)] conj ::= “[” av-term ∗ “]”
av-term ::= “(“ attribute value “)” . . .

[pred=talk, agent=Jones, theme=NLP] conj ::= “[” av-term { “,” av-term ∗ } “]”
av-term ::= attribute=value . . .

[pred:talk agent:Jones theme:NLP] conj ::= “[” av-term ∗ “]”
av-term ::= attribute “:” value . . .

The implementation of the parser is carried out using the ZEBU compiler-compiler, a
Lisp-Version of YACC, under an Allegro Common Lisp environment on a SUN Worksation.
A prototypical version was first implemented under a REFINE programming environment,
because REFINE provides high-level programming constructs to express syntactic trans-
formations and allows the use and generation of Common Lisp programs.

6

3.2 Transforming Feature Specifications

The next compilation step is a tree transformation task, illustrated in Figure 4.
Different tasks have to be solved by the transformation submodule: (i) resolving struc-

tural divergences between the feature language on the one hand, and the semantic repre-
sentation on the other; (ii) performing substitutions; (iii) filtering inappropriate features;
and (iv) managing coreferences in the feature language; and (v) multiplying disjunctions
out (not yet implemented). The use of compiler technologies accomplishes these tasks.
Transformations are used to handle (i) divergences and (ii) substitutions; selective parsing
(iii) filters; and a symbol table manages coreferences (iv). Thus compiler technology solves
significant problems efficiently and generally.

The role of tree transformations in handling structural divergences is worth special
mention. The output from the feature description parser is an abstract syntax tree which
serves as the input to the transformation submodule. The transformation submodule
consists of a translator-function, which combines calls to various auxiliary tree-traversal
(and tree-transformation) functions. Two tree-traversal functions are used by the translator
function: (1) a so-called preorder-transformation function for top-down traversing;
and (2) a postorder-transformation function for bottom-up traversing of the abstract
syntax tree. Each of these functions takes as arguments not only the (abstract) tree
specified by the root, but also a set of transformations that is applied to the nodes of the
given tree. A pre/postorder-transformation function operates on the tree in several passes;
only one rule is used in each pass. Each rule in the rule set may be used, therefore the
choice may be nondeterministic. The algorithms terminate when no rule can perform any
further change on the tree. Given this control, it is sometimes necessary to split the rule
set into subsets that are used in different calls to the tree-traversal functions.

Example of transformation rules are:

• fs-variable-to-nll-variable which transforms a variable from the feature description
(%integer) into an NLL variable (?symbol). Due to the presence of coreferences

\
\\

,
,

,
T
TT

�
��

S
S

#
##

HHHHHHHH

�������

NLPthemeJonesagenttalkpred

attribute valuevalueattributevalueattribute

av-termav-termav-term

conjunction

Figure 3: An abstract syntax tree for either “ [(pred talk) (agent Jones) (theme NLP)] ”
or “ [pred=talk, agent=Jones, theme=NLP] ” or “ [pred:talk agent:Jones theme:NLP] ”.

7

@@�
�A

A
�

��

\
\\

�
��

Q
QQ

�
��

talk

NLPtheme?nagent

ra-pairra-pair

role-argument-pairspredicate

atomic-formula

�� ��

�� ��

�� ��
�� ��

?

?

?

?

?

?

\
\

#
##

T
T

�
�

JJ
,

,

HHHHHH

�����

(NLL)

New Abstract Syntax Tree

Transformed Syntax Tree

- construct new abstract tree

- filter inappropriate features

- subtitutions

- coreferences

- structural divergences

- multiply disjunctions out

(Feature Grammar)

Initial Abstract Syntax Tree

String representation
NLL
talk(agent:?n theme:NLP)

Grammar
NLL

Zebu / Refine
PRINTER

TRANSFORMATIONS
(Translator-Function)

NLPthemeagenttalkpred

attribute valuevalueattributevalueattribute

av-termav-termav-term

conjunction

%1

PARSER
Zebu / Refine

Feature
Grammar

[(pred talk) (agt %1) (th NLP)]
Feature Structure
String representation

Figure 4: A feature-based semantics interface. Translating a feature structure description
into NLL. Partial specification of the sentence Someone talks about NLP.

8

this transformation must be done by generating symbols for new occurences of feature
variables and keeping track of correspondences in a symbol table (usual in compiler
technologies);

• attribute-value-term-to-role-argument-pair generates a NLL role-argument pair from
an attribute-value-pair description, where the given attribute corresponds to a NLL
role; etc.

The results, NLL expression(s) representing the possible meaning(s) of the given sen-
tence, are likewise available in different formats, including strings.

4 Conclusion and Prospectus

The purpose of this paper has been to present a suitable and general approach for devel-
oping interfaces in an heterogeneous architecture for speech and language. We focused on
the communication with the semantics module in particular the semantics interface, but
a similar approach is realizable in other cases. We are working on other interfaces to the
semantics module: (1) Discourse Memory (Attentional State) (2) Dialogue Management
(Intentional State); (3) Knowledge Representation; (4) Phonology (esp. Intonation); and
(4) Applications. NLL interfaces to applications like databases can be easily implemented
by using translator-functions based on compilation (e.g. NLL to SQL interface [7] [6]).

References

[1] H. Alshawi et al. Research programme in natural language processing. Final report,
Alvey Project No. ALV/PRJ/IKBS/105, SRI Cambridge Research Centre, July 1989.

[2] Bob Carpenter. The Logic of Typed Feature Structures. Number 32 in Tracts in
Theoretical Computer Science. Cambridge University Press, Cambridge, 1992.

[3] Lutz Euler. Syntax des asl-attributenterm-formalismus. Technical Report 45-92/UHH,
Verbundprojekt ASL, Fachbereich Informatik, Uni Hamburg, 1992.

[4] M.R. Genesreth. An agent-based framework for software interability. Technical report,
Dept. of Computer Science, Stanford Univ, 1992.

[5] Per-Kristian Halvorsen. Situation semantics and semantic interpretation in constraint-
based grammars. In Proc. of the International Conference on Fifth Generation Com-

puter Systems, volume 2, pages 471–478, Tokyo, 1988. Institute for New Generation
Systems.

[6] Joachim Laubsch. The semantics application interface. In Hans Haugeneder, editor,
Applied Natural Language Processing. ??publisher, ??address, 1992.

9

[7] Joachim Laubsch. Logical form simplification. STL report, Hewlett-Packard, Decem-
ber 1989.

[8] Joachim Laubsch and John Nerbonne. An overview of \ll. Technical report, Hewlett-
Packard Laboratories, Palo Alto, July 1991.

[9] R.E. Fikes M.R. Genesreth. Knowledge interchange format version 2 reference manual.
Technical report, Dept. of Computer Science, Stanford Univ, 1991.

[10] John Nerbonne. Constraint-based semantics. In Paul Dekker and Martin Stokhof,
editors, Proc. of the 8th Amsterdam Colloquium, pages 425–444. Institute for Logic,
Language and Computation, 1992. also DFKI RR-92-18.

[11] John Nerbonne. Representing grammar, meaning and knowledge. In Susanne Preuss
and Birte Schmitz, editors, Proc. of the Berlin Workshop on Text Representation

and Domain Modeling: Ideas from Linguistics and AI, pages 130–147, Technische
Universität Berlin, 1992. KIT FAST 97. also DFKI RR-92-20.

[12] Claudius Pyka. Architektur von asl-nord. Technical Report ASL-TR-4-91/UHH,
Universität Hamburg, Fachbereich Informatik, Arbeitsbereich ‘Natürlichsprachliche
Systeme’, 1991.

A BNF of Feature Description Grammar

The following BNF specifies the feature description grammar [3] used in the ASL Project.

feat-term ::= variable
| untagged-term
| tagged-term

tagged-term ::= variable “=” untagged-term
untagged-term ::= atom

| sort-expression
| type conj
| conj
| disj

conj ::= “[” attribute-value-term∗ “]”
disj ::= “{” feat-term (“,”feat-term)∗ “}”
attribute-value-term ::= “(” attribute feat-term “)”
sort-expression ::= simple-sort

| “@” sort
simple-sort ::= primitive-sort

| defined-sort
sort ::= simple-sort

| ∼ sort
| “(” sort (“&” sort)+ “)”

10

| “(” sort (“!” sort)+ “)”
attribute ::= IDENTIFIER
atom ::= IDENTIFIER

| predefined-atom
predefined-atom ::= INTEGER
primitive-sort ::= IDENTIFIER
defined-sort ::= IDENTIFIER
type ::= IDENTIFIER
variable ::= “%” POSITIVE-INTEGER

11

