

Language and Inference

Day 3: Building Meaning Representations

Johan Bos johan.bos@rug.nl

- Introduce a method to build meaning representations from English text
- Introduce a grammar formalism
- Specify the syntax-semantics interface

Today

CCG is a lexicalised theory of grammar

- Many different lexical categories
- Few grammar rules (based on combinatory logic)
- Covers complex cases of coordination and longdistance dependencies

Combinatory Categorial Grammar

Not just theory, also used in practice!

- OpenCCG (Baldridge, White)
- CCGbank (Hockenmaier)
- Groningen Meaning Bank
- C&C supertagger and parser (Clark, Curran)

Combinatory Categorial Grammar

S	sentence
NP	noun phrase
N	noun
PP	prepositional phrase

The category S comes with a feature to distinguish between various sentence mood and verb phrase forms

Basic Categories

NP/N	determiner
N/N	adjective
S _{dcl} \NP	verb phrase (declarative mood)
(S _{ng} \NP)/NP	transitive verb (present perfect)
$(S_X \setminus NP) \setminus (S_X \setminus NP)$	adverb
(N\N)/NP	preposition

The direction of the slash determines where the argument appears: forward slash (/): right; backward slash (\): left

Functor Categories

Word Category boy: N everything: NP the: NP/N eats: S_{dcl}\NP eats : $(S_{dcl}\NP)/NP$ quickly : $(S_X \setminus NP) \setminus (S_X \setminus NP)$

Example Lexicon

Application

Forward >

Backward <

Composition

(Generalised) Forward >B

(Generalised) Backward <B

Crossed Composition

(Generalised) Forward >Bx

(Generalised) Backward **<Bx**

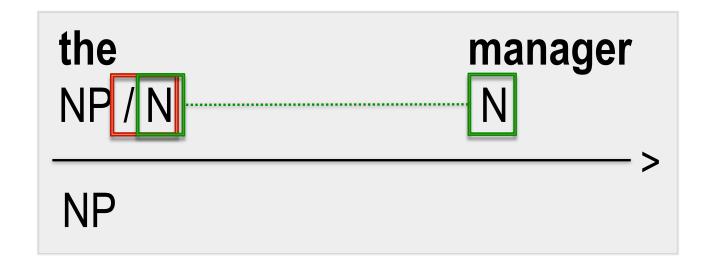
Type Raising

Forward >T

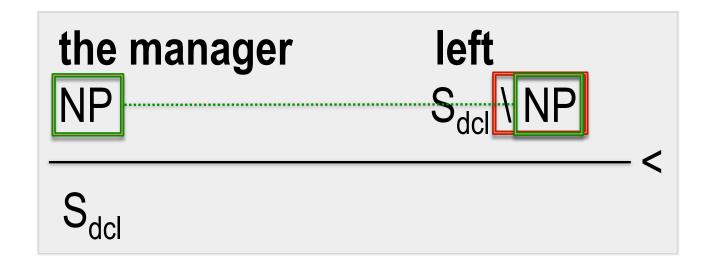
Backward <T

Substitution

Forward >S


Backward <S

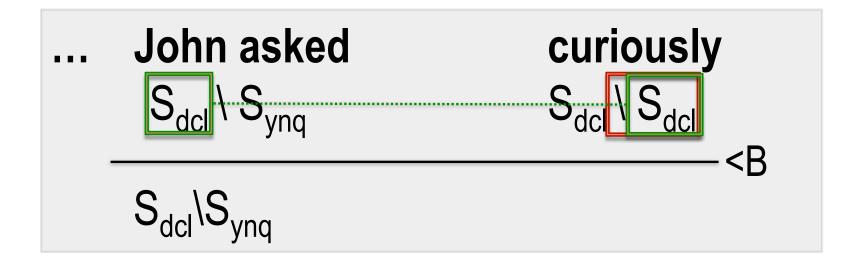
Crossed Substitution


Forward >Sx

Backward **<Sx**

Combinatory Rules of CCG

Forward Application (>)


Backward Application (<)

$$\frac{\text{to}}{(S_{to} NP)[(S_b NP)]} = \frac{\text{sell}}{(S_b NP)/NP} = \frac{(S_b NP)/NP}{(S_{to} NP)/NP}$$

Forward Composition (>B)

to sell
$$(S_{to}NP)/(S_bNP)$$
 $(S_bNP)/NP$ $>B$ $(S_{to}NP)/NP$

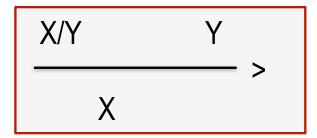
Forward Composition (>B)

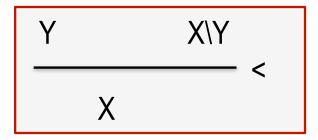
Backward Composition (<B)

... John asked curiously
$$S_{dcl} \setminus S_{ynq}$$
 $S_{dcl} \setminus S_{dcl}$ $< B$

Backward Composition (<B)

$$\frac{\text{did}}{(S_{dcl} NP)/(S_b NP)} \frac{\text{not}}{(S_{dcl} NP)/(S_b NP)} < Bx$$

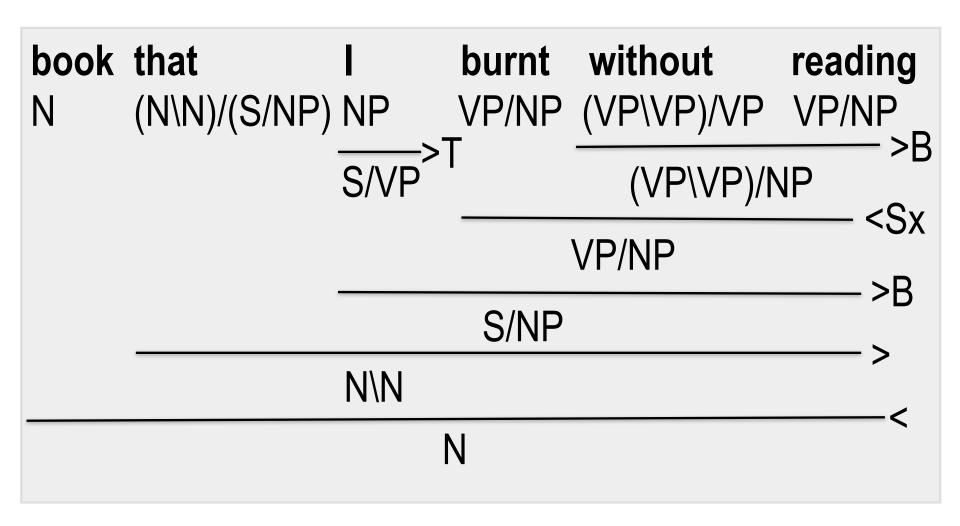

$$\frac{(S_{dcl} NP)/(S_b NP)}{(S_{dcl} NP)/(S_b NP)}$$


Backward Crossed Composition (<Bx)

$$\frac{\text{did}}{(S_{dcl} NP)/(S_b NP)} \frac{\text{not}}{(S_{dcl} NP) \setminus (S_{dcl} NP)} < Bx$$

$$\frac{(S_{dcl} NP)/(S_b NP)}{(S_{dcl} NP)/(S_b NP)}$$

Backward Crossed Composition (<Bx)



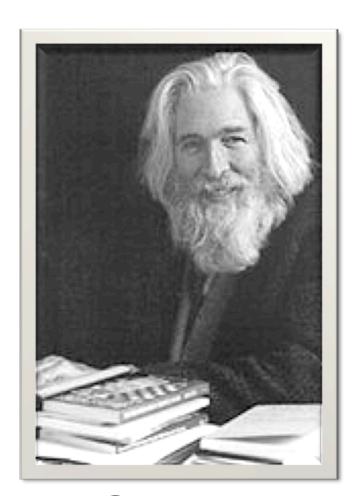
Rule schemata (1)

Type Raising (>T) and Coordination (<>)

Substitution (S), "parasitic gap"

$$\frac{Y/Z}{} = \frac{(X \setminus Y)/Z}{$$

Rule schemata (2)


Bluebird

Starling

Thrush

Raymond Smullyan

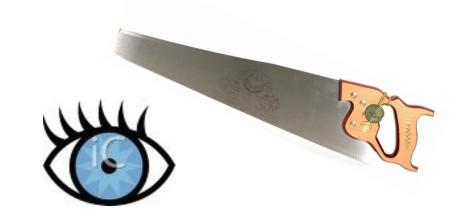
The C&C parser consists of two steps:

- Supertagging
 (= assigning lexical categories to tokens)
- 2. Parsing (= building CCG derivations)

The C&C parser

- Implementation of fast supertagger and parser trained on Hockenmaier's CCGbank
- Supertagger assigns CCG categories to words
- Integrated with POS tagging and named entity recognition
- Reaching high speed
 (a minute to parse one section of the WSJ)

C&C supertagger and parser


Morphology

- The C&C tools also use the morphological analyser Morpha
- Morpha returns the lemma and inflection type of a word, given the word form and the POS

EXAMPLE

```
see (VB) => see
seen (VBN) => see
saw (VBD) => see
saw (NN) => saw
saws (NNS) => saw
```


- A large collection of CCG trees
 - 49,000 sentences, over a million of tagged words
 - A total of 1,286 different categories (of which 847 appear more than once)
- Extracted from the Penn Treebank
 - Wall Street Journal newspaper texts
 - All 25 sections

Hockenmaier's CCGbank